当前位置:文档之家› 模型系数估计的eveiws操作基本步骤

模型系数估计的eveiws操作基本步骤

模型系数估计的eveiws操作基本步骤

一、一元线线性回归模型的系数估计eveiws基本操作

第一步,先建立一个工作文件。双击eveiws图标/file/new file,根据你的“原材料”(样本数据)的特点(时间序列还是截面序列),以及时间序列的频率(年度、半年、月度等),选择适当的工作文件范围类型。

第二步,在对象窗口中建立你自己需要的新的序列对象。Objects/new object,在跳出的object type对话框中,选择series,并对其命名;

第三步,打开你新建的series对象,输入样本数据(一般可直接复制,方法同你一般的excel或word操作);

第四步,估计方程系数。Objects/new object/equation,跳出equation specification窗口,然后,在这个窗口中以如下顺序输入你新建的对象:被解释变量 C 解释变量,然后,点击OK。在跳出的估计结果窗口中,c(1)、c(2)分别表示你的模型的截距与解释变量的系数。

时间序列预测模型

时间序列预测模型时间序列是指把某一变量在不同时间上的数值按时间先后顺序排列起来所形成的序列,它的时间单位可以是分、时、日、周、旬、月、季、年等。时间序列模型就是利用时间序列建立的数学模型,它主要被用来对未来进行短期预测,属于趋势预测法。一、简单一次移动平均预测法例1.某企业1月~11月的销售收入时间序列如下表所示.取n 4,试用简单一次移动平均法预测第12月的销售收入,并计算预测的标准误差. 二、加权一次移动平均预测法简单一次移动平均预测法,是把参与平均的数据在预测中所起的作用同等对待,但参与平均的各期数据所起的作用往往是不同的。为此,需要采用加权移动平均法进行预测,加权一次移动平均预测法是其中比较简单的一种。三、指数平滑预测法 1、一次指数平滑预测法一元线性回归模型 * 项数n的数值,要根据时间序列的特点而定,不宜过大或过小.n过大会降低移动平均数的敏感性,影响预测的准确性;n过小,移动平均数易受随机变动的影响,难以反映实际趋势.一般取n的大小能包含季节变动和周期变动的时期为好,这样可消除它们的影响.对于没有季节变动和周期变动的时间序列,项数n的取值可取较大的数;如果历史数据的类型呈上升或下降型的发展趋势,则项数n的数值应取较小的数,这样能取得较好的预测效果. 1102.7 1015.1 963.9 892.7 816.4 772.0 705.1 649.8 606.9 574.6 533.8 销售收入 11 10 9 8 7 6 5 4 3 2 1 月份 t 158542.7 993.6 12 12950.4 19016.4 17662.4 24617.6 27989.3

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统 高阶微分方程化为状态空间表达式 SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211 )(2 211110n n n n m m m a s a s a s b s b s b s G +++++++=--- 假设1+=m n 外部描述 ←—实现问题:有了部结构—→模拟系统 部描述 SISO ? ??+=+=du cx y bu Ax x 实现问题解决有多种方法,方法不同时结果不同。 一、 直接分解法 因为 1 0111 11()()()()()()()() 1m m m m n n n n Y s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----?=? =?++++++++ ???++++=++++=----) ()()() ()()(11 11110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m 对上式取拉氏反变换,则 ? ??++++=++++=----z a z a z a z u z b z b z b z b y n n n n m m m m 1) 1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x z x z x ,于是有

?????? ?+----===-u x a x a x a x x x x x n n n n 12113 221 写成矩阵形式 式中,1-n I 为1-n 阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。只要系统状态方程的系数阵A 和输入阵b 具有上式的形式,c 阵的形式可以任意,则称之为能控标准型。 则输出方程 121110x b x b x b x b y m m n n ++++=-- 写成矩阵形式 ??????? ? ????????=--n n m m x x x x b b b b y 12101 1][ 分析c b A ,,阵的构成与传递函数系数的关系。 在需要对实际系统进行数学模型转换时,不必进行计算就可以方便地写出状态空间模型的A 、b 、c 矩阵的所有元素。 例:已知SISO 系统的传递函数如下,试求系统的能控标准型状态空间模型。 4 2383)()(2 3++++=s s s s s U s Y 解:直接得到系统进行能控标准型的转换,即

