当前位置:文档之家› 隧道长度划分

隧道长度划分

隧道长度划分

隧道的长度分类:分为短隧道(铁路隧道规定:L≤500m;公路隧道规定:L≤500m)、中长隧道(铁路隧道规定:500<L≤3000m;公路隧道规定500<L<1000m)、长隧道(铁路隧道规定:3000<L≤10000m;公路隧道规定1000≤L≤3000m)和特长隧道(铁路隧道规定:L>10000m;公路隧道规定:L>3000m).

隧道施工临建设置计算

隧道施工方法 在隧道施工中,开挖、支护与衬砌等称为基本作业。为了确保基本作业各工序的顺利进行,为其提供必要的施工条件和直接服务的其他作业,称为辅助作业。其内容包括:供风和供水、供电与照明、压缩空气供应以及施工通风、防尘、防有害气体等。 一、隧道施工风水电作业及通风防尘 隧道施工中,以压缩空气为动力的风动机具主要有:凿岩机、风钻台车、装渣机、喷射混凝土机具、压浆机等。要保证这些风动机具的正常工作,需要有足够的压缩空气供应,既要有足够的风量和风压供应给各个风动机具,同时还应尽量减少压缩空气在管路输送过程中的风压和风量损失,以达到既能保证风动机具进行正常工作,又能达到降低消耗、节约能源、降低成本及保证施工质量的目的。 ㈠、空压机站供风能力 压缩空气由空气压缩机生产供应。空气压缩机有内燃及电动等类型,空压机通常集中安放在洞口附近,称为空压机站。空压机站的供风能力Q值,取决于由储气筒到风动机具设备沿途的损失、各风动机具有耗风量、以及风动机具的同时工作系数和备用系数,即空压机站的生产能力(或供风能力)Q可用下式计算: Q=(1+K备)(ΣqK+q 漏)K m 式中:K——同时工作系数,凿岩机1~10 台时取1.0~0.85,11~30 台时取 0.85~0.75; K备——空压机的备用系数,一般要用75%~90%; Σq——风动机具所需风量,m3/min(可查阅风动机具性能表)一台YT-28 凿岩机耗气量为25L/s(1.5 m3/min); Km——空压机所处海拔高度对空压机生产能力的影响系数见表; ——管路及附件的漏耗损失,其值为q漏=d·ΣL,m3/min; q 漏 海拔0305610914121915241829213424382743304836584572 K 1.00 1.03 1.07 1.10 1.14 1.17 1.20 1.23 1.26 1.29 1.32 1.37 1.43 m

隧道结构计算

一.基本资料 惠家庙公路隧道,结构断面尺寸如下图,内轮廓半径为 6.12m ,二衬 厚度为 0.45m 。围岩为 V 级,重度为19.2kN/m3,围岩弹性抗力系数为 1.6×105kN/m3,二衬材料为 C25 混凝土,弹性模量为 28.5GPa ,重度 为 23kN/m 3。考虑到初支和二衬分别承担部分荷载,二衬作为安全储备,对其围岩压力进行折减,对本隧道按照 60%进行折减。求二衬内力,作出内力图,偏心距分布图。 1)V1级围岩,二衬为素混凝土,做出安全系数分布图,对二衬安全性进行验算。 2)V2级围岩,二衬为钢筋混凝土,混凝土保护层厚度 0.035m ,按结构设计原理对其进行配筋设计。 二.荷载确定 1.围岩竖向均布压力:q=0.6×0.45?1 2-S γω 式中: S —围岩级别,此处S=5; γ--围岩重度,此处γ=19.2KN/3m ; ω--跨度影响系数,ω=1+i (m l -5),毛洞跨度m l =13.14+2?0.06=13.26m ,其中0.06m 为一侧平均超挖量,m l =5—15m 时,i=0.1,此处ω=1+0.1?(13.26-5)=1.826。 所以,有:q=0.6×0.451 -52 ??19.2?1.826=151.456(kPa )

此处超挖回填层重忽略不计。 2.围岩水平均布压力:e=0.4q=0.4?151.456=60.582(kPa ) 三.衬砌几何要素 5. 3.1 衬砌几何尺寸 内轮廓线半径126.12m , 8.62m r r == 内径12,r r 所画圆曲线的终点截面与竖直轴的夹角1290,98.996942φφ=?=?; 拱顶截面厚度00.45m,d = 墙底截面厚度n 0.45m d = 此处墙底截面为自内轮廓半径2r 的圆心向内轮廓墙底做连线并延长至与外轮廓相交,其交点到内轮廓墙底间的连线。 外轮廓线半径: 110 6.57m R r d =+= 2209.07m R r d =+= 拱轴线半径: '1200.5 6.345m r r d =+= '2200.58.845m r r d =+= 拱轴线各段圆弧中心角: 1290,8.996942θθ=?=? 5.3.2 半拱轴线长度S 及分段轴长S ? 分段轴线长度: '1 1190π 3.14 6.3459.9667027m 180180S r θ? = = ??=?? '2228.996942π 3.148.845 1.3888973m 180180S r θ?==??=?? 半拱线长度: 1211.3556000m S S S =+= 将半拱轴线等分为8段,每段轴长为: 11.3556 1.4194500m 88 S S ?= ==

