当前位置:文档之家› 基因转移的研究进展

基因转移的研究进展

基因转移的研究进展
基因转移的研究进展

基因转移技术

基因转移技术 什么是基因转移技术? 基因转移技术是将特定的外源基因信息转入到受体细胞或生物并使其表达的一种基因工程技术。基因转移技术已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物模型建立等研究方向。 基因转移方法有哪几类? 一、化学转染 1.磷酸钙法 该技术通过将磷酸盐溶液和含有DNA的氯化钙溶液进行缓慢混合,形成DNA-磷酸钙共沉淀复合物。复合物能粘附于细胞膜上,通过细胞内吞作用进入细胞浆中。 优点:实验室中转染哺乳动物细胞最广泛使用的方法。试剂易获得,成本低,可用于瞬时转染和稳定转染。 缺点:重复性差,转染效率低。对基因和细胞的选择要求较高。 2.DEAE-葡聚糖法 DEAE-葡聚糖是最早开发的转染试剂之一。它是一种可溶的聚阳离子碳水化合物,通过与带负电的DNA结合形成聚集物。携带正电荷的复合物与带负电荷的细胞膜结合,通过细胞内吞作用进入细胞中。与磷酸钙转染过程中形成的复合物颗粒相比,其粒径更小。 优点:该试剂价格便宜,并且过程简便、效率较高。一般常用于瞬时转染,DNA使用量较少。 缺点:不适用于稳定转染。 3.脂质体法 脂质体分为单层脂质体和多层脂质体。常用的阳离子脂质体与带负电的DNA结合,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,通过细胞内吞作用进入细胞。脂质体介导的基因转移的效率可以通过整合病毒蛋白来提高,从而促进病毒包膜和细胞膜之间的主动融合。这种融合粒子被称为病毒体。 优点:能够在活体内应用,毒性低、重复性好。适用性广,在很多细胞中能得到有效的瞬时转染和稳定转染效果。 缺点:试剂难以自制,商品较为昂贵,转染效果在不同细胞类型中差异较大。

浅析非病毒载体基因转移技术的现状和展望

浅析非病毒载体基因转移技术的现状和展望 摘要:目前基因治疗已经成为科学家治疗多种难治性疾病的一种新手段,基因导入技术是基因治疗的核心也是最基本的技术。目前研究较多的基因导入技术共分为两大类:一,病毒载体基因导入法;二,非病毒载体基因导入法。前者转染效率高,但存在安全性和免疫原性等问题。因此,近年来人们对非病毒类载体系统给予了更多的关注。 关键词:非病毒载体基因转移技术现状和展望 非病毒载体基因转移方法又分为物理方法和化学方法。物理方法如:注射法、基因枪法、电穿孔法、超声波法等都是借助物理力量穿透细胞膜达到基因转移的目的;化学方法则是借助天然的或者人工合成的化合物辅助完成基因转移。尽管近年来在非病毒基因转移领域中取得了显著成效,但总体而言,非病毒载体相对于病毒载体来说转移基因的效率要低,在体内的基因转移尤其如此。现在把目前较常用的非病毒载体基因转移方法的优势和局限综述如下。 1 物理方法 就是基于物理力量造成细胞膜的瞬间缺损,从而使质粒DNA进入细胞内的方法。如基因枪法、电穿孔法、超声波法等,还有近年来发现的激光相关辅助方法。 注射法 直接将质粒DNA注射入组织细胞中达到基因转移的目的。有学者成功地将裸露的质粒DNA注射入肌肉、肝脏、皮肤等组织,但基因表达水平较低。注射法中,细胞表面的某些受体起了一定的作用,它们能够特异或者非特异性地结合DNA并且介导DNA的内吞,但这些受体的详细作用机制不甚清楚。由于注射法有其独特优点如:方法简单,不需特殊试剂且毒性低而受到欢迎。此外,借助显微操作系统进行的显微注射法是目前国际上公认的制备转基因和基因剔除动物模 型的首选。 基因枪法 基因枪法是一种全新的基因导入技术,它以压缩气体(氦或氮)转换成的气体冲击波为动力,把附着于高速微弹上的DNA直接射入细胞、组织和细胞器,基因枪导入的基因被证明可在广泛类型的细胞中得到瞬时的、高效率的表达。基因枪法是皮肤、黏膜以及手术局部暴露组织较理想的基因转移方法,因而基因枪被认为是将来DNA疫苗的良好免疫工具。但是基因枪法用于基因治疗还需要进一步改进,如通过对微弹颗粒表面结构的改良使其可以结合更多的DNA或者使结合