时间序列模型的建立与预测

第六节时间序列模型的建立与预测 ARIMA过程y t用 Φ (L) (Δd y t)= α+Θ(L) u t 表示,其中Φ (L)和Θ (L)分别是p, q阶的以L为变数的多项式,它们的根都在单位圆之外。α为Δd y t过程的漂移项,Δd y t表示对y t 进行d次差分之后可以表达为一个平稳的可逆的ARMA 过程。这是随机过程的一般表达式。它既包括了AR,MA 和ARMA过程,也包括了单整的AR,MA和ARMA过程。 可取 图建立时间序列模型程序图 建立时间序列模型通常包括三个步骤。(1)模型的识别,(2)模型参数的估计,(3)诊断与检验。

模型的识别就是通过对相关图的分析,初步确定适合于给定样本的ARIMA模型形式,即确定d, p, q的取值。 模型参数估计就是待初步确定模型形式后对模型参数进行估计。样本容量应该50以上。 诊断与检验就是以样本为基础检验拟合的模型,以求发现某些不妥之处。如果模型的某些参数估计值不能通过显著性检验,或者残差序列不能近似为一个白噪声过程,应返回第一步再次对模型进行识别。如果上述两个问题都不存在,就可接受所建立的模型。建摸过程用上图表示。下面对建摸过程做详细论述。 1、模型的识别 模型的识别主要依赖于对相关图与偏相关图的分析。在对经济时间序列进行分析之前,首先应对样本数据取对数,目的是消除数据中可能存在的异方差,然后分析其相关图。 识别的第1步是判断随机过程是否平稳。由前面知识可知,如果一个随机过程是平稳的,其特征方程的根都应在单位圆之外;如果 (L) = 0的根接近单位圆,自相关函数将衰减的很慢。所以在分析相关图时,如果发现其衰减很慢,即可认为该时间序列是非平稳的。这时应对该时间序列进行差分,同时分析差分序列的相关图以判断差分序列的平稳性,直至得到一个平稳的序列。对于经济时间序列,差分次数d通常只取0,1或2。 实际中也要防止过度差分。一般来说平稳序列差分得到的仍然是平稳序列,但当差分次数过多时存在两个缺点,(1)序列的样本容量减小;(2)方差变大;所以建模过程中要防止差分过度。对于一个序列,差分后若数据的极差变大,说明差分过度。 第2步是在平稳时间序列基础上识别ARMA模型阶数p, q。表1给出了不同ARMA模型的自相关函数和偏自相关函数。当然一个过程的自相关函数和偏自相关函数通常是未知的。用样本得到的只是估计的自相关函数和偏自相关函数,即相关图和偏相关图。建立ARMA模型,时间序列的相关图与偏相关图可为识别模型参数p, q提供信息。相关图和偏相关图(估计的自相关系数和偏自相关系数)通常比真实的自相关系数和偏自相关系数的方差要大,并表现为更高的自相关。实际中相关图,偏相关图的特征不会像自相关函数与偏自相关函数那样“规范”,所以应该善于从相关图,偏相关图中识别出模型的真实参数p, q。另外,估计的模型形式不是唯一的,所以在模型识别阶段应多选择几种模型形式,以供进一步选择。

实验四用MATLAB求解状态空间模型

实验四 用MATLAB 求解状态空间模型 1、实验设备 MATLAB 软件 2、实验目的 ① 学习线性定常连续系统的状态空间模型求解、掌握MATLAB 中关于求解该模型的主要函数; ② 通过编程、上机调试,进行求解。 3、实验原理说明 Matlab 提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有: 初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。 数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。 4、实验步骤 ① 根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB 编程。 ② 在MATLAB 界面下调试程序,并检查是否运行正确。 习题1:试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。 Matlab 程序如下: A=[0 1; -2 -3]; B=[]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [y,t,x]=initial(sys,x0,0:5); plot(t,x) 0011232????==????--???? x x x