隧道工程作业完整版

绪论 思考题 1.什么是隧道? 2.隧道的种类有哪些? 3.隧道设计包括的内容有哪些? 4.和地面结构相比,隧道工程有哪些特点? 5.试从隧道的广泛用途上论述学习、研究与发展隧道技术的重要意义。 6.你认为隧道工程需要解决的难题有哪些? 第二章 思考题 1、隧道工程地质调查与勘测的内容有哪些? 2、施工地质超前预报的内容有哪些? 3、简述岩石与岩体的区别。 4、岩体的工程性质有哪些? 5、围岩的定义,围岩分级的目的? 6、围岩分级的基本因素有哪些? 7、影响围岩稳定性的主要因素有哪些? 8、简述我国铁路隧道设计规范的围岩分级方法。 第三章 思考题: 1、影响隧道位置选择的因素有哪些? 2、越岭隧道与河谷隧道有何区别?它们在位置的选择上采取什么原则? 3、地质条件对隧道位置选择有哪些影响? 4、隧道洞口位置的选择遵循哪些原则?确定洞口位置考虑哪些因素? 5、什么是隧道净空? 6、铁路隧道的横断面是根据什么设计的? 7、简述曲线铁路隧道加宽的原因和方法。 8、曲线铁路隧道和直线隧道衔接的方法是什么?向直线方向延长13m和22m的理由是 什么? 9、公路隧道建筑限界包含哪些内容? 10、隧道衬砌断面设计的原则是什么? 计算题 1、某隧道位于半径R=800m的圆曲线上,通过三级围岩地段,设计为直墙式衬砌,曲线加宽 40cm,中线偏移值d=12.5cm,外轨超高值E=9.5cm,隧道竣工后,测得DK23+15、DK23+20、DK23+25各起拱线处内外侧宽值如表1所示,试按隧限—2A计算各点侵限情况。 表1 2、某单线铁路隧道位于圆曲线半径R=1000m,缓和曲线长Lc=100m的曲线上,曲线全长

复习题集案例隧道工程工期计算

问题1:1C400000《铁路工程管理与实务》(第二版)教材P171-173案例1C420031-2 背景: 某新建铁路的控制性工程是新河隧道,长8949m,围岩级别是Ⅲ、Ⅳ、Ⅴ级,设置2座斜井,1座

横洞。 设计文件要求:施工准备工期3个月,明洞及进口段3个月,1号斜井7个月,2号斜井6个月,横洞3个月。隧道围岩分布如图1C420031-2所示。 围岩长度(m )围岩级别 222+235隧道进口 2#斜井 225+820 1#斜井 227+230 230+930 横洞隧道出口231+184 围岩级别 围岩长 度(m )300Ⅳ 200Ⅳ Ⅳ Ⅴ Ⅲ Ⅴ Ⅳ Ⅲ Ⅳ Ⅴ Ⅲ Ⅳ Ⅴ 203550159260030015304002002140766168 明洞8m 图1C420031-2 隧道围岩分布图 根据设计要求横洞只向小里程方向进行一个作业面施工,斜井进行两个作业面施工。 隧道按设计超前地质预报纳入工序,Ⅴ级围岩设计小导管超支护,其他为锚喷支护,Ⅲ级围岩采用全断面开挖,Ⅳ级围岩采用台阶法,Ⅴ级围岩采用短台阶预留核心土法开挖。 问题: 1. 根据你的经验,确定隧道各级围岩的进度指标。 2. 计算隧道掘进工期(含施工准备时间)。 解答: 1. 隧道掘进循环时间、进度指标计算见表1C420031-2。 隧道掘进循环时间、进度指标计算表 表1C420031-2 2. 掘进工期计算如下: 根据计算的各级围岩指标,确定隧道各段的贯通点和各施工作业面围岩长度:

横洞至1号斜井段隧道洞身段开挖时间计算: 2220÷160+1080÷120+400÷60=(个月) (2220是横洞至1号斜井段隧道洞身段III 级围岩长度;1080是横洞至1号斜井段隧道洞身段IV 级围岩长度;400是横洞至1号斜井段隧道洞身段V 级围岩长度。围岩长度计算见后附表) 由于1号斜井工期7个月,横洞3个月,横洞作业面比斜井作业面早施工4个月。 横洞作业面施工时间:÷2+(7-3)÷2=个月 横洞至斜井段施工工期为:施工准备+横洞时间+掘进时间=3+3+=个月。 其他各段计算同上。 经计算隧道进口与2号斜井之间所用掘进时间最长,为24个月,所以本隧道的掘进工期为:24个月。 分析: 施工现场考虑各种因素,在计算工期不超过要求工期的情况下,分界点的设置可适当进行调整,各段均衡施工,同其他作业配合,利于设备、人员的充分利用。 如[案例1C420031-2],横洞作业面施工距离较长,施工通风的难度加大,洞内作业条件差,在不影响工期的条件下进行调整,更符合工程施工实际。如图1C420031-3所示: 横洞 1#斜井 2#斜井A B C D E F G 231+184 230+930 228+500 227+230 226+500 225+820 224+550 222+235 隧道出口隧道进口图示 施工单元 围岩长度(m ) III IV V 86168 1730680 470400400 73068070600600 1562550195 分界点分界点分界点明洞8 m 图 1C420031-3 隧道施工分界里程示意图 工期计算见表1C420031-3: 隧道工期计算表 表1C420031-3