细菌遗传转化与水平基因转移_谢志雄

第22卷第4期 中南民族大学学报(自然科学版) V ol.22No.4 2003年12月 Journal of South-Central University for Nationalities(Nat.Sci.Edition) Dec.2003 细菌遗传转化与水平基因转移 谢志雄 沈 萍* (武汉大学生命科学学院) 摘 要 介绍了细菌中水平基因转移、转移途径(转化、接合和转导)以及细菌遗传转化即自然条件中的转化、自然遗传转化及人工转化等研究进展,并且对细菌遗传转化在水平基因转移中的作用进行了探讨. 关键词 细菌;遗传转化;水平基因转移 中图分类号 Q933 文献标识码 A 文章编号 1672-4321(2003)04-0001-05 水平基因转移(ho rizontal g ene tra nsfer)在20世纪90年代后开始频繁出现在文献报道中.水平基因转移研究引人关注的主要原因是由于基因工程技术的发展,人工构建的转基因动植物和微生物越来越多,对其释放于环境后可能发生的基因转移及其深远影响还没有明确的认识.目前人们对于遗传工程生物的安全性问题的争论多集中在这个方面[1,2].笔者拟从水平基因转移的角度探讨细菌遗传转化现象及其在水平基因转移中的作用. 1 水平基因转移 水平基因转移有别于一般亲本和其后代之间遗传信息垂直的传递形式,是在生物个体之间进行的基因转移.对水平基因转移的研究不仅使我们能了解水平基因交换对生物进化历程的深刻影响,更重要的是可以作为对偶然或有意识向环境中释放遗传工程生物(genetically modified o rganisms,GMOs)的风险评估依据[3]. 通过对特定基因的核苷酸序列或由其推导出的蛋白质氨基酸序列的分析,发现在生物进化过程中普遍存在着基因的侧向传播,其中细菌处于中心环节.先后在植物与细菌间、人细胞与细菌间、植物与动物间、真菌与细菌间、古生菌与细菌间、原生生物与细菌间以及细胞器与细胞核之间发现存在水平基因转移现象[4,5]. 1.1 细菌中的水平基因转移 在细菌中,基因转移不是其生活周期中的必需部分,遗传物质从一个机体转移到另一个机体可产生深远的影响,如提高细菌致病能力或使其具有针对某种抗生素的抗性.此外,供体细胞的一些基因转移到受体细胞中,来源于2个不同细胞的基因(DN A)间的整合有助于保持群体的遗传多样性[6]. 通过对大肠杆菌(Esc herichia coli)M G1655菌株全序列的分析来评估水平基因转移对细菌基因组进化的全面影响,发现自E.coli从Salmonella中分离出来,至少发生了34起水平基因转移事件,其基因组4288个开放阅读框中的755个(共547.8kb)是通过水平基因转移而来,约占总数的17.6%.由于E.coli染色体长度是保守的,当通过水平转移获得新的序列后会通过缺失丢掉等长的其他序列,所以在E.c oli基因组中基因组成是动态的,使得基因组中具现实意义的基因得以引入并保留,替换非必需部分,整个染色体是镶嵌性的,通过这种方式可以有效地改变一种细菌的适应能力和致病特性[7,8]. 1.2 水平基因转移研究 水平基因转移的研究不仅有助于对生物进化、物种形成等生物学基本问题全面、深刻地认识,更为重要的是水平基因转移研究的现实紧迫性: (1)抗生素抗性问题.近年来,陆续发现不能被目前任何一种已知抗生素控制的病原菌的“超级细菌”变种.细菌除自发突变产生新的抗药性并遗传给后代外,多数情况下细菌通过从其它细菌接受抗药性基因,而获得对某种抗生素的抗药性[8,9].人类在与细菌性疾病的对抗中面临着新的挑战.利用水平基因转 ⒇收稿日期 2003-07-09 *通讯联系人 作者简介 谢志雄(1969-),男,博士后,研究方向:微生物遗传学,武汉430072 基金项目 国家自然科学基金资助项目(30370017)、武汉市青年科技晨光计划资助项目(20015005051)和武汉大学青年创新科技基金