习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。并计算该系统的单位阶跃状态响应表达式。 Matlab 程序如下: A=[0 1; -2 -3]; B=[0; 1]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [u t]=gensig('square',3,10,0.1) 0011232????==????--???? x x x

多因素时间序列的灰色预测模型

第 39卷 第 2期 2007年 4月 西 安 建 筑 科 技 大 学 ( 学 报 ( 自然科学版) ) V ol.39 No.2 Apr . 2007 J 1Xi ’an Univ . of Arch . & Tech . Natural Scie nce Editio n 多因素时间序列的灰色预测模型 苏变萍 ,曹艳平 ,王 婷 (西安建筑科技大学理学院 ,陕西 西安 710055) 摘 要:对于传统的单因素时间序列预测法在实际应用中的不足之处 ,提出采用灰色 DGM (1 ,1) 模型和多元 线性回归原理相结合的方法 ,综合各种因素建立多因素时间序列的灰色预测模型。它首先利用 DGM (1 ,1) 模 型对影响事物发展趋势的各项因素进行预测 ;然后利用多元线性回归法将各种因素综合起来 ,以预测事物的 发展趋势。最后将该模型应用于预测分析陕西省的就业状况 ,取得了较好的预测效果 ,同时也验证了此模型 的可行性。 关键词: 时间序列 ;单因素 ;多因素 ;预测模型 中图分类号:TB114 文献标识码:A 文章编号 :100627930 2007 022******* ( ) 多年以来 ,对时间序列的预测研究 ,大多是停留在对单因素时间序列上 ,对其预测通常采用的是趋 势外推法 ,而且该方法适合于原始时间序列规律性较好的情况 ,若时间序列中包含了随机因素的影 响 ,再采用这种方法得出的预测结果可能会失真. 同时 ,客观世界又是复杂多变的 ,事物的发展通常不 是由某个单个因素决定 ,往往是许多错综复杂的因素综合作用的结果 ,为了对某项事物的发展做出更加 符合实际的预测 ,这就需要来探讨多因素时间序列的预测问题 ,正是基于这些 ,本文在应用灰色 D GM (1 ,1)模型对单因素时间序列预测的基础上 ,结合多元回归原理 ,提出建立多因素时间序列的灰色预测 模型 ,这样就充分发挥了二者的优点 ,既克服了时间序列的随机因素影响 ,又综合考虑了影响事物发展 的多种因素 ,从而达到提高预测精度和增加预测结果可靠性的效果. 1 模型的建立 设 Y = (y (1) , y (2) , …, y( n)) 表示事物发展的特征因素时间序列, X i = (x i (1) , x i (2) , …, x i ( n)) (i = 1 ,2 , …, p) 表示影响事物发展的单因素时间序列. 1.1 单因素时间序列的 DGM(1 ,1) 模型 对于单因素原始时间序列{ X i } (i = 1 ,2 , …, p) ,根据灰色系统理论建模方法 ,得 D GM (1 ,1) 模 型 : x i (1) a (1 - a) + a b ,t > 1 1.2 多因素时间序列的预测模型 为了能将影响事物发展的众多因素结合起来进行综合预测和相关因素的预测分析 ,在经过多次研 究与比较后,采用多元回归的原理建立多因素时间序列的灰色预测模型: y t = a 0 + a 1 x 1 t + a 2 x 2 t + …+ a p x p t 2 式中 y t 为该事物在 t 时刻的预测值;x i t i = 1 ,2 , …, p 为第 i 个单因素 ,通过应用上述的灰色 3收稿日期 :2005201209 修改稿日期:2006204212 基金项目 :陕西省教育厅专项基金项目 01J K133( ) 作者简介 :苏变萍 19632( ) ,女 ,山西忻州人 ,副教授 ,博士研究生 ,研究方向为计量经济学. [122] (0) (0) (0) ( ) ( ) [4] (0) x (1) = x (1) ^ x (t) = (1) ( ) ^ ^ ^ ^ ^ ^