隧道工程计算题

计算题 【围岩等级确定】参见书本P.96-99 例题:某公路隧道初步设计资料如下 (1)岩石饱和抗压极限强度为62MPa (2)岩石弹性波速度为4.2km/s (3)岩体弹性波速度为2.4km/s (4)岩体所处地应力场中与工程主轴垂直的最大主应力σmax=9.5Mpa (5)岩体中主要结构面倾角20°,岩体处于潮湿状态 求该围岩类别为?(来源:隧道工程课件例题) 解:1.岩体的完整性系数Kv Kv=(Vpm/Vpr)2=(2.4/4.2) 2=0.33 岩体为破碎。 2.岩体的基本质量指标BQ (1)90 Kv+30=90*0.33+30=59.7 Rc=62>59.7 取Rc=59.7 (2)0.04Rc+0.4=2.79 Kv =0.33>2.79 取Kv =0.33 (3)BQ=90+3Rc+250 Kv=90+3*59.7+250*0.33=351.6 3.岩体的基本质量分级 由BQ=351.6可初步确定岩体基本质量分级为III级 4.基本质量指标的修正 (1)地下水影响修正系数K1 岩体处于潮湿状态,BQ=351.6,因此取K1=0.1 (2)主要软弱面结构面产状修正系数K2

因为主要软弱结构面倾角为20,故取K2=0.3 (3)初始应力状态影响修正系数K3 Rc/σmax=62/9.5=6.53 岩体应力情况为高应力区 由BQ=351.6查得高应力初始状态修正系数K3=0.5 (4)基本质量指标的修正值[BQ] [BQ]=BQ-100(K1+K2+K3)=351.6-100(0.1+0.3+0.5)=261.6 5.岩体的最终定级 因为修正后的基本质量指标[BQ]=261.6,所以该岩体的级别确定为IV级。

隧道工程计算题

隧道工程计算题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

计算题 【围岩等级确定】参见书本 例题:某公路隧道初步设计资料如下 (1)岩石饱和抗压极限强度为62MPa (2)岩石弹性波速度为s (3)岩体弹性波速度为s (4)岩体所处地应力场中与工程主轴垂直的最大主应力σmax= (5)岩体中主要结构面倾角20°,岩体处于潮湿状态 求该围岩类别为(来源:隧道工程课件例题) 解:1.岩体的完整性系数Kv Kv=(Vpm/Vpr)2= 2= 岩体为破碎。 2.岩体的基本质量指标BQ (1)90 Kv+30=90*+30= Rc=62> 取Rc= (2)+= Kv => 取Kv = (3)BQ=90+3Rc+250 Kv=90+3*+250*= 3.岩体的基本质量分级 由BQ=可初步确定岩体基本质量分级为III级 4.基本质量指标的修正 (1)地下水影响修正系数K1 岩体处于潮湿状态,BQ=,因此取K1= (2)主要软弱面结构面产状修正系数K2 因为主要软弱结构面倾角为20,故取K2=

(3)初始应力状态影响修正系数K3 Rc/σmax=62/= 岩体应力情况为高应力区 由BQ=查得高应力初始状态修正系数K3= (4)基本质量指标的修正值[BQ] [BQ]=BQ-100(K1+K2+K3)=++= 5.岩体的最终定级 因为修正后的基本质量指标[BQ]=,所以该岩体的级别确定为IV 级。 【围岩压力计算】参见书本 某隧道内空净宽,净高8m ,Ⅳ级围岩。已知:围岩容重γ=20KN/m 3 ,围岩似摩擦角φ=530,摩擦角θ=300 ,试求埋深为3m 、7m 、15m 处的围岩压力。( 来源:网络) 解: 14.1)54.6(1.01=-+=ω 坍塌高度:h=1 s 2 45.0-?x ω=14.1845.0??=m 104.4 垂直均布压力:08.8214.120845.0245.01 4=???=???=-ωγq Kn/m2 荷载等效高度:m q h q 104.420 08 .82== = γ 浅埋隧道分界深度:m h H q q )() 26.10~208.8104.45.2~2()5.2~2(=?== 1、 当埋深H=15m 时,H 》q H ,属于深埋。 垂直均布压力:h q γ=== Kn/m2 ; 水平均布压力:e=(~)q =(~)=~ Kn/m2 2、当埋深H=3m 时,H 《q h ,属于浅埋。 垂直均布压力:q=γ H = 20x3= 60 Kn/m2, 侧向压力:e=)245(tan )21(002φγ-+ t H H = 20x(3+1/2x8))2 53 45(tan 02-=m2;

隧道 结构计算分析

一、计算原则和依据 1、采用ANSYS有限元通用程序(注:该程序是目前唯一通过 ISO9001国际认证的有限元计算分析程序)对竹篱晒网隧道进行结构受力及变形分析。 2、采用地层-结构模型对暗挖隧道的受力和变形进行分析。 3、分析对象为纵向宽1m的隧道结构和地层。 4、依据《竹篱晒网隧道施工图设计文件》、《公路路隧道设计规范》等建立计算模型。 二、计算内容 对竹篱晒网隧道的计算,分别取洞口段、洞身段中V、IV、III级围岩进行计算,取断面计算如下: 1、出洞段KY2+760(V级围岩,采用双侧壁法施工); 2、洞身段KY2+480(IV级围岩,采用环形台阶法施工); 3、洞身段KY2+500(III级围岩,采用台阶法施工)。 三、结构计算模型、荷载 1、计算模型 采用隧道与地层共同作用的地层-结构模式,模拟分析施工过程地层和结构的受力及变形特点。计算模型所取范围是:水平方向取隧道两侧3倍洞跨,而竖直方向,仰拱以下地层,以洞跨的3倍为限,即从