特定基因表达水平的检测

特定基因表达水平的检测(试剂制备、操作步骤和注意事项)2010-01-10 23:19:59 来源:易生物实验浏览次数:192 网友评论0 条 Northern杂交也采用琼脂糖凝胶电泳,将分子量大小不同的RNA 分离开来,随后将其原位转移至固相支持物(如尼龙膜、硝酸纤维膜等)上,再用放射性(或非放射性)标记的DNA 或RNA 探针,依据其同源性进行杂交,最后进行放射自显影(或化学显影),以目标RNA 所在位置表示其分子量的大小,而其显影强度则可提示目标RNA 在所测样品中的相对含量(即目标RNA 的丰度)。 关键词:基因表达 RNA -gel blot analysis 或Northern Blot 继分析DNA 的Southern杂交方法出现后,1977年Alwine等人提出一种与此相类似的、用于分析细胞总RNA 或含poly A尾的RNA 样品中特定mRNA 分子大小和丰度的分子杂交技术,这就是与Southern相对应而定名的Northern杂交技术。这一技术自出现以来,已得到广泛应用,成为分析mRNA 最为常用的经典方法。 与Southern杂交相似,Northern杂交也采用琼脂糖凝胶电泳,将分子量大小不同的RNA 分离开来,随后将其原位转移至固相支持物(如尼龙膜、硝酸纤维膜等)上,再用放射性(或非放射性)标记的DNA 或RNA 探针,依据其同源性进行杂交,最后进行放射自显影(或化学显影),以目标RNA 所在位置表示其分子量的大小,而其显影强度则可提示目标RN A 在所测样品中的相对含量(即目标RNA 的丰度)。但与Southern杂交不同的是,总R NA 不需要进行酶切,即是以各个RNA 分子的形式存在,可直接应用于电泳;此外,由于碱性溶液可使RNA 水解,因此不进行碱变性,而是采用甲醛等进行变性电泳。虽然North ern也可检测目标mRNA 分子的大小,但更多的是用于检测目的基因在组织细胞中有无表达及表达的水平如何。 一、试剂准备(易生物试剂购销平台https://www.doczj.com/doc/5d12426386.html,/yp/product-list-43.html) 1、0.5M EDTA: EDTA16.61g加ddH2O至80ml, 调pH至8.0, 定容至100ml。

细菌基因转移与重组的方式有哪些

细菌基因转移与重组的方式有哪些? 1.接合作用:当细菌与细菌相互接触时,质粒DNA就可从一个细菌转移到另一个细菌。 2.转化作用:由外源性DNA导入宿主细胞,并引起生物类型改变或使宿主细胞获得 新的遗传表型的过程,称为转化作用。 3.转导作用:当病毒从被感染的细胞释放出来,再次感染另一细胞时,发生在供体 细胞与受体细胞之间的DNA转移及基因重组称为转导作用。 4.转座(转位):转座是指一个或一组基因从一个位置转到基因组的另一个位置。可 分为插入序列转座和转座子转座。 5.基因重组:不同DNA分子间发生的共价连接称基因重组。有两种类型:位点特异 的重组和同源重组. 细菌从外源取得DNA,并与自身染色体DNA进行重组,引起细菌原有基因组的改变,导致细菌遗传性状的改变,称基因的转移与重组。基因转移与重组的四种方式是:(1)转化:受体菌直接摄取供体菌游离的DNA段,从而获得新的遗传性状,称为转化。(2)转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状,称为转导。(3)接合:是指细菌通过性菌毛将遗传物质(主要为质粒)从供体菌转移给受体菌,使受体菌获得新的遗传性状。(4)溶原性转换:是由于温和噬菌体的DNA(前噬菌体)整合到宿主菌的染色体DNA后,使细菌的基因型发生改变,从而获得新的遗传性状,称为溶原性转换。5.原生质体融合是分别将两种细菌经处理失去细胞壁悬于高渗培养基中保持原生质体状态,然后将两种细菌的原生质体混合,滴加聚乙二醇促使原生质体融合。医`学教育网搜集整理融合后的双倍体细胞可以短期生存,在此期间染色体之间可以发生基因的交换和重组,获得多种不同表型的重组融合体。融合体经培养重新形成细胞壁,再按其遗传标志选择重组菌。 子座(Stroma):某些高等真菌菌丝体形成的一种组织体,是菌丝分化形成地垫状结构,或是菌丝体与寄主组织或基物结合而成地垫状结构物;