实验八MATLAB状态空间分析

实验八 线性系统的状态空间分析 §8.1 用MATLAB 分析状态空间模型 1、状态空间模型的输入 线性定常系统状态空间模型 x Ax Bu y Cx Du =+=+ 将各系数矩阵按常规矩阵形式描述。 [][][]11 121120 10 1;;;n n n nn n n A a a a a a a B b b b C c c c D d ==== 在MATLAB 里,用函数SS()来建立状态空间模型 (,,,)sys ss A B C D = 例8.1 已知某系统微分方程 22d d 375d d y y y u t t ++= 求该系统的状态空间模型。 解:将上述微分方程写成状态空间形式 0173A ??=??--??,01B ??=???? []50C =,0D = 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6.1.m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0; sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1

x2 -7 -3

b = u1 x1 0 x2 1 c = x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model. 2、状态空间模型与传递函数模型转换 状态空间模型用sys 表示,传递函数模型用G 表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式的转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数 [num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数 iu 用于指定变换所需的输入量,iu 默认为单输入情况。 传递函数向状态空间表达式形式的转换 sys=ss(G) or [A,B,C,D]=tf2ss(num,den) [A,B,C,D]=zp2ss(z,p,k) 例 8.2 11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=??????? ????? 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。 % MATLAB Program example 6.2.m

时间序列分析-降水量预测模型

课程名称: 时间序列分析 题目: 降水量预测 院系:理学院 专业班级:数学与应用数学10-1 学号: 87 学生姓名:戴永红 指导教师:__潘洁_ 2013年 12 月 13日

1.问题提出 能不能通过以前的降水序列为样本预测出2002的降水量? 2.选题 以国家黄河水利委员会建站的山西省河曲水文站1952年至2002年51年的资料为例,以1952年至2001年50年的降水序列作为样本,建立线性时间序列模型并预测2002年的降水状态与降水量,并与2002年的实际数据比较说明本模型的具体应用及预测效果。资料数据见表1。 表1 山西省河曲水文站55年降水量时间序列

3.原理 模型表示 均值为0,具有有理谱密度的平稳时间序列的线性随机模型的三种形式,描述如下: 1、()AR p 自回归模型:1122t t t p t p t ωφωφωφωα-------=L 由2p +个参数刻画; 2、()MA q 滑动平均模型:1122t t t t q t q ωαθαθαθα---=----L 由2q +个参数刻画; 3、(,)ARMA p q 混和模型: 11221122t t t p t p t t t q t q ωφωφωφωαθαθαθα----------=----L L (,)ARMA p q 混和模型由3p q ++个参数刻画; 自相关函数k ρ和偏相关函数kk φ 1、自相关函数k ρ刻画了任意两个时刻之间的关系,0/k k ργγ= 2、偏相关函数kk φ刻画了平稳序列任意一个长1k +的片段在中间值11,t t k ωω++-L 固定的条件下,两端t ω,t k ω+的线性联系密切程度。 3、线性模型k ρ、kk φ的性质 表2 三种线性模型下相关函数性质 模型识别

状态空间模型

状态空间模型概述 状态空间模型是动态时域模型,以隐含着的时间为自变量。状态空间模型在经济时间序列分析中的应用正在迅速增加。其中应用较为普遍的状态空间模型是由Akaike提出并由Mehra进一步发展而成的典型相关(canonical correlation)方法。由Aoki等人提出的估计向量值状态空间模型的新方法能得到所谓内部平衡的状态空间模型,只要去掉系统矩阵中的相应元素就可以得到任何低阶近似模型而不必重新估计,而且只要原来的模型是稳定的,则得到的低阶近似模型也是稳定的。 状态空间模型起源于平稳时间序列分析。当用于非平稳时间序列分析时需要将非平稳时间序列分解为随机游走成分(趋势)和弱平稳成分两个部分分别建模。含有随机游走成分的时间序列又称积分时间序列,因为随机游走成分是弱平稳成分的和或积分。当一个向量值积分序列中的某些序列的线性组合变成弱平稳时就称这些序列构成了协调积分(cointegrated)过程。非平稳时间序列的线性组合可能产生平稳时间序列这一思想可以追溯到回归分析,Granger提出的协调积分概念使这一思想得到了科学的论证。Aoki和Cochrane等人的研究表明:很多非平稳多变量时间序列中的随机游走成分比以前人们认为的要小得多,有时甚至完全消失。 协调积分概念的提出具有两方面的意义:

①如果一组非平稳时间序列是协调积分过程,就有可能同时考察他们之间的长期稳定关系和短期关系的变化; ②如果一组非平稳时间序列是协调积分过程,则只要将协调回归误差代入系统状态方程即可纠正系统下一时刻状态的估计值,形成所谓误差纠正模型。 Aoki的向量值状态空间模型在处理积分时间序列时,引入了协调积分概念和与之相关的误差纠正方法,因此向量值状态空间模型也是误差纠正模型。一个向量值时间序列是否为积分序列需判断其是否含有单位根,即状态空间模型的动态矩阵是否含有量值为1的特征值。根据动态矩阵的特征值即可将时间序列分解成两个部分,其中特征值为1的部分(包括接近1的“近积分”部分)表示随机游走趋势,其余为弱平稳部分,两部分分别建模就得到了两步建模法中的趋势模型和周期模型。 状态空间模型的假设条件是动态系统符号马尔科夫特性,即给定系统的现在状态,则系统的将来与其过去独立。 [编辑] 状态空间模型的分类 状态空间模型包括两个模型:一是状态方程模型,反映动态系统在输入变量作用下在某时刻所转移到的状态;二是输出或量

状态空间模型

引言 状态空间模型是应用状态空间分析法对动态系统所建立的一种数学模型,它是应用现代控制理论对系统进行分析和综合的基础。状态空间模型由描述系统的动态特性行为的状态方程和描述系统输出变量与状态变量间变换关系的输出方程组成。 在经典控制理论中,采用n阶微分方程作为对控制系统输入量u(t)和输出量y(t)之间的时域描述,或者在零初始条件下,对n阶微分方程进行Laplace 变换,得到传递函数作为对控制系统的频域描述,“传递函数”建立了系统输入量U(s)=L[u(t)]和输出量Y(s)=L[y(t)]之间的关系。传递函数只能描述系统的外部特性,不能完全反映系统内部的动态特征,并且由于只考虑零初始条件,难以反映系统非零初始条件对系统的影响。 现代控制理论是建立在“状态空间”基础上的控制系统分析和设计理论,它用“状态变量”来刻画系统的内部特征,用“一阶微分方程组”来描述系统的动态特性。系统的状态空间模型描述了系统输入、输出与内部状态之间的关系,揭示了系统内部状态的运动规律,反映了控制系统动态特性的全部信息。 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。该算法是构建在数学支持的基础之上的。 标准四阶龙格——库塔法的基本思想 龙格和库塔提出了一种间接地运用Taylor公式的方法,即利用y(x)在若干个待定点上的函数值和导数值做出线性组合式,选取适当系数使这个组合式进Taylor展开后与y(xi+1)的Taylor展开式有较多的项达到一致,从而得出较高阶的数值公式,这就是龙格—库塔法的基本思想。 一、实验原理 龙格——库塔法 龙格—库塔法是仿真中应用最广泛的方法。它以泰勒展开公式为基础,用函数f的线性组合代替f的高阶导数项,避免了高阶导数的运算,又提高了精度。泰勒公式的阶次取得越高,龙格—库塔法所得的误差等级越低,精度越高。最常用的是四阶龙格—库塔法,它虽然有一定的时间损耗,但比梯形法要快,而且与

