当前位置:文档之家› 信号发生器课程设计

信号发生器课程设计

目录

1引言 (1)

2试验 (1)

2.1 函数发生器的总方案及原理框图 (1)

2.1.1电路设计原理框图 (1)

2.1.2 电路设计方案设计 (2)

2.2 设计的目的及任务 (2)

2.2.1 课程设计的目的 (2)

2.2.2 课程设计的任务与要求 (2)

2.2.3 课程设计的技术指标 (2)

2.3 各部分电路设计 (2)

2.3.1 方波发生电路的工作原理 (2)

2.3.2 方波---三角波转换电路的工作原理 (3)

2.3.3 三角波---正弦波转换电路的工作原理 (6)

2.3.4电路的参数选择及计算 (8)

2.3.5 实现方案总电路图 (10)

2.4 电路仿真 (11)

2.4.1 方波---三角波发生电路的仿真 (11)

2.4.2 三角波---正弦波转换电路的仿真 (12)

2.5 电路的安装与调试 (12)

2.5.1 方波---三角波发生电路的安装与调试 (12)

2.5.2 三角波---正弦波转换电路的安装与调试 (12)

2.5.3 总电路的安装与调试 (13)

2.5.4 电路安装与调试中遇到的问题及分析解决方法 (13)

2.6电路的实验结果 (14)

2.6.1 方波---三角波发生电路的实验结果 (14)

2.6.2 三角波---正弦波转换电路的实验结果 (14)

2.6.3 实测电路波形、误差分析及改进方法 (15)

2.7 设计所用仪器及器件 (15)

3结论 (16)

谢辞 (16)

参考文献 (17)

附录:信号发生器使用方法 (17)

外文资料 (19)

1引言

函数信号发生器是一种能够产生多种波形,如三角波、方波、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。

本课题采用由集成运算放大器组成的正弦波—方波—三角波正弦波函数发生器的设计方法,如首先先通过RC正弦波振荡电路形成正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;波形变换的原理是利用差分放大器传输特性曲线的非线性。经过仿真得出了方波、三角波、正弦波、方波——三角波转换及三角波——正弦波转换的波形图。

2试验

2.1函数发生器总方案及原理框图

2.1.1 原理框图

2.1.2 函数发生器的总方案

函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块

8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,

本课题中函数发生器电路组成框图如下所示:

由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。

2.2课程设计的目的和设计的任务

2.2.1 设计目的

1)掌握电子系统的一般设计方法

2)掌握模拟IC器件的应用

3)培养综合应用所学知识来指导实践的能力

4)掌握常用元器件的识别和测试

5)熟悉常用仪表,了解电路调试的基本方法

2.2.2设计任务

设计方波——三角波——正弦波函数信号发生器

2.2.3课程设计的要求及技术指标

1)设计、组装、调试函数发生器

2)输出波形:正弦波、方波、三角波;

3)频率范围:在500-10000Hz范围内连续可调;

4)输出电压:方波U

P-P≤12V,三角波U

P-P

=8V,正弦波U

P-P

>1V;

2.3各组成部分的工作原理2.3.1 方波发生电路的工作原理

此电路由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT 。Uo 通过R3对电容C 正向充电,如图中实线箭头所示。反相输入端电位n 随时间t 的增长而逐渐增高,当t 趋于无穷时,Un 趋于+Uz ;但是,一旦Un=+Ut,再稍增大,Uo 从+Uz 跃变为-Uz,与此同时Up 从+Ut 跃变为-Ut 。随后,Uo 又通过R3对电容C 反向充电,如图中虚线箭头所示。Un 随时间逐渐增长而减低,当t 趋于无穷大时,Un 趋于-Uz ;但是,一旦Un=-Ut,再减小,Uo 就从-Uz 跃变为+Uz ,Up 从-Ut 跃变为+Ut ,电容又开始正相充电。上述过程周而复始,电路产生了自激振荡。

2.3.2 方波---三角波转换电路的工作原理

R1

1

2

3

5

4

U1

R2

R3

50%

Rp1R4

50%

Rp2

12

3

5

4U2

C1

R17

方波—三角波产生电路

m

o p U R R R U 21

32

T +±

=±1

31

242)(4p p R R C R R R T ++=

工作原理如下:

若a 点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,

或者从低电平Vee 跳到高电平Vcc 。设Uo1=+Vcc,则 31

2231231

()0CC ia R RP R U V U R R RP R R RP ++=++=++++

将上式整理,得比较器翻转的下门限单位Uia-为 22

3131

()CC CC ia R R U V V R RP R RP ---=

+=++

若Uo1=-Vee,则比较器翻转的上门限电位Uia+为 22

3131

()EE CC ia R R U V V R RP R RP +-=

-=++

比较器的门限宽度

2

31

2

H CC

ia ia R U U U I R RP +-=-=+

由以上公式可得比较器的电压传输特性,如图3-71所示。 a 点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,

其输入信号为方波Uo1,则积分器的输出Uo2为 :

1O CC U V =+ 时, 2422422

()()()CC CC

O V V U t t R RP C R RP C -+-=

=++ ,

1O EE U V =-时, 2422422

()

()()CC EE O V V U t t R RP C R RP C --=

=++

可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。

a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。三

角波的幅度为

方波-三角波的频率f 为 31

2422

4()R RP f R R RP C +=

+

由以上两式可以得到以下结论:

1)电位,RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。

2)方波的输出幅度应等于电源电压+Vcc 。三角波的输出幅度应不超过电源电压+Vcc 。 电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

2

231

O m CC

R U V R RP =

+214221

()O O U U dt

R RP C -=

+?