T_DNA转移研究进展

第5卷 第3期(专辑) 2001年11月 生命科学研究 Life Science Research V ol.5 N o.3 (Suppl.) N ov.2001 T2DNA转移研究进展Ξ 王自章1,张树珍2,李杨瑞3 (1.广西大学农学院,中国广西南宁 530005; 2.中国热带农业科学院生物技术国家重点实验室, 中国海南海口571101; 3.广西农业科学院,中国广西南宁 530007) 摘 要:植物遗传转化技术近年在农作物性状改良、植物生物反应器利用以及基因功能鉴定等方面得到了广泛的应用.T-DNA转移是植物细胞农杆菌介导遗传转化整合和表达外源基因的基础.农杆菌T i质粒vir基因编码蛋白、农杆菌一些染色体基因编码蛋白及植物细胞一些基因编码蛋白或因子均参与T2DNA转移.转移过程包括农杆菌对植物细胞的识别、附着,细菌对植物信号物质的感受,细菌vir基因的诱导表达,T复合体的形成,跨膜运输,进核运输和整合等一序列过程.植物细胞因子与农杆菌T2DNA转移相关蛋白的相互作用最近被认为在T2DNA转移过程中起重要作用. 关键词:T2DNA转移;农杆菌;宿主植物因子 中图分类号:Q789 文献标识码:A 文章编号:1007-7847(2001)S0-0120-05 The Process of T2DNA T ransfer WANG Z i2zhang1,ZHANG Shu2zhen2,LI Y ang2rui3 (1.College o f Agronomy,Guangxi Univer sity,Nanning530005,Guangxi,China; 2.National K ey Biotechnology Laboratory for Tropical Crops,C AT AS,Haikou571101,Hainan,China; 3.Guangxi Academy o f Agricultural Sciences,Nanning530007, Guangxi,China) Abstract:The role of proteins encoded by related genes determined in the T i plasmid virulence region(vir genes), in the bacterial chrom os ome,as well as in the plant chrom os ome in the process of T2DNA trans fer were introduced. The process includes recognition and attachment,sensing of plant signals,activation of vir genes,generation of T2 DNA com plex,T2DNA com plex export from the bacterial cell,im port into the host plant cell nucleus and integration into the host genome. K ey w ords:T2DNA trans fer;Agrobacterium tumef aciens;host plant factors (Life Science Research,2001,5(Suppl):120~124) 农杆菌(Agrobacterium tumef aciens)由于在感染植物时能将其T i(tum or inducing)质粒上的一段DNA(T2DNA)转移进入植物细胞核并整合到植物基因组中,随基因组进行遗传和表达,而被发展成为植物遗传转化的重要介导工具.T2DNA的转移需要细菌T i质粒上的T2DNA和毒性(vir)区编码蛋白参与,T2DNA没有序列特异性,可用任何DNA片段将其两个25bp边界序列之间的区段进行置换而不影响其转移;毒性区含有8个主要的基因座,即vir A、vir B、virC、virD、virE、virF、virG和virH等,每个基因座又分别含有1至多个基因,如virD含4个基因,分别命名为virD1、virD2、…… Ξ收稿日期:2001-02-26 作者简介:王自章(1965-),男,广西乐业人,博士,从事甘蔗农杆菌介导遗传转化研究,E2mail:wangziz@https://www.doczj.com/doc/5d12426386.html,;张树珍(1965-),女,云南姚安人,中国热带农业科学院副研究员,博士,从事植物基因工程研究,T el:098926892944;李杨瑞(1957-),男,广西农业科学院院长,博士生导师.

基因工程技术在生产实践中的应用

基因工程技术在生产实 践中的应用 集团标准化办公室:[VV986T-J682P28-JP266L&68PNN]

基因工程技术在生产实践中的应用 姓名 学号 专业 基因工程技术在生产实践中的应用 随着科技的发展,人类在为自己生产出越来越多的生活资料的同时,也向大自然排放了越来越多的有害和难降解物质。如农药、塑料和各种芳香姪类化合物,这些物质正严重破坏环境和危害着人类的身体健康。因此,有意识地利用生物界中存在的净化能力进行生物治理,已渐渐成为环境治理的主要手段。 然界中的生物,往往在有毒物质的选择压力下经过基因突变、基因重组、物种间基因的交流,进化出代谢这些有毒物质的能力。利用基因工程技术提高微生物净化环境的能力是现代生物技术用于环境治理的一项关键技术。20世纪50 年代初,由于分子生物学和生物化学的发展,对生物细胞核中存在的脱氧核糖核酸 (DNA)的结构和功能有了比较清晰的阐述。20世纪70年代初实现了 DNA重组技 术,逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程的生物技术。这一技术发展到今天,正形成产业化品、医药、化工、农业、环保、能源和国防等许多部门,并口益显示出其巨大的潜力,将为世界面临的环境保护等问题的解决提供广阔的应用前景。