常用预测模型

常用预测模型 (一) 灰色预测模型 1. 灰色系统理论 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理,来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势状况。灰色预测法用等时距观测到的反映预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。 2.灰色预测理论模型数学形式 在通过灰色理论建立预测模型时,常需要先进行累加或累减后计算数据列间的关联度,再建立最终的预测模型。 如原始数据列为: ()()()()()()()()(){}n X X X X X 00000,...3,2,1=; 通过累加后变为: ()()()()()()()()(){}n X X X X X 11111,...3,2,1=; 那么进行m 次累加后有: ()()()()∑=?=k i m m i X k X 11关联度:是分析系统中各因素关联程度的方法,在计算关联度之前需先计算关联系数。 设:()()()()()()()(){ }n X X X k X 0000?,...,2?,1??=,()()()()()()()(){} n X X X k X 0000,...,2,1= ()()()()()()()()()()()()()()()()k X k X k X k X k X k X k X k X 00000000?max max ??max max ?min min ?+??+?ρρ 则关联系数定义为:式中:()()()()k X k X 00??为第k 个点()0X 和()0?X 的绝对误差;()()()()k X k X 00?min min ?为两级最小差; ()()()()k X k X 00?max max ?为两级最大差;ρ称为分辨率,0<ρ<1,一般取ρ=0.5;对单位不一,初值不同的序列,在计算相关系数前应首先进行初始化,即将该序列所有数据分别除以第一个数据。 关联系数矩阵确立后,则与()()k X 0()()k X 0?的关联度为:()∑==n k k n r 1 1η 建立预测模型:在前述准备完成后,GM (1,1)通过相应的微分方程建立模型。 () ()μ=+11d d aX t X 其中:α称为发展灰数;μ称为内生控制灰数。 设α?为待估参数向量,??? ?????=μαa ?,可利用最小二乘法求解。解得: ()n T T Y B B B 1??=α

实验四 用MATLAB求解状态空间模型

实验四用MATLAB求解状态空间模型 1、实验设备 MATLAB软件 2、实验目的 ①学习线性定常连续系统的状态空间模型求解、掌握MATLAB中关于求解该模型的主要函数; ②通过编程、上机调试,进行求解。 3、实验原理说明 Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有: 初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。 数值计算问题可由基本的Matlab函数完成,符号计算问题则需要用到Matlab 的符号工具箱。 4、实验步骤 ①根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB编程。 ②在MATLAB界面下调试程序,并检查是否运行正确。 习题1:试在Matlab中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。 Matlab程序如下:A=[0 1; -2 -3]; B=[]; C=[]; D=[]; 011 232???? == ???? -- ????x x x

x0=[1; 2]; sys=ss(A,B,C,D); [y,t,x]=initial(sys,x0,0:5); plot(t,x) 习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。并计算该系统的单位阶跃状态响应表达式。 0011232????==????--???? x x x

Matlab程序如下: A=[0 1; -2 -3]; B=[0; 1]; C=[]; D=[]; x0=[1; 2]; sys=ss(A,B,C,D); [u t]=gensig('square',3,10, [y,t,x] = lsim(sys,u,t,x0) plot(t,u,t,x);

典型时间序列模型分析..doc

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

模型预测控制快速求解算法

模型预测控制快速求解算法 模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。 虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。预测控制方法发展至今,仍然存在一些问题,具体如下: ①模型难以建立。模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。 ②在线计算过程不够优化。预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。 ③误差问题。由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。 模型预测控制区别于其它算法的最大特征是处理多变量多约束线性系统的

预测方法的分类(1)

预测方法的分类 郑XX 预测方法的分类 由于预测的对象、目标、内容和期限不同,形成了多种多样的预测方法。据不完全统计,目前世界上共有近千种预测方法,其中较为成熟的有150多种,常用的有30多种,用得最为普遍的有10多种。 1-1预测方法的分类体系 1)按预测技术的差异性分类 可分为定性预测技术、定量预测技术、定时预测技术、定比预测技术和评价预测 技术,共五类。 2)按预测方法的客观性分类 可分为主观预测方法和客观预测方法两类。前者主要依靠经验判断,后者主要借 助数学模型。 3)按预测分析的途径分类 可分为直观型预测方法、时间序列预测方法、计量经济模型预测方法、因果分析 预测方法等。 4)按采用模型的特点分类 可分为经验预测模型和正规的预测模型。后者包括时间关系模型、因果关系模 型、结构关系模型等。 1-2 常用的方法分类 1)定性分析预测法 定性分析预测法是指预测者根据历史与现实的观察资料,依赖个人或集体的经验与智慧,对未来的发展状态和变化趋势作出判断的预测方法。 定性预测优缺点 定性预测的优点在于: 注重于事物发展在性质方面的预测,具有较大的灵活性,易于充分发挥人的主观能动作用,且简单的迅速,省时省费用。

