当前位置:文档之家› 实验五(单稳态触发器和多谐振荡器)

实验五(单稳态触发器和多谐振荡器)

实验五(单稳态触发器和多谐振荡器)
实验五(单稳态触发器和多谐振荡器)

年级_______班级_____学号________________姓名________________成绩_______

实验五单稳态触发器和多谐振荡器

一、实验目的

1.研究555单稳态触发器的功能。

2.研究由555构成的多谐振荡器的功能。

二、实验器材

5V直流电源1个

逻辑开关1个

逻辑探头1个

555定时器1个

信号发生器l台

双踪示波器l台

电容器1üF、100üF、0.02üF各1个

0.01üF2个

电阻200kΩ、100KΩ、72kΩ、

48kΩ、10 KΩ、5 KΩ、1 KΩ各1个

三、实验准备

单稳态触发器具有三个特点:第一,有一个稳态和一个暂稳态;第二,在外来触发脉冲的作用下,能够从稳态翻转为暂稳态:第三,暂稳态维持一段时间以后将自动返回稳态而暂稳态的维持时间与触发脉冲无关,仅决定于电路本身的参数。

图5-1 555单稳态触发器

图5-1电路可用来验证555单稳态触发器的逻辑功能。图中TRI为下沿触发脉冲输入端,由时钟脉冲逻辑开关CLOCK提供下沿触发脉冲。逻辑探头Output可显示单稳电路的输出状态,稳态时Out=0,暂稳态时Out=1。暂稳态的维持时间t w由RC电路的时间常数来决定,其计算公式为

t w≈1.1RC

图5-2 555单稳电路的时间波形

图5-2为测试555单稳态触发器时间波形的电路。信号发生器将一系列短周期方波脉冲加到单稳电路的下沿触发输入端TRI,示波器将显示触发输入端TRI和输出端Out的波形。

图5-3是一个用555定时器连成的多谐振荡器电路。电路的振荡频率用输出矩形波的占空比由外接元件R A、R B和C1决定。C2为控制输入端CON的旁路电容,对振荡频率没有什么影响,在有些情况下可以去掉。振荡频率f由输出脉冲的周期求出,即

占空比q为用百分数表示的多谐振荡器输出高电平的时间t2与周期T之比,即

对于图5-3所示的多谐振荡电路,在一周内输出低电平的时间t1、输出高电平的时间t2、振荡周期T、振荡频率吸占空比q的近似值可由下列公式求出

图5--3 555多谐振荡器

四、实验步骤

1.在EWB平台上建立如图5--1所示的实验电路,这是一个验证单稳态触发器逻辑功能的虚拟实验电路。逻辑探头Output检测单稳电路输出Out的高低电平。逻辑开关CLOCK为单稳电路触发输入端TRI提供下沿触发信号,开始时这个逻辑开关应该接高电平。单击仿真开关进行动态分析,同时按计算机键盘上的空格键Space两次,给单稳电路触发端加上一个下沿触发脉冲,测量并记录单稳电路输出高电平(Out=1,逻辑探头Output发红光)的持续时间tw,

tw=12.00s

2.根据电阻值R和电容值C,计算555单稳电路输出高电平的持续时间t w。

tw=1.1RC=0.011ms

3.单击开关停止仿真。将电阻值改为200k?,这时逻辑开关CLOCk应当接高电平。单击仿真开关进行动态分析,同时连续按键盘上的空格键两次,给单稳电路的触发端加上一个下沿触发信号,测量并记录单稳电路输出高电平的持续时间tw,tw=15.00s

4.单击开关停止仿真。在EWB平台上建立如图5--2所示的实验电路,这是一个用信号发生器和示波器测量555单稳触发器时间波形的电路。信号发生器和示波器按图设置。

5.单击仿真开关进行动态分析。信号发生器在单稳电路的下沿触发端TRI加上一系列持续时间很短的方波信号,示波器则显示输入及输出信号的波形。

6.单击开关停止仿真。在EWB平台上建立如图5-3所示的实验多谐振荡器电路,示波器按图设置。

7.测量并记录输出低电平的时间t1、输出高电平的时间t2及振荡周期T。

t1=0.0000s,t2=2.8748ms,T=2.8748ms

8.测量并记录触发电压的最大值VH及最小值VL。

VH=5.0000v,VL=-3.0772v

9.根据步骤7测出的振荡周期T,计算脉冲频率f,单位为Hz。

f=1/T=1/2.8748ms=347850Hz

10.根据步骤7测出的t1、t2及T,计算占空比q。

q= t2/T*100%=1

11.根据图5-3所示的电路中的电阻值RA、RB及电容值C1,计算t1、t2及T。

t1=0.7 RB*C1=0.504ms,t2=0.7(RA+RB)C1=0.511ms

T=0.7(RA+2RB)C1=1.015ms

12.单击开关停止仿真。将电阻值RA和RB改为48k?。单击仿真开关进行动态分析。等振荡稳定后按计算机键盘上的F9键暂停仿真。

13.测量并记录输出低电平的时间t1、输出高电平的时间t2及周期T。

t1=0.0000s,t2=8.6354ms,T=8.6354ms

14.根据步骤13测出的周期T,计算频率f。

f=1/T=1/8.6354ms=1.158Hz

15.根据步骤13测出的t1、t2和T,计算占空比q。

q= t2/T*100%=1

16.根据新的电阻值RA、RB及新的电容值C1,计算t1、t2和T。

t1=0.7 RB*C1=0.336ms,t2=0.7(RA+RB)C1=0.672ms

T=0.7(RA+2RB)C1=0.996ms

17.单击开关停止仿真。将电容值C1改为0.02μF。单击仿真开关进行动态分析。等振荡稳定后,按计算机键盘上的F9键暂停仿真。

18.测量并记录输出低电平的时间t1,输出高电子的时间t2和周期T。

t1=0.0000s,t2=2.8748ms,T=2.8748ms

19.根据测出的t1、t2和T,计算占空比q。

q= t2/T*100%=1

20.根据新测出的周期T,计算频率f。

f=1/T=1/2.8748ms=347.85Hz

五、思考与分析

1.说明555时基电路各个引脚的功能。

CO为控制端;OUT为输出端;R D为直接置0端;V DD接电源;TH为阈值输入端;

TR为触发输入端;DIS输出脉冲端;GND为接地端。

2.步骤1单稳电路输出脉冲宽度t w的测量值与步骤2的计算值比较,情况如何?