基因工程技术是一项极为复杂的高新生物技术,它利用现代遗传学与分子生物学的理论和方法,按照人类的需要,用DNA重组技术对生物基因组的结构或组成进行人为修饰或改造,从而改变生物的结构和功能,使之有效表达出人类所需要的蛋白质或对人类有益的生物性状。首先该技术高效、经济,这是传统产业工程无法比拟的。 它能按人类需要来设计和改造生物的结构和功能,生产出优良的动物、植物和微生物品种。在低投入的情况下,能够高效生产出所需商品。而且外源基因只要进入受体细胞的基因组中就可以遗传给后代,育出的优良品种,可持久利用。其次,该技术具有清洁、低耗和可持续发展的待点。现代基因工程所利用的原料是可再生及可循环使用的,不需消耗大量的不可再生资源,所以极少产生对生态环境有害的废物。再次,该技术应用于疾病的诊断与治疗方面也具有优势。基因诊断更具预见性和准确性,而且基因治疗可从基因水平上纠正疾病,从而使疾病得以根治。 环境污染主要是指有害物质对大气、水体、土壤和动植物的污染。20世纪50年代以来,随着工业的迅速发展,环境污染的问题口趋严重,尤其是在一些工业发达的资本主义国家,相继出现了一系列公害事件。因此,研究污染物质在环境中的运动规律以及防治污染的原理和方法,已成为世界各国重点探索 的课题之一。 20世纪70年代以来,发现许多具有特殊降解能力的细菌其降解途径所需要 的酶,不是由染色体基因编码,而是由染色体外的质粒基因编码。这类质粒叫 降解质粒或代谢质粒。他们的分子量一般都比较大,大多具有接合转移能力,即通过两个细菌的相互接触,可以把质粒从一个细菌传递到另一个细菌中去,提供质粒的细菌通过复制作用仍能保持这种质粒,这样,能使降解基因在微生物群体中广泛

细菌基因转移与重组的方式有哪些

细菌基因转移与重组的 方式有哪些 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

?细菌基因转移与重组的方式有哪些? 1.接合作用:当细菌与细菌相互接触时,质粒DNA就可从一个细菌转移 到另一个细菌。2.转化作用:由外源性DNA导入宿主细胞,并引起生 物类型改变或使宿主细胞获得新的遗传表型的过程,称为转化作用。3. 转导作用:当病毒从被感染的细胞释放出来,再次感染另一细胞时,发 生在供体细胞与受体细胞之间的DNA转移及基因重组称为转导作用。4. 转座(转位):转座是指一个或一组基因从一个位置转到基因组的另一个 位置。可分为插入序列转座和转座子转座。5.基因重组:不同DNA分 子间发生的共价连接称基因重组。有两种类型:位点特异的重组和同源 重组. 细菌从外源取得DNA,并与自身染色体DNA进行重组,引起细菌原有基因组的改变,导致细菌遗传性状的改变,称基因的转移与重组。基因转移与重组的四种方式是:(1)转化:受体菌直接摄取供体菌游离的DNA段,从而获得新的遗传性状,称为转化。(2)转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状,称为转导。(3)接合:是指细菌通过性菌毛将遗传物质(主要为质粒)从供体菌转移给受体菌,使受体菌获得新的遗传性状。(4)溶原性转换:是由于温和噬菌体的DNA(前噬菌体)整合到宿主菌的染色体DNA后,使细菌的基因型发生改变,从而获得新的遗传性状,称为溶原性转换。5.原生质体融合是分别将两种细菌经处理失去细胞壁悬于高渗培养基中保持原生质体状态,然后将两种细菌的原生质体混合,滴加聚乙二醇促使原生质体融合。 医`学教育网搜集整理融合后的双倍体细胞可以短期生存,在此期间染色体之间可以发生基因的交换和重组,获得多种不同表型的重组融合体。融合体经培养重新形成细胞壁,再按其遗传标志选择重组菌。