仰拱至地层下3倍洞跨深度范围,隧道拱顶以上地层:V级围岩1 级围岩根据计算高度取值。计算中地层及初期支护III取至地面,IV、材料的弹塑性实体单元模拟,而DP(初衬喷砼及钢架除外)采用了、二次衬砌采用弹性梁模拟,为使点和点之间位移初衬(钢架喷砼)初衬和二衬之间用只传递轴初衬和地层之间用约束方程联系、协调,向压力的链杆连接。)来死”(ALIVE生”(KILL)、“ANSYS程序中,采用单元的“时,受力体系模拟衬砌和临时支撑的施作和拆除过程,当单元“死”,而后被激单元的应力、应变不计(即内力为0)不受其影响,“死”的单元只对以后的单元不计以前自身应变,也就是说,“活”“活”应力发生变化时产生作用。2、计算荷载毛洞”模拟开挖过程中,先计算初始应力,每开挖一步形成“时,释放一部分初始应力,施作支护时释放余下的初始应力。采用莫尔—库仑屈服准则对结构的开挖过程进行有限元计算中,)模型计算结构非线形(DP 弹塑性分析。也即采用Drucker-Prager 的变形特性。其等效应力为:??????T?????SMS3??m2??1????????T式中;11??2 ?????????00S1?11?0zymxm3??so2sin6c c;????????y??ni3s3sin33?? —材料的内聚力,MPa;—材料的内摩擦角。?c屈服准则为: 2 ??????T????0?3M?S?FS???ym2??计算时将地层以岩性和11??2 地质特点划分为几个不同的类别,各层计算时围岩的物理力学指标依据施工图中《地质详勘报告》加以选取。具体如表1所示。 有限元计算围岩物理力学参数 表1

隧道衬砌计算

第五章隧道衬砌结构检算 5.1结构检算一般规定 为了保证隧道衬砌结构的安全,需对衬砌进行检算。隧道结构应按破损阶段法对构件截面强度进行验算。结构抗裂有要求时,对混凝土应进行抗裂验算。5.2 隧道结构计算方法 本隧道结构计算采用荷载结构法。其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。 5.3 隧道结构计算模型 本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。 取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定: ①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。 ②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程 ③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。 ④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。 ⑤衬砌结构材料采用理想线弹性材料。 ⑥衬砌结构单元划分长度小于0.5m。 隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋 本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。Ⅳ级围岩段为深埋段。根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。 5.4.1 材料基本参数 (1)Ⅴ级围岩 围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角 045?=o ,泊松比u=0.4。 (2) C25钢筋混凝土 容重325/kN m γ=,截面尺寸 1.00.6b h m m ?=?,弹性模量29.5Pa E G =。轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0.2; (3) HPB235钢筋物理力学参数 密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量: 210s a E GP =; 5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数 从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算, 而根据对称性可知只需要对截面8、11、47进行检算。 (1)配筋前检算 混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算:

最新隧道工程期末总复习资料(完整版)

1.隧道的构成及分类 隧道构成:主体建筑物(洞身衬砌、洞门) 附属建筑物(通风系统、照明系统、防排水设备、安全设备)隧道分类:按用途(交通、水工、市政、矿山隧道) 按底层(岩石、土质隧道) 按所处位置(山岭、城市、水底隧道) 按施工方法(钻爆法、明挖法、机械法、沉埋法隧道) 按断面形式(圆形、矩形、马蹄形隧道) 按开挖断面大小(特大断面、大断面、中等断面、小断面、极小 断面隧道) 按长度(特长、长、中长、短隧道) 2.隧道洞口位置的选用原则 总原则:早进洞、晚出洞;目的:确保施工、运营的安全 具体原则: 1.洞口应尽可能设在山体稳定、地质较好处,不应设在排水困难的沟谷低洼 中心 2.洞口应尽可能设在线路与地形等高线正交处 3.隧道洞口的路肩设计标高,应高于洪水设计标高 4.边坡、仰坡不宜开挖过高,以保证洞口安全 5.当隧道穿过悬崖陡壁时,可贴壁进洞 6.当洞口地形平缓时:由于选定洞口位置有较大的伸缩范围此时,此时应结 合洞外填方路堑施工难易、路堑排水支农要求、弃碴场地、施工力量及机械设备等情况全面考虑 7.注重环境保护 3.选择越岭隧道的位置主要以什么作为依据? 平面位置与立面位置的选择 (1)平面位置的选择——选择垭口 (2)立面位置的选择——选择高程 4.隧道位于曲线上的缺点以及隧道坡度折减(原因及要求) 隧道位于曲线上的缺点: ⑴建筑限界加宽,增大开挖土石方量,增加衬砌圬工量; ⑵断面变化,支护和衬砌尺寸不一致,技术复杂; ⑶空气阻力加大,抵消部分机车牵引力; ⑷通风条件变坏; ⑸钢轨磨损增大,养护工作量增加; ⑹施工测量困难,精度降低。 坡度折减原因: ⑴列车车轮与钢轨面间的粘着系数降低; ⑵洞内空气阻力增大。 注: ⑴上坡进洞前半个远期货物列车长度范围内,也要折减; ⑵限制最小坡度:≥3‰。 5.隧道净空与界限关系 机车车辆限界—基本建筑限界—隧道建筑限界—隧道净空