不同

3.图5-2所示的单稳电路是由输入脉冲信号的上沿触发还是下沿触发?

下沿触发

4.改变输入脉冲信号的频率,图5-2所示的单稳电路输出脉冲宽度会改变吗?

5.多谐振荡器t1、t2及T的测量值与计算值比较,情况如何?

t2与T值相同,t1与两者的值不同

6.多谐振荡器输出波形占空比的测量值与计算值比较,情况如何?

相同

实验五 触发器操作实验

实验五触发器操作实验 一、实验目的和要求 1、掌握SQL Server中的触发器的使用方法; 二、实验内容和步骤 1、在学生表student上建立一个DELETE类型的触发器tr_delete,触发动作是显示信息“已删除学生表中的数据”。 2、创建名为为tr_delete1的触发器,要求实现如下功能:当删除课程表course中某一门课程的记录时,级联删除成绩表sc中有关此课程的记录。 3、创建名为tr_delete2的触发器,要求实现如下功能:当修改课程表course中某一门课程的课程号时,级联修改成绩表sc中有关此课程的课程号。 4、创建名为tr_delete3的触发器,要求如下:当同时修改student表中的姓名和性别字段时,提示用户“不能同时修改姓名和性别字段”,并撤销此次修改操作。 5、在学生表student上建立一个名为tr_sno的触发器。该触发器将被操作update所激活,将不允许用户修改表的sno字段。 二、实验环境 1.Windows7+SQL 三、调试过程 1.删除出错(级联删除) 修改:(删除sc表外键数据后再删student表)

2.更新出错(级联更新) 修改: 四、实验结果 1.

2. 3.

4. 5.

五、总结 通过此次实验: 1.本人加深对SQL和Transact-SQL语言的查询语句的理解; 2.简单了解了触发器的使用; 3.对级联删除有了再一步的理解,但是对于级联更新的处理还是不够,例如第五题依 旧没解决调试出现的约束冲突问题 六、附录 /************************************************************ 1、在学生表student上建立一个DELETE类型的触发器tr_delete,触发动作是显示信息“已删除学生表中的数据”。 *************************************************************/ create trigger tr_delete on Student after delete as begin print'已删除学生表中的数据' end delete from sc where sno='95011' delete from student where sno='95011' drop trigger tr_delete insert into student values('95011','王一鸣',20,'男','计算机系','福州市') insert into sc(sno,cno,grade)

单稳态触发器

单稳态触发器特点: 电路有一个稳态、一个暂稳态。 在外来触发信号作用下,电路由稳态翻转到暂稳态。 暂稳态不能长久保持,由于电路中RC延时环节的作用,经过一段时间后,电路会自动返回到稳态。暂稳态的持续时间取决于RC电路的参数值。 单稳态触发器的这些特点被广泛地应用于脉冲波形的变换与延时中。 一、门电路组成的微分型单稳态触发器 1. 电路组成及工作原理 微分型单稳态触发器可由与非门或或非门电路构成,如下图。与基本RS触发器不同, (a)由与非门构成的微分型单稳态触发器 (b)由或非门构成的微分型单稳态触发 图6.7微分型单稳态触发器 构成单稳态触发器的两个逻辑门是由RC耦合的,由于RC电路为微分电路的形式,故称为微分型单稳态触发器。下面以CMOS或非门构成的单稳态触发器为例,来说明它的工作原理。 ⑴ 没有触发信号时,电路处于一种稳态 没有触发信号时,为低电平。由于门输入端经电阻R接至,因此 为低电平; 的两个输入均为0,故输出为高电平,电容两端的电压接近0V,这是电路的“稳态”。在触发信号到来之前,电路一直处于这个状态:

, 。 ⑵ 外加触发信号,电路由稳态翻转到暂稳态 当时,的输出由1 0,经电容C耦合,使,于是的输出v02 =1, 的高电平接至门的输入端,从而再次瞬间导致如下反馈过程: 这样导通截至在瞬间完成。此时,即使触发信号撤除(), 由于的作用,仍维持低电平。然而,电路的这种状态是不能长久保持的,故称之为暂稳态。暂稳态时, ,。 ⑶ 电容充电,电路由暂稳态自动返回至稳态 在暂稳态期间,电源经电阻R和门的导通工作管对电容C充电,随着充电时 间的增加增加,升高,使时,电路发生下述正反馈过程(设此时触发器脉冲已消失): 迅速截止,很快导通,电路从暂稳态返回稳态。, 。 暂稳态结束后,电容将通过电阻R放电,使C上的电压恢复到稳定状态时的初始值。在整个过程中,电路各点工作波形如图6.8所示。

实验六 触发器实验报告

实验五 触发器实验报告 [实验目的] 1. 理解Oracle 触发器的种类和用途 2. 掌握行级触发器的编写 [预备知识] 1. PL/SQL 程序设计 [实验原理] 1. 建立触发器 CREA TE [OR REPLACE] TRIGGER <触发器名> BEFORE|AFTER INSERT|DELETE|UPDA TE OF <列名> ON <表名> [FOR EACH ROW] WHEN (<条件>) ON 子句中的名称识别与数据库触发器关联的数据库表 触发器事件指定了影响表的 SQL DML 语句 ( INSERT 、 DELETE 或 UPDA TE) AFTER 指定了触发器在处理完成后触发 BEFORE 指定了触发器在处理完成前触发 默认情况下,触发器每个表触发一次 FOR EACH ROW 选项指定触发器每行触发一次(即触发器为行级触发器) 要使触发器触发,WHEN 子句中布尔型表达式的值必须判定为 TRUE 可以将 REPLACE 添加到 CREA TE 语句以自动删除和重建触发器 2. 行级触发器中引用表数据 在行级触发器中,使用伪记录来表示旧数据:old 和新数据:new 引用示例::new.customer_name, :old.customer_name 3. 行级触发器中的谓词 在一个多条件触发的触发器中,使用谓词可以区分当前触发的操作的类型:触发事件 :old :new Insert 无定义,所有字段都是NULL 该语句完成后插入的值 Update 更新前该行的旧值 更新后该行的值 Delete 删除前该行的值 无定义,所有字段