定性预测的缺点是: 易受主观因素的影响,比较注重于人的经验和主观判断能力,从而易受人的知识、经验和能力的多少大小的束缚和限制,尤其是缺乏对事物发展作数量上的精确描述。 2)定量分析预测法 定量分析预测法是依据调查研究所得的数据资料,运用统计方法和数学模型,近似地揭示预测对象及其影响因素的数量变动关系,建立对应的预测模型,据此对预测目标作出定量测算的预测方法。通常有时间序列分析预测法和因果分析预测法。 ⅰ时间序列分析预测法 时间序列分析预测法是以连续性预测原理作指导,利用历史观察值形成的时间数列,对预测目标未来状态和发展趋势作出定量判断的预测方法。

预测模型分类

预测模型分类及优缺点分析 灰色(系统)预测模型 神经网络预测模型 趋势平均预测法 1 微分方程模型 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态、研究它的控制手段时,通常要建立对象的动态微分方程模型。微分方程大多是物理或几何方面的典型.问题,假设条件已经给出,只需用数学符号将已知规律表示出来,即可列出方程,求解的结果就是问题的答案,答案是唯一的,但是有些问题是非物理领域的实际问题,要分析具体情况或进行类比才能给出假设条件。作出不同的假设,就得到不同的方程。比较典型的有:传染病的预测模型、经济增长预测模型、正规战与游击战的预测模型、药物在体内的分布与排除预测模型、人口的预测模型、烟雾的扩散与消失预测模型以及相应的同类型的预测模型。其基本规律随着时间的增长趋势是指数的形式,根据变量的个数建立初等微分模型。微分方程模型的建立基于相关原理的因果预测法。该法的优点:短、中、长期的预测都适合,而.既能反映内部规律,反映事物的内在关系,也能分析两个因素的相关关系,精度相应的比较高,另外对初等模型的改进也比较容易理解和实现。该法的缺点:虽然反映的是内部规律,但是由于方程的建立是以局部规律:的独立性假定为基础,故做中长期预测时,偏差有点大,而且微分方程的解比较难以得到。 2 时间序列法 将预测对象按照时问顺序排列起来,构成一个所谓的时间序列,从所构成的这一组时间序列过去的变化规律,推断今后变化的可能性及变化趋势、变化规律,就是时间序列预测法。时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。考虑一组给定的随时间变化的观察值,t=1,2,3,?,n},如何选取合适模型预报,t=n+1,n+3,n+k}的值。 上面的模型统称ARMA模型,是时间序列建模中最重要和最常用的预测手段。事实上,对实际中发生的平稳时间序列做恰当的描述,往往能够得到自回归、滑动平均或混合的模型,其阶数通常不超过2。时间序列模型其实也是一种回归模型,属于定量预测,其基于的原理是,一方面承认事物发展的延续性,运用过去时间序列的数据进行统计分析就能推测事物的发展趋势;另一方面又充分考虑到偶然因素影响而产生的随机性,为了消除随机波动的影响,利用历史数据,进行统计分析,并对数据进行适当的处理,进行趋势预测。优点是简单易行,便于掌握,能够充分运用原时间序列的各项数据,计算速度快,对模型参数有动态确定的能力,精度较好,采用组合的时间序列或者把时间序列和其他模型组合效果更好。缺点是不能反映事物的内在联系,不能分析两个因素的相关关系,常数的选择对数据修匀程度影响较大,不宜取得太小,只适用于短期预测 3 灰色预测理论模型 灰色预测的基本思路是将已知的数据序列按照某种规则构成动态或非动态的白色模块,再按照某种变化、解法来求解未来的灰色模型。它的主要特点是模型使用的不是原始数据序列,而是生成的数据序列。其核心体系是灰色模型(GM),即对原始数据作累加生成(或其他方法生成)得到近似的指数规律再进行建模的模型方法。优点是不需要很多的数据,一般只需要4个数据就够,能解决历史数据少、序列的完整性及可靠性低的问题;能利用微分方程来充分挖掘系统的本质,精度高;能将无规律的原始数据进行生成得到规律性较强的生成数列,运算简便,易于检验,具有不考虑分布规律,不考虑变化趋势。缺点是只适用于中长期的预测,只适合指数增长的预测,对波动性不好的时间序列预测结果较差。

相关主题
文本预览
相关文档 最新文档