04第四册隧道工程说明与计算规则(2017.7.2)初稿非修订版

第四册隧道工程

册说明 一、《山东省市政工程消耗量定额》第四册《隧道工程》(以下简称本册定额),包括隧道开挖与出渣、隧道衬砌、隧道防排水、临时工程、隧道机电工程、其他工程,共六章等。 二、岩石隧道定额适用于城镇范围内新建、扩建和改建的各种车行隧道、人行隧道、给排水隧道及电缆(公用事业)隧道中的岩石隧道工程;软土隧道定额适用于城镇范围内新建、扩建和改建的各种车行隧道、人行隧道、越江隧道、给排水隧道及电缆(公用事业)隧道中的软土隧道。 三、本册定额的编制依据: 1.《山东省市政工程消耗量定额》SDA1-31-2016; 1.《市政工程消耗量定额》ZYA1-31-2015; 2.《市政工程工程量计算规范》GB50857-2013; 3.《全国统一市政工程预算定额》GYD-1999; 4.《建设工程劳动定额——市政工程》LD/T99.12-2008; 5.《爆破工程消耗量定额》GYD-102-2008; 6.《城市轨道交通工程预算定额》GCG103-2008; 7.相关省、市、行业现行的市政预算定额及基础资料。 四、岩石隧道的岩体按《工程岩体分级标准》GB 50218-94进行分级,包括坚硬岩、较硬岩、较软岩、软岩、极软岩。软土隧道的软土层主要是指沿海地区的细颗粒软弱冲积土层,按土壤分类包括黏土、亚黏土、淤泥质亚黏土、淤泥质黏土、亚砂土、粉砂土、细砂土、人工填土和人工冲填土层。 五、本册定额中混凝土采用预拌混凝土,隧道混凝土定额已包括混凝土输送的工作内容。 六、本册定额临时工程中的风、水、电项目只适用于岩石隧道工程。软土隧道风、水、电消耗量已包含在定额项目中。 七、本册定额洞内其他工程,执行市政工程其他册或其他专业工程消耗量定额相应项目,其中人工、机械乘以系数1.2。 八、钢筋、预埋铁件制作安装执行第一册《通用工程》相应项目。 九、除第六章中防火板及防火涂料外,其他隧道内装饰工程套用有关定额相应项目。 十、盾构法掘进工程可采用相应城市轨道交通定额。 十一、未尽适宜见各章节说明。

隧道工程量计算

工程名称:成都地铁7号线川师车辆段与综合基地试车线暗挖段 隧道起讫里程:SCDK0+722.054~SCDK1+007.079,共计285.025m;竖井起讫里程:SCDK0+949.751,起讫里程SCDK0+946.151~ SCDK1+953.351,计7.8m;射流风机扩大段起讫里程:SCDK0+846.000~SCDK0+870.000,计24m;标准段分为二类,标准段I类为2段分别起讫里程:SCDK0+722.054~SCDK0+846.000、SCDK0+870.000~SCDK0+940.000,计193.946m,标准段II类1段起讫里程SCDK0+940~SDCK1+007.079,计67.079m。 标准段I类 一、土方开挖(100mm超挖): (36.3+2.2)×193.946=7466.9m3 二、超挖回填:(C20砼) 21.4×0.1×193.946=415m3 三、二次衬砌: 1、C35 P12钢筋混凝土:(30.18-23.72)×193.946=1252.9m3 2、钢筋: ①+号筋HRB400Φ20@150mm: 二衬内外径周长分别为: 每环长度: ①号筋:3.14×(2.6+0.35-0.035)+21.5/180×3.14×(5.2+0.35-0.035)× 2+42.7/180×3.14×(1.2+0.35-0.035)×2+49.1/180×3.14× (3.829+0.35-0.035)=19.22m 号筋:3.14×(2.6+0.035)+21.5/180×3.14×(5.2+0.035)×2+42.7/180×3.14×(1.2+0.035)×2+49.1/180×3.14×(3.829+0.035)=17.68m 17.58+19.22=36.9m

隧道结构计算

重庆交通大学教案 第6章隧道结构计算 6.1 概述 6.1.1 引言 隧道结构工程特性、设计原则和方法与地面结构完全不同,隧道结构是由周边围岩和支护结构两者组成共同的并相互作用的结构体系。各种围岩都是具有不同程度自稳能力的介质,即周边围岩在很大程度上是隧道结构承载的主体,其承载能力必须加以充分利用。隧道衬砌的设计计算必须结合围岩自承能力进行,隧道衬砌除必须保证有足够的净空外,还要求有足够的强度,以保证在使用寿限内结构物有可靠的安全度。显然,对不同型式的衬砌结构物应该用不同的方法进行强度计算。 隧道建筑虽然是一门古老的建筑结构,但其结构计算理论的形成却较晚。从现有资料看,最初的计算理论形成于十九世纪。其后随着建筑材料、施工技术、量测技术的发展,促进了计算理论的逐步前进。最初的隧道衬砌使用砖石材料,其结构型式通常为拱形。由于砖石以及砂浆材料的抗拉强度远低于抗压强度,采用的截面厚度常常很大,所以结构变形很小,可以忽略不计。因为构件的刚度很大,故将其视为刚性体。计算时按静力学原理确定其承载时压力线位置,检算结构强度。 在十九世纪末,混凝土已经是广泛使用的建筑材料,它具有整体性好,可以在现场根据需要进行模注等特点。这时,隧道衬砌结构是作为超静定弹性拱计算的,但仅考虑作用在衬砌上的围岩压力,而未将围岩的弹性抗力计算在内,忽视了围岩对衬砌的约束作用。由于把衬砌视为自由变形的弹性结构,因而,通过计算得到的衬砌结构厚度很大,过于安全。大量的隧道工程实践表明,衬砌厚度可以减小,所以,后来上述两种计算方法已经不再使用了。进入本世纪后,通过长期观测,发现围岩不仅对衬砌施加压力,同时还约束着衬砌的变形。围岩对衬砌变形的约束,对改善衬砌结构的受力状态有利,不容忽视。衬砌在受力过程中的变形,一部分结构有离开围岩形成“脱离区”的趋势,另一部分压紧围岩形成所谓“抗力区”,如图6-1所示。在抗力区内,约束着衬砌变形的围岩,相应地产生被动抵抗力,即“弹性 94