双三极管多谐振荡器电路工作原理

双三极管多谐振荡器电路工作原理 双三极管多谐振荡器 电路工作原理 多谐振荡器电路是一种矩形波产生电路.这种电路不需要外加触发信号,便能连续地, 周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振 荡器电路. 电路结构 1.路图 2.把双稳态触发器电路的两支电阻耦合支路改为电容耦合支路.那么电路就没有稳 定状态,而成为无稳电路 3.开机:由于电路参数的微小差异,和正反馈使一支管子饱和另一支截止.出现一个暂 稳态.设Q1饱和,Q2截止. 工作原理 正反馈: Q1饱和瞬间,VC1由+VCC 突变到接近于零,迫使Q2的基极电位VB2瞬间下 降到接近 —VCC,于是Q2可靠截止. 注:为什么Q2的基极产生负压,因为Q1导通使Q1 集电极的电压瞬间接近于零,电容C1的

正极也接近于零,由于电容两边电压不能突变使得电容的负端为—VCC。 2.第一个暂稳态: C1放电: C2充电: 3.翻转:当VB2随着C1放电而升高到+0.5V时,Q2开始导通,通过正反馈使Q1截止,Q2饱和. 正反馈: 4.第二个暂稳态: C2放电: C1充电: 5.不断循环往复,便形成了自激振荡 6.振荡周期: T=T1+T2=0.7(R2*C1+R1*C2)=1.4R2*C 7.振荡频率: F=1/T=0.7/R2*C 8..波形的改善: 可以同单稳态电路,采用校正二极管电路 下面我们来做一个实验:如图 振荡周期: T=1.4R2*C=1.4*10000Ω*0.00001F=0.14s=140ms 此图利用Multisim仿真软件去求出时间与实际的偏差 数据测量图:此图测量了Q2的基极和集电极极,集电极的波形相当于图的矩形波,基极波形相当于图的锯齿波。

触发器实验报告

. . . . .. . 实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1 +n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 (上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: 专业:电卓1501 姓名:卢倚平 学号:3150101215 日期:2017.6.01 地点:东三404

实验名称:集成触发器应用实验 姓名: 卢倚平 学号: 2 (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1 +n Q Q J =Q K +, D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图: (上:Qn ,下:CP ) (上:Qn ,下:D ) 4、J-K →T ′的转换实验。 设计过程: J-K 触发器:n n 1 +n Q Q J =Q K +, T ’触发器:Qn+1=!Qn 若将J-K 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:J=K=1 实验截图:

双稳态电路的工作原理)

双稳态电路的工作原理 双稳态电路是由什么组成的?他的工作原理是什么? 一、工作原理 图一为双稳态电路,它是由两级反相器组成的正反馈电路,有两个稳定状态,或者是BG1导通、BG2截止;或者是BG1截止、BG2导通,由于它具有记忆功能,所以广泛地用于计数电路、分频电路和控制电路中,原理,图2(a)中,设触发器的初始状态为BG1导通,BG2截止,当触发脉冲方波从1端输入,经CpRp 微分后,在A点产生正、负方向的尖脉冲,而只有正尖脉冲能通过二极管D1作用于导通管BG1的基极是。ic1减小使BG1退出饱和并进入放大状态,于是它的集电极电位降低,经电阻分压器送到截止管BG2的基极,使BG2的基极电位下降,如果下降幅度足够时,BG2将由截止进入放大状态,因而产生下列正反馈过程(看下列反馈过程时,应注意:在图一的PNP电路中,晶体管的基极和集电极电位均为负值,所以uc1↓,表示BG1集电极电位降低,而uc1↑则表示BG1集电极电位升高,当BG1基极电位降低时,则ic1↑,反之当BG1基极电位升高时,ic1↓ ic1越来越小,ic2越来越大,最后到达BG1截止、BG2导通;接差触发脉冲方波从2端输入,并在t=t2时,有正尖脉冲作用于导通管BG2的基极,又经过正反馈过程,使BG1导通,BG2截止。以后,在1、2端的触发脉冲的轮流作用下,双稳电路的状态也作用相应的翻转,如图一(b)所示。 图一、双稳态电路 由上述过程可见:(1)双稳态电路的尖顶触发脉冲极性由晶体管的管型决定:PNP管要求正极性脉冲触发,而NPN管却要求负极性脉冲触发。(2)每触发一次,电路翻转一次,因此,从翻转次数的多少,就可以计算输入脉冲的个数,这就是双稳态电路能够计算的原理。 双稳态电路的触发电路形式有:单边触发、基极触发、集电极触发和控制触发等。 图二给出几种实用的双稳态电路。电路(a)中D3、D4为限幅二极管,使输出幅度限制在-6伏左右;电路(b)中的D5、D6是削去负尖脉冲;电路(C)中的ui1、ui2为单触发,ui为输入触发表一是上述电路的技术指标。 图二、几种实用的双稳态电路 表一几种双稳态触发器的技术指标 图二(a)(b)(c)(d) 管型二极管2AP32AP152AK1C2AK17 三极管3AX31B3AG403AK203DK3B 信号电平“0”(无信号)(V)000+6 “1”(有信号)(V)-6-6-90 工作频率(KHz)1060010008000 抗干扰电压(V)≥1≥1.5≥20.8-1 触发灵敏度(V)≤4≤4.8≤72.5 输出端的吸收能力(mA)≤4≤6.7≤210 输出端的发射能力(mA)≤44≤12≤127 输出脉冲的上升时间(μs)2≤0.30≤0.1≤0.1 输出脉冲的下降时间(μs)2≤0.36≤0.15≤0.1 对β值的要求>5050-8060-90>50 元件参数的允许化△β<10,±5%△β<10,±5%△β<10,±5%△β<10,±5%