分子生物学常用技术 习题

第五章常用分子生物学技术的原理及其应用习题(引自网络精品课程) 一、选择题 (一)A型题 1 .分子杂交实验不能用于 A .单链 DNA 与 RNA 分子之间的杂交 B .双链 DNA 与 RNA 分子之间的杂交 C .单链 RNA 分子之间的杂交 D .单链 DNA 分子之间的杂交 E .抗原与抗体分子之间的杂交 2 .关于探针叙述错误的是 A .带有特殊标记 B .具有特定序列 C .必须是双链的核酸片段 D .可以是基因组 DNA 片段 E .可以是抗体 3 .下列哪种物质不能用作探针 A . DNA 片段 B . cDNA C .蛋白质 D .氨基酸 E . RNA 片段 4 .印迹技术可以分为 A . DNA 印迹 B . RNA 印迹 C .蛋白质印迹 D .斑点印迹 E .以上都对 5 . PCR 实验延伸温度一般是 A .90 ℃ B .72 ℃ C .80 ℃ D .95 ℃ E .60 ℃ 6 . Western blot 中的探针是 A . RNA B .单链 DNA C . cDNA D .抗体 E .双链 DNA 7 . Northern blotting 与 Southern blotting 不同的是 A .基本原理不同 B .无需进行限制性内切酶消化 C .探针必须是 RNA D .探针必须是 DNA E .靠毛细作用进行转移 8 .可以不经电泳分离而直接点样在 NC 膜上进行杂交分析的是 A .斑点印迹 B .原位杂交 C . RNA 印迹 D . DNA 芯片技术 E . DNA 印迹 9 .下列哪种物质在 PCR 反应中不能作为模板 A . RNA B .单链 DNA C . cDNA D .蛋白质 E .双链 DNA 10 . RT-PCR 中不涉及的是 A .探针 B . cDNA C .逆转录酶 D . RNA E . dNTP 11 .关于 PCR 的基本成分叙述错误的是 A .特异性引物 B .耐热性 DNA 聚合酶 C . dNTP D .含有 Zn 2+ 的缓冲液 E .模板 12 . DNA 链末端合成终止法不需要 A . ddNTP B . dNTP C .引物标记 D . DNA 聚合酶 E .模板 13 . cDNA 文库构建不需要 A .提取 mRNA B .限制性内切酶裂解 mRNA C .逆转录合成 cDNA D .将 cDNA 克隆入质粒或噬菌体 E .重组载体转化宿主细胞 14 .标签蛋白沉淀是 A .研究蛋白质相互作用的技术 B .基于亲和色谱原理 C .常用标签是 GST D .也可以是 6 组氨酸标签 E .以上都对 15 .研究蛋白质与 DNA 在染色质环境下相互作用的技术是 A .标签蛋白沉淀 B .酵母双杂交 C .凝胶迁移变动实验 D .染色质免疫沉淀法 E .噬菌体显示筛选系统 16 .动物整体克隆技术又称为