盾构隧道结构ansys计算方法

一、盾构隧道结构计算模型 1、惯用法(自由圆环变形法) 惯用法的想法早在1960年就提出了,在日本国内得到了广泛的应用。惯用法假设管片环是弯曲刚度均匀的环,不考虑管片接头部分的柔性特征和弯曲刚度下降,管片截面具有同样刚度,并且弯曲刚度均匀的方法。这种方法计算出的管片环变形量偏小,导致在软弱地基中计算出的管片截面内力过小,而在良好地基条件下计算出的内力又过大。地层反力假设仅在水平方向上下45°范围内按三角形规律分布,这种模型可以计算出解析解。 P 0 k δ

2、修正惯用法 在采用惯用法的60年代,怎样评价错缝拼装效应是一个问题。如果错缝拼装管片,可弥补管片接头存在造成的刚度下降。于是,在对带有螺栓接头的管片环进行多次核对研究时,首次引入了η-ξ对错缝拼装的衬砌进行内力计算,即为修正惯用法。该法将衬砌视为具有刚度ηEI的均质圆环,将计算出的弯矩增大即(1+ξ)M,得到管片处的弯矩;将求出的弯矩减少即(1-ξ)M,得到接头处的弯矩。其中η称为弯曲刚度有效率,ξ称为弯矩增加率,它为传递给邻环的弯矩与计算弯矩之比。管片接头由于存在一些铰的作用,所以可以认为弯矩并不是全部经由管片接头传递,其一部分是利用环接头的剪切阻力传递给错缝拼装起来的邻接管片。 隧 道 纵 向 接头传递弯矩示意图

二、管片计算荷载的确定 1、荷载的分类 衬砌设计所考虑的各种荷载,应根据不同的地质条件和设计方法进行假定并根据隧道的用途加以考虑。衬砌设计所考虑的各种荷载见表所示。 衬砌设计荷载分类表

2、计算断面选择 埋深最大断面 埋深最小断面 埋深一般断面 水位 3、水土压力计算 对于粘性土层,如西安地铁黄土地层、成都地铁二号线膨胀土地层等,应采用水土压力合算的方式进行荷载计算。此时,地下水位以上地层荷载用湿容重计算,地下水位以下用饱和容重计算。 对于透水性较好的砂性地层,如西安地铁粗砂、中砂地层,成都地铁卵石土地层等,应采用水土压力分算的方式进行荷载计算。此时地下水位以上地层荷载用湿容重计算,地下水位以下用浮容重计算。 水土压力合算与分算,主要影响管片结构侧向荷载。一般水土分算时侧向压力更大。 4、松弛土压力 将垂直土压力作为作用于衬砌顶部的均布荷载来考虑。其大小宜根据隧道的覆土厚度、隧道的断面形式、外径和围岩条件等来决定。考虑长期作用于隧道上的土压力时,如果覆土厚度小于隧道外径,一般不考虑地基的拱效应而采用总覆土压力。但当覆土厚度大于隧道外径时,地基中产生拱效应的可能性比较大,可以考虑在计算时采用松弛土压力,一般采用泰沙基公式计算。

隧道工程整理 (2)

一、隧道的概念:用作地下通道的工程建筑物。1970年世界经济合作与发展组织从技术方面将隧道定义为:以任何方式修建,最终使用于地表面以下的条形建筑物,其空洞内部净空断面在2m2以上者均为隧道。 二、隧道按其长度分(设计规范):特长隧道(大于3000m)、长隧道(1000~3000m)、中隧道(500~1000m)、短隧道(小于500m) 三、隧道的作用(1)缩短行车里程、提高交通效率(基本目的)(2)从根本免除落石、坍方、雪崩等危害(3)减少对植被的破坏,保护生态环境(4)在城市,节约土地,构成立体交叉,解决交叉路口的拥挤堵塞(5)在江河、海峡、港湾地区,可不影响水运(6)增加隐蔽性,提高防护能力、不受气候影响。 四、公路隧道调查阶段的划分及各阶段的内容:(1)调查应分施工前调查和施工中调查两个阶段。(2)施工前阶段包括工程可行性踏勘、初步勘测和详细勘测三个阶段。施工中调查:施工地质调查一般应列入施工计划。 五、隧道地质勘探1、挖探:坑探和槽探(能够取得详尽的直观资料和原状土样,单勘探深度有限,劳动强度大。)2、简易钻探:小螺纹钻、钎探和洛阳铲等(工具轻、体积小、操作方便、进尺较快、劳动强度较小;不能采取原状土样或不能取样,在密实或坚硬的地层内不易钻进或不能使用。)3、钻探:冲击钻进、回转钻进、冲击回转钻进、以及振动钻进等(可获得深部地层的可靠地质资料)4、地球物理勘探(效率高,成本低,仪器和工具比较轻便,原位测试方法。) 六、隧道与地下水的影响关系:一是隧道内涌水;二是地表枯水。 七、隧道位置选择的基本原则:(1)应修建在稳定的地层中,尽量避免穿越工程地质和水文地质极为复杂以及严重不良地质地段;当必须通过时,应有切实可靠的工程措。(2)地质条件对隧道位置的选择往往起决定性作用。若必须通过,应减短其穿越的长度,采取可靠的工程处理措施,以确保隧道施工及运营的安全。 八、隧道内纵断线形应考虑行车安全、运营通风规模、施工作业效率和排水要求,综合确定。坡度控制:最小坡度≥0.3% 最大坡度一般要求≤3%。纵坡形式:一般宜采用单向坡;地下水发育的长隧道、特长隧道可采用双向坡。从行车舒适性和运营通风效率来看,采用单向坡较好,但是施工会出现逆坡排水问题。 九、与平行隧道或其他结构物的间距1、高速公路与一级公路的隧道在条件允许的情况下,应设计为上下行分离的独立双洞;当地形条件限制时,只得选用小间距隧道;如果地形条件相当困难,隧道长度比较短时,为了保护植被免遭破坏,可选用连拱隧道。 2、分离式独立双洞最小间距的确定 按对两洞结构彼此不产生有害影响的原则,结合隧道平面线形、围岩地质条件、断面形状和尺寸、施工方法等因素确定,一般情况可按下表取值。一座分离式双洞隧道,可按其围岩代表级别确定两洞最小净距。隧道各围岩级别段占总长度比例的最大值者为围岩代表级别。 B为隧道开挖断面的宽度