多谐振荡器介绍

多谐振荡器: 摘要:分析了各种多谐振荡器的电路结构及工作原理,并利用Multisiml0.0对部分电路进行了仿真,重点介绍了单稳型多谐振荡器,讨论集成单稳态触发器74121定时元件RC对暂稳态的影响以及单稳型多谐振荡器的应用。Multisim软件是一种形象化的虚拟仪器电路仿真软件,它能比较快速地模拟、分析、验证所设计电路的性能,在课堂教学中引入EDA技术,使传统教学环节与先进的仿真技术相结合,实现授课的生动性和灵活性,增强学生对基本概念的理解,激发学生的学习兴趣,培养并有效提高学生综合分析、应用及创新能力。 关键字:Multisiml0.O;多谐振荡器;555定时器;施密特触发器;环形振荡器 O 引言 在数字系统电路中经常用到多谐振荡器。多谐振荡器是一种自激振荡器,在接通电源以后,不需要外加触发信号便能自行产生一定频率和一定宽度的矩形波,这一输出波形用于电路中的时钟信号源。由于矩形波中含有丰富的高次谐波分量,所以习惯上又将矩形波振荡器称为多谐振荡器。按照电路的工作原理,多谐振荡器大致分为无稳态多谐振荡器和单稳态多谐振荡器。 1 无稳态多谐振荡器 1.1 采用TTL门电路构成的对称式无稳态多谐振荡器 对称式多谐振荡器的典型电路如图1所示,它是由两个反相器Gl、G2经耦合电容C1、C2连接起来的正反馈振荡电路。电路中G1和G2采用SN74LS04N反相器,RFl=RF2=RF,C1=C2=C,振荡周期T≈1.3RFC,输出波形的占空比约为50%。RF1、RF2的阻值对于LSTTL为470 Ω~3.9kΩ,对于标准TTL为0.5~1.9kΩ之间。 1.2 采用CMOS门电路构成的非对称式无稳态多谐振荡器 如果把对称式多谐振荡器电路进一步简化,去掉C1和R2,在反馈环路中保留电容C2,电路仍然没有稳定状态,只能在两个暂稳态之问往复振荡,电路如图2所示。

实验五 存储过程和触发器的定义和使用3

实验五存储过程和触发器的定义和使用 一、实验目的 1、掌握局部变量、全局变量、流程控制语句的使用方法 2、了解存储过程的类型和作用,并掌握使用对象资源管理器和Transact-SQL语句创建 存储过程的方法及使用方法。 3、理解触发器的特点和作用,并掌握使用Transact-SQL语言创建触发器的方法 二、实验内容 1.在学生成绩库中中有如下各表: 学生表(Student) 学号姓名性别出生日期专业所在系联系电话020101杨颖01980-7-20计算机应用计算机88297147 020102方露露01981-1-15信息管理计算机88297147 020103俞奇军11980-2-20信息管理计算机88297151 020104胡国强11980-11-7信息管理计算机88297151 020105薛冰11980-7-29水利工程水利系88297152 020201秦盈飞01981-3-10电子商务经济系88297161 020202董含静01980-9-25电子商务经济系88297062 020203陈伟11980-8-7电子商务经济系88297171 020204陈新江11980-7-20房建水利系88297171 create database学生成绩数据库 create table Student ( 学号Char(6)not null, 姓名Char(8)not null, 性别Bit not null, 出生日期smalldatetime, 专业Char(10), 所在系Char(10), 联系电话Char(11)null ) 课程表(Course) 课程号课程名教师开课学期学时学分 101计算机原理陈红2453 102计算方法王颐3453 103操作系统徐格2604 104数据库原理及应用应对刚3755 105网络基础吴江江4453 106高等数学孙中文1906 107英语陈刚1906 108VB程序设计赵红韦3705

多谐振荡器

第八章 脉冲波形的产生与整形 在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。 本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。 8.1 集成555定时器 555定时器是一种多用途的单片中规模集成电路。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。 目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。 一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。555定时器工作的电源电压很宽,并可承受较大的负载电流。双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。 一. 555定时器的电路结构与工作原理 1.555定时器内部结构: (1)由三个阻值为5k Ω的电阻组成的分压器; (2)两个电压比较器C 1和C 2: v +>v -,v o =1; v +<v -,v o =0。 (3)基本RS 触发器; (4)放电三极管T 及缓冲器G 。 2.工作原理。 当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 3 1 。 (1)当v I1>cc V 32,v I2>cc V 31 时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发 器被置0,放电三极管T 导通,输出端v O 为低电平。 (2)当v I1cc V 31 时,比较器 C 1输出高电平,C 2也输出高电平,即基本RS 触发器R =1,S =1,触发器状态不变,电路亦保持原状态不变。

实验五-触发器和存储过程

实验五:触发器和存储过程 一.实验目的:理解触发器和存储过程的含义,掌握用SQL语句实现触发器和存储过程的编写,并初步掌握什么情况下使用事务。 二.实验内容: 有一个小型的图书管理数据库,包含的表为: bookstore(bookid,bookname,bookauthor,purchasedate,state);--图书库存表 borrowcard(cardid,ownername);--借书证表 borrowlog(cardid,bookid,borrowdate,returndate);--借书记录表 写一个存储过程,实现借书操作,要求有事务处理。(1)读者借书,要先设置书籍不在库标志state(借出),然后增加借书记录,在同一事务中完成。(2)要求在事务执行过程中引入错误触发事件,以此体会事务的错误保护机制和事务编程的作用。(3)要求用触发器实现表的完整性控制。 三、操作与运行 1.创建图书数据库: create table bookstore (bookid int not null primary key, bookname char(20),

bookauthor char(20), purchasedate datetime, state char(4) ) create table borrowcard (cardid int not null primary key, ownername char(20) ) create table borrowlog (cardid int not null, bookid int not null, borrowdate datetime, returndate datetime, primary key(cardid,bookid), ---foreign key(cardid)references borrowcard(cardid), ---foreign key(bookid)references bookstore(bookid) ) 通过以上语句,可以看到数据库中的表建立成功。 2.创建存储过程: create proc book_borrow @mycardid_in int, @mybookid_in int,