基因工程技术在生产实践中的应用

基因工程技术在生产实践中的应用 姓名 学号 专业

基因工程技术在生产实践中的应用 随着科技的发展,人类在为自己生产出越来越多的生活资料的同时,也向 大自然排放了越来越多的有害和难降解物质。如农药、塑料和各种芳香烃类化合物,这些物质正严重破坏环境和危害着人类的身体健康。因此,有意识地利用生物界中存在的净化能力进行生物治理,已渐渐成为环境治理的主要手段。自然界中的生物, 往往在有毒物质的选择压力下经过基因突变、基因重组、物种间基因的交流,进化出代谢这些有毒物质的能力。利用基因工程技术提高微生物净化环境的能力是现代生物技术用于环境治理的一项关键技术。20世纪50 年代初,由于分子生物学和生物化学的发展, 对生物细胞核中存在的脱氧核糖核酸(DNA)的结构和功能有了比较清晰的阐述。20世纪70年代初实现了DNA重组技术,逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程的生物技术。这一技术发展到今天,正形成产业化品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力, 将为世界面临的环境保护等问题的解决提供广阔的应用前景。 基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法,按照人类的需要, 用DNA重组技术对生物基因组的结构或组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或对人类有益的生物性状。首先该技术高效、经济, 这是传统产业工程无法比拟的。它能按人类需要来设计和改造生物的结构和功能, 生产出优良的动物、植物和微生物品种。在低投入的情况下, 能够高效生产出所需商品。而且外源基因只要进入受体细胞的基因组中就可以遗传给后代, 育出的优良品种, 可持久利用。其次, 该技术具有清洁、低耗和可持续发展的特点。现代基因工程所利用的原料是可再生及可循环使用的, 不需消耗大量的不可再生资源, 所以极少产生对生态环境有害的废物。再次, 该技术应用于疾病的诊断与治疗方面也具有优势。基因诊断更具预见性和准确性, 而且基因治疗可从基因水平上纠正疾病, 从而使疾病得以根治。 环境污染主要是指有害物质对大气、水体、土壤和动植物的污染。20 世纪 50年代以来,随着工业的迅速发展,环境污染的问题日趋严重,尤其是在一些工业发达的资本主义国家,相继出现了一系列公害事件。因此,研究污染物质在环境中的运动规律以及防治污染的原理和方法,已成为世界各国重点探索 的课题之一。 20 世纪 70 年代以来,发现许多具有特殊降解能力的细菌其降解途径所需要的酶,不是由染色体基因编码,而是由染色体外的质粒基因编码。这类质粒叫降解质粒或代谢质粒。他们的分子量一般都比较大,大多具有接合转移能力,即通过两个细菌的相互接触,可以把质粒从一个细菌传递到另一个细菌中去,提供质粒的细菌通过复制作用仍能保持这种质粒,这样,能使降解基因在微生物群体中广泛扩散。含有这类质粒的细菌,在某些环境污染物的降解过程中起着重要的作用。 到目前为止,共发现了四类降解质粒。第一类是发现于假单细胞菌属中的石油降解质粒,这些质粒所编码的酶能降解各种石油组分或他们的衍生物,如 樟脑、辛烷、萘、水杨酸盐、甲苯和二甲苯降解质粒等。第二类是农药降解质粒,这些质粒上的基因决定除草剂 2,4 一 D、杀虫剂“666”和烟碱等农药的降解

基因技术的应用

基因技术的应用 人类基因组计划的顺利进展,在人类基因的测序和研发过程中引发了基因技术的重大改革和革命,从而把现代生命科学推向一个崭新的阶段。转基因生物、基因产品、基因武器等不断问世为其代表。 转基因生物 20世纪80年代初,美国的哥登用显微注射法向动物胚胎内转移外来基因,生产出带有外源性脑苷激酶基因的小白鼠—转基因鼠。此后,转基因兔、转基因羊、转基因猪等不断问世。从转基因动物的乳汁中获得药物,不但产量高、易提纯,还具有稳定的生物活性。产乳量高的动物相当于一座大型工厂,人们只需饲养活的转基因牛、羊等,便可获取所需的贵重药物。科学家已成功地培育出能在乳汁中生产特殊蛋白质的转基因猪、牛、羊等。 基因疫苗 正在研制的基因疫苗有数十种之多。在抗细菌方面有针对麻风杆菌、百日咳杆菌、脑膜炎双球菌等的疫苗,在抗病毒方面有针对乙型肝炎、甲型肝炎、带状疱疹等的疫苗,在抗寄生虫方面有针对疟原虫、血吸虫等的疫苗,在抗真菌方面有针对曲霉菌、念珠菌等的疫苗。 基因芯片 基因芯片主要指通过平面微细加工技术在固体芯片表面构建微流体分析单元和系统,以实现对细胞、蛋白质、核酸以及其他生物组的大信息量检测。基因芯片是既大规模集成电路之后又一次具有深远意义的科技革命。 基因武器 基因武器实际上也是一种生物制剂。其原理是根据生物的遗传特性,人为地用一种“致病力强的基因”或“耐劳基因”,去置换另一种致病微生物细胞中的基因,实现基因的转移或重组,改变致病微生物的形状和功能,培养出新的危害性更大的致病微生物。 人类基因组的研究亦是一把双刃剑,存在着被误用和滥用的危险,在给我们带来福音的同时,也会给我们带来前所未有的严重负面影响。正如世界上有矛就有盾一样,虽然基因武器能给人们带来严重的后果,但随着人类基因图谱测绘工程的完成,爱好和平的人们总会掌握对付基因武器的法宝,消除致病有害基因,保卫人类的和平。