隧道洞门结构验算

5.1.4 隧道洞门结构设计 1、计算假设及相关规定 洞门的端墙和翼墙均可视为墙背承受土压力的挡土墙结构,根据挡土墙理论设计。 本端墙式洞门按计算挡土墙的方法分别核算各不同墙高截面的稳定性和强度,以此决定端墙的厚度和尺寸。为简化洞门墙的计算方法和便于施工,只检算端墙最大受力部位的稳定性和强度,据此确定整个端墙的厚度和尺寸,这样虽增加了一些圬工量,但从施工观点看.却是合理的。由于洞门端墙紧靠衬砌,又嵌入边坡内,故其受力条件较挡土墙为好。此有利因素可作为安全储备.在计算中是不予考虑的。 洞门翼墙与端墙一样,也可采用分条方法取条带计算。由于翼墙与端墙是整体作用的;故在计算端墙时,应考虑翼墙对端墙的支撑作用。计算时先检算翼墙本身的稳定性和强度,然后再检算端墙最大受力部位的强度及其与翼墙一起的滑动稳定。在计算翼墙时,翼墙与端墙连结面的抗剪作用是不考虑的。 按挡土墙结构计算洞门墙时,设计是按极限状态验算其强度,并验算绕墙趾倾覆及沿基底滑动的稳定性。验算时依据下表的规定,并应符合《公路路基设计规范》、《公路砖石及混凝土桥涵设计规范》、《公路桥涵地基与基础设计规范》的有关规定。洞门验算表如表5.2所示: 表5.2 洞门墙的主要检算规定表 墙身截面荷载效应值Sd ≤结构抗力效应值Rd(按 极限状态计算) 墙身截面荷载效应 值Sd ≤结构抗力效应值 Rd(按极限状态计 算) 墙身截面偏心距e ≤0.3倍截面厚度滑动稳定安全系数K O ≥1.3 基底应力ζ≤地基容许承载倾覆稳定安全系数 Ko ≥1.6 基底偏心距e 岩石地基≤H/5~B/4;土质地基≤B/6(B为墙底厚度) 洞门设计计算参数数按现场试验资料采用。缺乏的试验资料,参照表5.3选用。 表5.3 洞门设计计算参数数表

隧道结构计算书

隧道工程结构计算书

目录 1 工程概况 ....................................................................................................... - 1 - 2 计算内容和计算依据 ................................................................................... - 1 - 2.1 计算内容............................................................................................................... - 1 - 2.2 计算依据............................................................................................................... - 1 - 3 基于荷载-结构法的隧道结构静力计算分析.............................................. - 1 - 3.1 荷载取值和计算模型........................................................................................... - 1 - 3.2 二次衬砌受力分析............................................................................................... - 6 - 3.3 二次衬砌配筋量及强度安全系数计算............................................................... - 9 - 3.3.1 二次衬砌配筋量安全系数计算........................................................................ - 9 - 3.3.2 二次衬砌强度安全系数计算.......................................................................... - 11 - 3.4 中隔墙受力分析................................................................................................. - 12 - 4基于地层-结构法的隧道施工过程模拟分析(二维)............................. - 13 - 4.1 概述..................................................................................................................... - 13 - 4.2 计算模型............................................................................................................. - 14 - 4.3 围岩位移场和应力场分析................................................................................. - 15 - 4.4 中隔墙及其基础力学性态分析......................................................................... - 18 - 4.5 锚杆受力分析..................................................................................................... - 18 - 4.6 临时支护受力分析............................................................................................. - 19 - 4.7 初期支护受力分析............................................................................................. - 20 - 4.8 二次衬砌受力分析............................................................................................. - 21 -

隧道施工规范

三、隧道部分 目录1 总则 1.1 目的及适用范围 1.2 编制说明 1.3 章节划分 2 施工准备 2.1 施工场地规划 2.2 四通一平建设 2.3 驻地建设 2.4 拌和站 2.5 弃渣场、自办料场 2.6 技术资料准备 3 隧道总体施工工序 3.1 分离式隧道 3.2 连拱隧道 3.3 小净距隧道 4 洞口开挖 4.1 施工前提条件 4.2 工序 4.3 施工技术 4.4 施工工艺 4.5 施工质量 4.6 安全文明 5 隧道洞身开挖 5.1 施工前提条件 5.2 工序 5.2.1 一般要求 5.2.2 分离式隧道 5.2.3 连拱隧道 5.2.4 小净距隧道 5.3施工技术 5.3.1 开挖轮廓线的确定 5.3.2 钻爆设计一般要求 5.4 施工工艺 5.5 施工质量 5.5.1 光面爆破