555构成的单稳态触发器的四种基本电路

555构成的单稳态触发器的四种基本电路 图(a所示电路是典型的单稳模式电路。当外加脉冲经C1、R1微分电路加至555的2脚时,负向脉冲(<1/3VDD使555置位,3脚输出暂稳脉冲宽度td=1.1RC。 图(b与图(a类同,但它有两个输出端。C通过R至555内部灌电流放电,恢复时间比图(a要长。 图(c电路的2、6脚接法与图(a、(b不同,外加触发应为正向脉冲,幅值应大于号VDD,暂稳脉冲 为负向,其宽度td=1.1RC,可同时输出两路。 图(d与图(c类同,但由于在充电回路中加进了导向二极管D,加快了充电速率,使工作频率大大 提高。该电路可同时输出两路。 [日期:2010-02-20]来源:作者:[字体:大中小] 555电路 2008/12/17 15:15 555 集成电路开始出现时是作定时器应用的,所以叫做 555 定时器或555 时基电路。但是后来经过开发,它除了作定时延时控制外,还可以用于调光、调温、调压、调速等多种控制以及计量检测等作用;还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,作为交流信号源以及完成电源变换、频率变换、脉冲调制等用途。由于它工作可靠、使用方便、价格低廉,因此目前被广泛用于各种小家电中。 555 集成电路内部有几十个元器件,有分压器、比较器、触发器、输出管和放电管等,电路比较复杂,是模拟电路和数字电路的混合体。它的性能和参数要在非线性模拟集成电路手册中才能查到。 555 集成电路是 8 脚封装,图 1 ( a )是双列直插型封装,按输入输出的排列可画成图 1 ( b )。其中 6 脚称阀值端( TH ),是上比较器的输入。 2 脚称触发端(),是下比较器的输入。 3 脚是输出端( V O ),它有 0 和 1 两种状态,它的状态是由输入端所加的电平决定的。 7 脚的放电端( DIS ),它是内部放电管的输出,它也有悬空和接地两种状态,也是由输入端的状态决定的。 4 脚是复位端(),加上低电砰(< 0.3 伏)时可使输出成低电平。 5 脚称控制电压端( V C ),可以用它改变上下触发电平值。 8 脚是电源, 1 脚为地端。

LSTTL 型双单稳多谐振荡器

特点: 逻辑图 (1/2) 功能表 说明: 该电路是直接耦合触发的单稳多谐振荡器,可用三种方法来控制输出脉冲的宽度。基本脉冲宽度可通过选择适当的外部电阻和电容值来控制。该电路一旦被触发,基本脉冲宽度可以通过可重触发的低电平有效(A 输入端)或高电平有效(B 输入端)的输入而得到扩展,也可采用提前清除来缩小脉冲宽度。LS123提供了足够的斯密特滞后电压可确保以慢至0.1mV/ns 的跃变速率从B 输入端无颤动地进行触发。 在使用中,外部计时电容可以接到C ext 和R ext /C ext (正向)端之间。为了改善脉冲宽度的准确性和重复性,可在R ext /C ext 端和Vcc 端之间接一外部电阻。要获得可变脉冲宽度,可在R ext /C ext 端和Vcc 端之间接一外部电容。 ·可由逻辑门有效高电平或有效低 电平输入直接耦合触发; ·很宽的输出脉冲可重触发,直 至100%的占空比; ·无条件清除可中止输出脉冲; · 可补偿电流电压和温度的变化。 典型参数: 输出脉冲宽度=45ns ~∞ Pd=60mW 外引线排列图 注) Rext/Cext :外接电阻/电容端 Cext :外接电容端 L H H=高电平 L=低电平 ×=不定 ↓=从高电平转换到低电平 ↑=从低电平转换到高电平 =高电平脉冲 =低电平脉冲

推荐工作条件 74Ⅱ 54 参数值 参数值 符号 参数名称 最小 典型最大最小典型 最大 单位 Vcc 电源电压 4.75 5 5.25 4.5 5 5.5 V V IH 输入高电平电压 2.0 2.0 V V IL 输入低电平电压 0.8 0.7 V I OH 输出高电平电流 -400 -400 μA I OL 输出低电平电流 8 4 mA t W 脉冲宽度 40 40 ns R 外 外接计时电阻(R ext ) 5 260 5 180 K Ω C 外 外接电容(C ext ) 不限制 不限制 C W R 外/C 外终端的接线电容 50 50 pF T A 工作环境温度 -40 85 -55 125 ℃ 电 性 能:(除特别说明外,均为全温度范围) 74Ⅱ 54 参数值 参数值 符号 参数名称 测试条件 最小典型最大最小典型 最大 单位V IK 输入钳位电压 Vcc =最小 I I =-18mA -1.5 -1.5 V V OH 输出高电平电压 Vcc=最小 V IL =最大 V IH =2V I OH =最大 2.7 2.5 3.4 V V OL 输出低电平电压 Vcc=最小 V IL =最大 V IH =2V I OL =最大 0.5 0.25 0.4 V I I 输入电流 (最大输入电压时) Vcc=最大 V I =7V 0.1 0.1 mA I IH 输入高电平电流 Vcc=最大 V I =2.7V 20 20 μA I IL 输入低电平电流 Vcc=最大 V I =0.4V -0.4 -0.4 mA I OS 输出短路电流 Vcc=最大 V O =0V -20 -100-20 -100 mA I CC 电源电流 Vcc =最大 20 12 20 mA 注:所有典型值均在Vcc=5.0V , T A =25℃下测量得出。 交流(开关)参数:Vcc=5.0V , T A =25℃

存储过程和触发器(数据库实验5)