植物基因转化常用方法

一、植物遗传转化的方法 植物遗传转化技术可分为两大类:一类就是直接基因转移技术,包括基因枪法、原生质体法、脂质体法、花粉管通道法、电激转化法、PEG介导转化方法等,其中基因枪转化法就是代表。另一类就是生物介导的转化方法,主要有农杆菌介导与病毒介导两种转化方法,其中农杆菌介导的转化方法操作简便、成本低、转化率高,广泛应用于双子叶植物的遗传转化。 二、农杆菌介导的基因转化方法 (一)农杆菌的Ti质粒与T-DNA的整合机制 几乎所有双子叶植物都容易受到土壤农杆菌感染,而产生根瘤。它就是一种革兰氏阴性土壤杆菌(A、tumefaciens)。其致瘤特性就是由Ti(tumor-inducing)质粒介导的。农杆根瘤菌之所以会感染植物根部就是因为植物根部损伤部位分泌出酚类物质乙酰丁 香酮与羟基乙酰丁香酮,这些酚类物质可以诱导Vir(Virulence region)基因的启动表 达,Vir基因的产物将Ti质粒上的一段T-DNA单链切下,而位于根瘤染色体上的操纵子基因产物则与单链T-DNA结合,形成复合物,转化植物根部细胞。T-DNA上有三套基因,其中两套基因分别控制合成植物生长素与分裂素,促使植物创伤组织无限制地生长与分裂,形成冠瘿瘤。第三套基因合成冠瘿碱,冠瘿碱有四种类型:章鱼碱(octopine)、胭脂碱(nopaline)、农杆碱(agropine)、琥珀碱(succinamopine),使农杆菌生长必需的物质。 1、Ti质粒的结构 在发现根瘤农杆菌诱发冠瘿瘤的本质就是Ti质粒后,Ti质粒便成为冠瘿瘤形成基因鉴定与分析的主要研究对象。 Ti质粒大约在160~240kB之间。其中T-DNA大约在15kb-30kb。Vir基因区在36kb 左右。除此之外,Ti质粒上还存在Con区(region encoding conjugation)与Ori区(origin of replication)。

转基因技术的基本概念

转基因技术的基本概念:(来源:生命经纬) (一)转基因技术的定义 将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术。人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。 (二)几种常用的植物转基因方法 遗传转化的方法按其是否需要通过组织培养、再生植株可分成两大类,第一类需要通过组织培养再生植株,常用的方法有农杆菌介导转化法、基因枪法;另一类方法不需要通过组织培养,目前比较成熟的主要有花粉管通道法。 1.农杆菌介导转化法 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 2.基因枪介导转化法 利用火药爆炸或高压气体加速(这一加速设备被称为基因枪),将包裹了带目的基因的DNA溶液的高速微弹直接送入完整的植物组织和细胞中,然后通过细胞和组织培养技术,再生出植株,选出其中转基因阳性植株即为转基因植株。与农杆菌转化相比,基因枪法转化的一个主要优点是不受受体植物范围的限制。而且其载体质粒的构建也相对简单,因此也是目前转基因研究中应用较为广泛的一种方法。 3.花粉管通道法 在授粉后向子房注射合目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞,并进一步地被整合到受体细胞的基因组中,随着受精卵的发育而成为带转基因的新个体。该方法于80年代初期由我国学者周光宇提出,我国目前推广面积最大的转基因抗虫棉就是用花粉管通道法培育出来的。该法的最大优点是不依赖组织培养人工再生植株,技术简单,不需要装备精良的实验室,常规育种工作者易于掌握。(三)常用的动物转基因技术 1.显微注射法 在显微镜下,用一根极细的玻璃针(直径1-2微米)直接将DNA注射到胚胎的细胞核内,再把注射过DNA的胚胎移植到动物体内,使之发育成正常的幼仔。用这种方法生产的动物约有十分之一是整合外源基因的转基因动物。 2.体细胞核移植方法 先在体外培养的体细胞中进行基因导入,筛选获得带转基因的细胞。然后,将带转基因体细胞移植到去掉细胞核的卵细胞中,生产重构胚胎。重构胚胎经移植到母体中,产生的仔畜百分之百是转基因动物。 (四)转基因技术与传统技术的关系 自从人类耕种作物以来,我们的祖先就从未停止过作物的遗传改良。过去的几千年里农作物改良的方式主要是对自然突变产生的优良基因和重组体的选择和利用,通过随机和自然的方式来积累优良基因。遗传学创立后近百年的动植物育种则是采用人工杂交的方法,进行

相关主题
文本预览
相关文档 最新文档