5.5 2 开挖 5.6 安全文明 6 初期(超前)支护 6.1 施工前提条件 6.2 工序 6.3 施工技术 6.4 施工工艺 6.4.1 初期支护 6.4.2 超前支护 6.5 施工质量 6.5.1 初期支护 6.5.2 超前支护 6.6 安全文明 7.仰拱与铺底 7.1 施工前提条件 7.2 工序 7.3 施工技术 7.4 施工工艺 7.5 施工质量 7.6 安全文明 8.隧道防排水 8.1 施工前提条件 8.2 工序 8.3 施工技术 8.4 施工工艺 8.4.1 防水板 8.4.2 橡胶止水带 8.4.3 衬砌背后排水设施 8.5 施工质量 8.6 安全文明 9 隧道二衬施工 9.1 施工前提条件 9.2 工序 9.3 施工技术 9.3.1 二衬施作时机的确定 9.3.2 衬砌台车制造 9.3.3 二衬混凝土的性能要求及配合比设计要点 9.4 施工工艺 9.5 施工质量 9.6 安全文明

隧道工程期末复习重点知识

1、隧道:以某种用途、在地面下用任何方法按规定形状和尺寸修筑的断面积大于2m2的洞 室。 2、隧道分类:地质条件:土质隧道、石质隧道。埋置深度:浅埋隧道、深埋隧道。 所处位置:山岭隧道、水底隧道、城市隧道。断面形状:圆形、矩形、马蹄形。 用途:交通隧道(铁路、公路、水底、地下铁道、航运隧道、人行地道)、水工隧道、市政隧道、矿山隧道; 按施工方法分:钻爆法隧道,明挖法隧道,机械法隧道(盾构机、TBM掘进机),沉埋法隧道。 3、隧道特点:优点:(1)缩短线路长度,减少能耗;(2)节约地皮;(3)有利于环境保护; (4)应用范围广;缺点:(1)造价高(2)施工期限长(3)施工作业环境差。 4、我国隧道的发展方向:1、推进城市隧道和水下隧道技术的发展。2、提高隧道机械化施 工水平,减轻劳动强度。3、提高隧道防排水技术,减少隧道病害。4、推进隧道信息化施工,发展隧道超前地质预报技术,加强现场动态设计与科学的施工管理。5、隧道防灾救援措施系统化。6、做好隧道洞口的景观设计。 5、为什么修建隧道答:1、拓展地面空间2、城市道路建设绕避地面建筑,减少交通干扰。 3、解决高程障碍; 4、绕避江河、城镇、人口密集区等平面障碍等; 5、避免对自然环 境的破坏;6、时避开地面灾害的有效形式。 6、地质调查测绘:是隧道工程地质勘测的核心。1、工程地质技术规范要求;2、地形地貌 调查;3、地层、岩性调查;4、地质构造调查(褶皱,节理、断层);5、水文地质调查; 6、滑坡落石、岩堆、泥石流等部良地质调查; 7、地温测定。 7、隧道工程地质勘探分为:初测阶段和定测阶段。 8、超前地质预报:在分析既有地质资料的基础上,采用地质调查、物探、超前地质钻探、 超前导坑等手段,对隧道开挖工作面前方的工程地质条件与水文地质条件及不良地质体的工程性质、位置、物产规模等进行探测、分析解释及预报,并提出工程措施建议。9、超前地质预报的好处:在高速铁路隧道和长大隧道施工阶段,重视和加强超前地质预报, 最大限度地利用地质理论和先进的地质超前预报技术,预测开挖工作方面的地质情况,对于安全施工、提高工效、缩短施工周期、避免事故损失具有重大的意义。 10、地质超前预报的内容:地层岩性、地质构造、不良地质灾害、地下水的预报。 11、' 12、地质超前预报的方法:地质分析法、超前平行导坑预报法、超前水平钻孔法、物理探测 法(利用物体物性差异进行地质判断的间接方法)、特殊灾害地质的预测方法。 13、初始应力产生的原因:自重、地质构造、地质地温作用 14、岩体中结构面的成因类型:原生结构面、构造结构面、次生结构面 15、围岩:是指隧道开挖后其周围产生应力重分布范围内的岩体,或者指隧道开挖后对 其稳定性产生影响的那部分岩体。 16、围岩分级:各种围岩的物理性质之间存在一定的内在联系和规律,依照这些联系和 规律,可将围岩划分为若干级,这就是围岩分级。 17、围岩应力:时指引起地下开挖空间周围岩体和支护变形或破坏的作用力。 18、围岩分级方法的发展趋势:1、分级应主要以岩体为主。2、分级宜与地质勘探手段 有机联系在一起。3、分级要有明确的工程对象和工程目的。4、分级宜逐渐定量化。 19、围岩分级方法:主要以围岩稳定性为基础的分级方法。 20、围岩分级确定因素:岩石坚硬程度和岩体完整程度 21、围岩分级的修正:考虑地下水状态、初始应力状态等因素。 22、} 23、衡量围岩完整程度考虑的因素:1、对于受软弱面控制的岩体,按照软弱面的产状、贯

相关主题
文本预览
相关文档 最新文档