数据库基础与实践实验报告实验五存储过程和触发器 班级:惠普测试142 学号:1408090213 姓名:闫伟明 日期:2016-11-14

1 实验目的: 1)掌握SQL进行存储过程创建和调用的方法; 2)掌握SQL进行触发器定义的方法,理解触发器的工作原理; 3)掌握触发器禁用和重新启用的方法。 2 实验平台: 操作系统:Windows xp。 实验环境:SQL Server 2000以上版本。 3 实验内容与步骤 利用实验一创建的sch_id数据库完成下列实验内容。 1.创建存储过程JSXX_PROC,调用该存储过程时可显示各任课教师姓名及其所教课程名称。 存储过程定义代码: CREATE PROCEDURE JSXX_PROC AS SELECT tn 教师姓名,cn 所教课程FROM T,TC,C WHERE T.tno=TC.tno AND https://www.doczj.com/doc/5012353669.html,o=https://www.doczj.com/doc/5012353669.html,o 存储过程执行语句与执行结果截图: EXECUTE JSXX_PROC 2.创建存储过程XM_PROC,该存储过程可根据输入参数(学生姓名)查询并显示该学生的学号、 所学课程名称和成绩;如果没有该姓名学生,则提示“无该姓名的同学”。 存储过程定义代码:

CREATE PROCEDURE XM_PROC @sname VARCHAR(100) AS BEGIN IF EXISTS(SELECT NULL FROM S WHERE sn=@sname) SELECT S.sno 学号,cn 课程,score 成绩FROM S,SC,C WHERE https://www.doczj.com/doc/5012353669.html,o=https://www.doczj.com/doc/5012353669.html,o AND SC.sno=S.sno AND S.sn=@sname ELSE PRINT'无该姓名的同学。' END 运行截图: 3.创建存储过程XBNL_PROC,该存储过程可根据输入参数(专业名词,默认值为计算机专业), 统计并显示该专业各年龄段男、女生人数。如果没有该专业,则显示“无此专业”。 存储过程定义代码: CREATE PROCEDURE XBNL_PROC @departName VARCHAR(30)='计算机', @begin INT, @end INT AS

单稳态触发器只有一个稳定状态

单稳态触发器只有一个稳定状态,在外加脉冲的作用下,单稳态触发器可以从一个稳定状态翻转到一个暂态,该暂态维持一段时间又回到原来的稳态。 一、用555定时器构成单稳态触发器: 1.电路组成 如图6-7所示,其中R、C为单稳态触发器的定时元件,它们的连接点Vc与定时器的阀值输入端(6脚)及输出端Vo'(7脚)相连。单稳态触发器输出脉冲宽度tpo=1.1RC。 Ri、Ci构成输入回路的微分环节,用以使输入信号Vi的负脉冲宽度tpi限制在允许的范围内,一般tpi>5RiCi,通过微分环节,可使Vi'的尖脉冲宽度小于单稳态触发器的输出脉冲宽度tpo。若输入信号的负脉冲宽度tpi本来就小于tpo,则微分环节可省略。 定时器复位输入端(4脚)接高电平,控制输入端Vm通过0.01uF接地,定时器输出端Vo(3脚)作为单稳态触发器的单稳信号输出端。 2.工作原理 当输入Vi保持高电平时,Ci相当于断开。输入Vi'由于Ri的存在而为高电平Vcc。此时,①若定时器原始状态为0,则集电极输出(7脚)导通接地,使电容C放电、Vc=0,即输入6脚的信号低于2/3Vcc,此时定时器维持0不变。 ②若定时器原始状态为1,则集电极输出(7脚)对地断开,Vcc经R向C充电,使Vc电位升高,待Vc值高于2/3Vcc时,定时器翻转为0态。 结论:单稳态触发器正常工作时,若未加输入负脉冲,即Vi保持高电平,则单稳态触发器的输出Vo一定是低电平。 单稳态触发器的工作过程分为下面三个阶段来分析,图6-8为其工作波形图:

①触发翻转阶段: 输入负脉冲Vi到来时,下降沿经RiCi微分环节在Vi'端产生下跳负向尖脉冲,其值低于负向阀值(1/3Vcc)。由于稳态时Vc低于正向阀值(2/3Vcc),固定时器翻转为1,输出Vo 为高电平,集电极输出对地断开,此时单稳态触发器进入暂稳状态。 ②暂态维持阶段: 由于集电极开路输出端(7脚)对地断开,Vcc通过R向C充电,Vc按指数规律上升并趋向于Vcc。从暂稳态开始到Vc值到达正向阀值(2/3Vcc)之前的这段时间就是暂态维持时间tpo。 ③返回恢复阶段: 当C充电使Vc值高于正向阀值(2/3Vcc)时,由于Vi'端负向尖脉冲已消失,Vi'值高于负向阀值(1/3Vcc),定时器翻转为0,输出低电平,集电极输出端(7脚)对地导通,暂态阶段结束。C通过7脚放电,使Vc值低于正向阀值(2/3Vcc),使单稳态触发器恢复稳态。 二、单稳态触发器应用举例 利用单稳态触发器的特性可以实现脉冲整形,脉冲定时等功能。 1.脉冲整形

实验04-双稳态触发器功能及应用

实验四双稳态触发器功能及应用 一、实验目的 1.掌握两种基本RS触发器的构成、集成JK和D触发器的逻辑功能测试、触发方式和使用方法。 2.掌握触发器之间的相互转换。 3.掌握时序逻辑电路的分析方法与步骤,并通过实验进行逻辑功能验证。 4.学会应用双稳态触发器设计电路。 二、实验任务(建议学时:2学时) (一)基本实验任务 1. 两种基本RS触发器逻辑功能测试; 2. D触发器(74LS74)的逻辑功能测试; 3. JK触发器(74LS112)的逻辑功能测试; 4. 用JK触发器构成D、T、T'触发器,并验证其逻辑功能; (二)扩展实验任务(电类本科生1、2、3项必选一个,4、5项必选一个,非电类本科生1、2、3项任选一个) 1. 对图4-5所示时序逻辑电路1进行分析,画出电路的状态表,并说明该电路实现的逻辑功能是什么?请根据电路原理图在实验室完成电路连线,并验证你的结论。 2. 对图4-6 异步时序逻辑电路2进行分析,画出电路的状态表,并说明该电路实现的逻辑功能是什么?请根据电路原理图在实验室完成电路连线,并验证你的结论。 3. 对图4-7 异步时序逻辑电路3进行分析,画出电路的状态表,并说明该电路实现的逻辑功能是什么?请根据电路原理图在实验室完成电路连线,并验证你的结论。 4.使用D触发器设计一个四位同步加法计数器(可适当增加必要的基本门电路),并验证其逻辑功能。 5.根据图4-9所示电路及工作原理,使用D触发器将图中的控制电路设计出来,以实现图4-9电路的功能。

三、实验原理 触发器(Flip-flop)简称FF。按电路结构分为:基本RS触发器(又称RS锁存器)、同步触发器、主从触发器(Master-Slave FF)、边沿触发器(Edge-Triggered)、维持阻塞触发器等,不同电路结构的触发器有不同的动作特点。按逻辑功能分为:RS触发器(RS锁存器)、D触发器、JK触发器、T和T′触发器等。 1)基本RS触发器动作特点:基本RS触发器,其输出端和Q′状态由输入信号R和S来决定,当输入信号R和S发生变化时,输出端Q和Q′的状态作相应的变化。 2)同步RS触发器(高电平触发)动作特点:输入信号在CP=0期间保持不变,在CP=1的全部时间内R、S的变化都将引起触发器状态的相应改变,即在CP=1期间输入信号发生多次变化,触发器的状态也可能发生多次翻转,电路的抗干扰能力弱。 3)主从触发器的动作特点:①在CP=1期间,主触发器接收输入端(S、R或J、K)的信号,输出端被置为相应的状态,从触发器保持原状态;②在CP下降沿(或上升沿)到来时从触发器按主触发器的状态翻转,即Q和Q′端的状态改变发生在CP的下降沿(或上升沿)。 使用主从触发器应注意:只有在CP=1期间输入状态不变的条件下,当下降沿(或上升沿)到来时,输出状态(次态)才会由输入的状态决定。否则,必须考虑CP=1期间输入状态的全部变化过程,才能确定当下降沿(或上升沿)到来时,触发器的输出状态(次态)。4)边沿触发器的动作特点:边沿触发器的次态仅取决于CP信号的上升沿(或下降沿)到达时输入端的逻辑状态,而在这以前或以后,输入信号的变化对触发器的状态没有影响。这种特点有效的提高了触发器电路的抗干扰能力,因而也提高了电路的工作可靠性。 目前生产的触发器定型产品中只有JK触发器和D触发器两大类。 (一)基本实验任务 1. 与非门、或非门分别构成的RS基本触发器逻辑功能测试 如图4-1所示的两种基本RS触发器分别由与非门和或非门构成。

多谐振荡器的研究与仿真

多谐振荡器的研究与仿真 时间:2009-05-05 13:33:30 来源:电子技术作者:何香玲青岛理工大学 O 引言 在数字系统电路中经常用到多谐振荡器。多谐振荡器是一种自激振荡器,在接通电源以后,不需要外加触发信号便能自行产生一定频率和一定宽度的矩形波,这一输出波形用于电路中的时钟信号源。由于矩形波中含有丰富的高次谐波分量,所以习惯上又将矩形波振荡器称为多谐振荡器。按照电路的工作原理,多谐振荡器大致分为无稳态多谐振荡器和单稳态多谐振荡器。 1 无稳态多谐振荡器 1.1 采用TTL门电路构成的对称式无稳态多谐振荡器 对称式多谐振荡器的典型电路如图1所示,它是由两个反相器Gl、G2经耦合电容C1、C2连接起来的正反馈振荡电路。电路中G1和G2采用SN74LS04N反相器,RFl=RF2=RF, C1=C2=C,振荡周期T≈1.3RFC,输出波形的占空比约为50%。RF1、RF2的阻值对于LSTTL 为470 Ω~3.9kΩ,对于标准TTL为0.5~1.9kΩ之间。 1.2 采用CMOS门电路构成的非对称式无稳态多谐振荡器 如果把对称式多谐振荡器电路进一步简化,去掉C1和R2,在反馈环路中保留电容C2,

电路仍然没有稳定状态,只能在两个暂稳态之问往复振荡,电路如图2所示。 假定G2输出为1,电容C充电,在充电开始VI1也为1。因此,该电压经Rp力口到G1输入端,Gl输出为O,电路稳定工作,C继续充电。充电电流随着充电时间延长而减小,RF 两端电压下降,若降到Gl的阈值电压以下,则G1输出变为1,G2输出变为0,C反向充电。随着充电的进行,VI1达到Gl的阈值电压时,G1输出变为0,G2的输出变为1,该动作重复进行而产生振荡。电容C的充放电时间分别为T1=RfC1h3,T2=RfC1n3,振荡周期T=T1+T2=2RFC1h3≈2.2 RFC,输出波形的占空比为50%。 在电路的G1输入端串接的保护电阻RP是为了减少电容C充放电过程中CMOS门电路输入保护电路承受较大的电流冲击,且Rp>>RF。 1.3 门电路无稳态环形振荡器 利用门电路地传输延迟时间将奇数个反相器首尾相接可构成一个基本环形振荡器,电路的振荡周期为T=2ntpd,n为串联反相器的个数。作为数字系统的时钟信号源,由CMOS 反相器构成的环形振荡器具有结构简单、集成度高、功耗低的优点,因此得到了广泛地应用。随着CMOS集成电路工艺技术的发展,当前,其振荡频率已达到数+GHz。但是,这种利用反相器的延时特性构成的环形振荡器,只能产生高频信号。为了构成低频和超低频环形振荡器,一种解决方法是在此电路的基础上附加RC延迟环节,组成带有RC延迟电路的环形振荡器,电路如图3(a)所示。另一种解决方法是根据单稳态触发器的延时作用,运用环形振荡

双稳态电路原理、设计及应用(按键触发开关)

双稳态电路原理及设计、实际应用 一、工作原理 图一为双稳态电路,它是由两级反相器组成的正反馈电路,有两个稳定状态,或者是BG1导通、BG2截止;或者是BG1截止、BG2导通,由于它具有记忆功能,所以广泛地用于计数电路、分频电路和控制电路中。 原理,图2(a)中,设触发器的初始状态为BG1导通,BG2截止,当触发脉冲方波从1端输入,经CpRp微分后,在A点产生正、负方向的尖脉冲,而只有正尖脉冲能通过二极管D1作用于导通管BG1的基极是。ic1减小使BG1退出饱和并进入放大状态,于是它的集电极电位降低,经电阻分压器送到截止管BG2的基极,使BG2的基极电位下降,如果下降幅度足够时,BG2将由截止进入放大状态,因而产生下列正反馈过程(看下列反馈过程时,应注意:在图一的PNP电路中,晶体管的基极和集电极电位均为负值,所以uc1↓,表示BG1集电极电位降低,而uc1↑则表示BG1集电极电位升高,当BG1基极电位降低时,则ic1↑,反之当BG1基极电位升高时,ic1↓,ic1越来越小,ic2越来越大,最后到达BG1截止、BG2导通;接差触发脉冲方波从2端输入,并在t=t2时,有正尖脉冲作用于导通管BG2的基极,又经过正反馈过程,使BG1导通,BG2截止。以后,在1、2端的触发脉冲的轮流作用下,双稳电路的状态也作用相应的翻转,如图一(b)所示。 图一、双稳态电路 由上述过程可见:(1)双稳态电路的尖顶触发脉冲极性由晶体管的管型决定:PNP管要求正极性脉冲触发,而NPN管却要求负极性脉冲触发。(2)每触发一次,电路翻转一次,因此,从翻转次数的多少,就可以计算输入脉冲的个数,这就是双稳态电路能够计算的原理。双稳态电路的触发电路形式有:单边触发、基极触发、集电极触发和控制触发等。 图二给出几种实用的双稳态电路。电路(a)中D3、D4为限幅二极管,使输出幅度限制在-6伏左右;电路(b)中的D5、D6是削去负尖脉冲;电路(C)中的ui1、ui2为单触发,ui为输入触发表一是上述电路的技术指标。

置位和复位优先双稳态触发器指令

置位和复位优先双稳态触发器指令 RS触发器具有置位和复位的双重功能,RS触发器是复位优先时,当置位(S)和复位(R)同时为真时,输出为假。而SR触发器是置位优先触发器时,当置位(S)和复位(R)同时为真时,输出为真。RS 和SR触发器指令应用如下图所示: 图4-16 RS 和SR 触发器指令应用 边沿触发指令 边沿触发是指用边沿触发信号产生一个机器周期的扫描脉冲,通常用做脉冲整形。边沿触发指令分为上升沿(正跳变触发)和下降沿(负跳变触发)两大类,正跳变触发指令指输入脉冲的上升沿使触点闭合(ON)一个扫描周期。负跳变触发指输入脉冲的下降沿使触点闭合(ON)一个扫描周期。边沿触发指令格式见表4-5

【例4-5】如图4-17所示的程序,若I0.0上电一段时间后再断开,请画出I0.0,Q0.0,Q0.1和Q0.2 图4-17 边沿触发指令应用实例 [解]如图4-17所示,在I0.0的上升沿,触点(EU)产生一个扫描周期的时钟脉冲,驱动输出线圈Q0.1通电一个扫描周期,Q0.0通电,使输出线圈Q0.0置位并保持。 在I0.0的下降沿,触点(ED)产生一个扫描周期的时钟脉冲,驱动输出线圈Q0.2通电一个扫面周期,是输出线圈Q0.0复位并报出。【例4-6】设计用一个单按钮控制一盏灯的亮和灭,即按奇数次按钮灯亮,按偶数次按钮等灭。 [解] 当I0.0第一次合上时,V0.0接通一个扫描周期,使得Q0.0线圈得电一个扫描周期,当下一次扫描周期到达,Q0.0常开触点闭合自

锁,灯亮。 当I0.0第二次合上时,V0.0接通一个扫描周期,使得Q0.0线圈闭合一个扫描周期。切断Q0.0的敞开触点和V0.0的敞开触点,使得灯灭。

数字电子技术第25次课单稳态触发器

第25次课 单稳态触发器 ● 本次重点内容: 1、单稳态触发器的工作原理。 2、周期的计算方法。 ● 教学过程 25.1单稳态触发器 一、单稳态触发器的特点: 1、有一个稳定状态和一个暂稳状态。 2、在触发脉冲作用下,电路将从稳态翻转到暂稳态,在暂稳态停留一段时间后,又自动返回稳定状态。 3、暂稳态时间的长短取决于电路本身参数,与触发脉冲的宽度无关。 二、电路组成: 图25-1(a ) 图25-1(b ) 三、工作原理: 1、稳定状态: 接通电源前,u I 为高电平。接通电源后,U CC 经R 对电容C 充电,当电 容C 上的电压u c ≥32U CC 时,由于u I >3 1U CC ,555定时器输出为低电平。放电

管VT 导通,电容C 经放电管VT 迅速放电,u c ≈0,由于U TH <32U CC , U TR >3 1U CC ,所以555定时器保持0状态不变。稳态时,u c =0,u o =0。 2、暂稳态 在负触发脉冲u I 的作用下,低电平触发端TR 得到低于3 1U CC 的触发电 平,由于此时u c =0,U TH <32U CC , U TR <3 1U CC , 555定时器输出高电平。同时放电管VT 截止,电路进入暂稳态,定时开始。 暂稳态阶段(t1~t2),电容C 充电,充电回路为U CC →R →C →地,充电时间常数为RC ,u c 按指数上升。 3、自动返回稳定状态 当电容C 上的电压u c 上升32U CC 时,由于U TH ≥32U CC , U TR ≥3 1U CC ,555定时器输出由高电平变为低电平,放电管VT 由截止变为饱和,暂稳态结束。电容C 经放电管VT 迅速放电到0V ,由于放电管饱和导通的等效电阻较小,所以放电速度快,在这个阶段555定时器维持低电平状态。 电路返回稳态后,当下一个触发信号到来时,又重复上述过程。 可见,输出脉冲宽度t w 为电容C 上的电压u c 由0充到3 2U CC 所需的时间,其大小可用下式计算: t w =RCln 3≈1.1RC 四、用门电路构成的微分型单稳态触发器 (一)电路组成:

相关主题
文本预览
相关文档 最新文档