22/1id T

C E U U aI I aI e ==

+

2.3.3 三角波---正弦波转换电路的工作原理

三角波——正弦波的变换电路主要由差分放大电路来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。分析表明,传输特性曲线的表达式为

11/1id T

C E U U aI I aI e -==

+

式中/1C E a I I =≈

0I ——差分放大器的恒定电流;

T U ——温度的电压当量,当室温为25oc 时,UT ≈26mV 。 如果Uid

为三角波,设表达式为

44434m id m U T t T U U T

t T ???- ?????=?

-???- ????

?

022T t T t T ?

?≤≤ ?

?

???≤≤ ???

式中 Um ——三角波的幅度; T ——三角波的周期。

为使输出波形更接近正弦波,由图可见: ①传输特性曲线越对称,线性区越窄越好;

②三角波的幅度Um 应正好使晶体管接近饱和区或截止区。

③图为实现三角波——正弦波变换的电路。其中Rp1调节三角波的幅度,Rp2调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。电容C1,C2,C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。

C4

-12V

VCC

R5R6

R7

R8

R9

R11

-12V

VCC

R12

50%

R13

C5

C2

R14

IO2

三角波—正弦波变换电路

2.3.4电路的参数选择及计算

1)方波-三角波中电容C1变化(关键性变化之一)

实.1uf时,顺利得出波形。实际上,分析一下便知当C2=10uf时,频率很低,不容易在实际电路物连线中,我们一开始很长时间出不来波形,后来将C2从10uf(理论时可出来波形)换成0中实现。

2)三角波-正弦波部分

比较器A1与积分器A2的元件计算如下。

由式(3-61)得

取 210R K =Ω,则3130R RP K +=Ω, 取320R K =Ω ,RP1为47K Ω的点位器。 区平衡电阻1231//()10R R R RP K =+≈Ω

由式(3-62) 即

当110Z H f Z ≤≤H 时,取210C F μ=,则

42(75~7.5)R RP k +=Ω,

取4 5.1R k =Ω,为100K Ω电位器。

当10100Z H f Z ≤≤H 时 ,取21C F μ=以实现频率波段的转换,R4及RP2的取值不变。取平衡电阻510R k =Ω。

三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取345470C C C F μ===,滤波电容6C 视输出的波形而定,若含高次斜波成分较多,

6C 可取得较小,6C 一般为几十皮法至0.1微法。RE2=100欧与RP 4=100欧姆相并联,以减小差分放大器的线性区。差分放大器的几静态工作点可通过观测传输特性曲线,调整RP 4及电阻R*确定。

由上分析可知:电位器 RP2 在调整方波-三角波的输出频率时,不会影响输出波形的幅度。

方波的输出幅度应等于电源电压。三角波的输出幅度应不超过电源电压。 电位器 RP1 可实现幅度上午微调,但会影响波形的频率。 三角波→正弦波的变换 三角波→正弦波的变换主要有差分放大器来完成。差分放大器具有工作点稳 定,输入阻抗高、抗干扰能力强等优点。特别是做直流放大器时,可以有效的抑 制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用 差分放大器传输特性的非线性。

2

231

O m CC R U V R RP =+2231

41

123O m CC U R R RP V ===

+31

2422

4()R RP f R R RP C +=

+31

4122

4R RP R RP R C ++=

+

2.3.5 实现方案及总电路图

50%R10

C3

R1

1

2

3

5

4

U1

R2

R3

50%

Rp1R4

50%

Rp2

12

3

5

4U2

C1

R17

C4

12V

VCC

R5R6

R7

R8

R9

R11

-12V

VCC1

R12

50%

R13C5

C2

R14

三角波-方波-正弦波函数发生器实验电路

先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。

正弦波 发生器 过零 比较器

积分器

正弦波

方波

三角波

模拟电路实现方案

2.4 电路仿真

2.4.1 方波---三角波发生电路的仿真

2.4.2 三角波---正弦波转换电路的仿真

2.5 电路的安装与调试

2.5.1 方波---三角波发生电路的安装与调试

1)按装方波——三角波产生电路

①把两块741集成块插入面包板,注意布局;

②分别把各电阻放入适当位置,尤其注意电位器的接法;

③按图接线,注意直流源的正负及接地端。

2)调试方波——三角波产生电路

①接入电源后,用示波器进行双踪观察;

②调节RP1,使三角波的幅值满足指标要求;

③调节RP2,微调波形的频率;

④观察示波器,各指标达到要求后进行下一部按装。

2.5.2 三角波---正弦波转换电路的安装与调试

1)按装三角波——正弦波变换电路

①在面包板上接入差分放大电路,注意三极管的各管脚的接线;

②搭生成直流源电路,注意R*的阻值选取;

③接入各电容及电位器,注意C6的选取;

④按图接线,注意直流源的正负及接地端。

2)调试三角波——正弦波变换电路

①接入直流源后,把C4 接地,利用万用表测试差分放大电路的静态工作点;

②测试V1、V2的电容值,当不相等时调节RP4使其相等;

③测试V3、V4的电容值,使其满足实验要求;

④在C4端接入信号源,利用示波器观察,逐渐增大输入电压,当输出波形刚好不失真时记入其最大不失真电压;

2.5.3 总电路的安装与调试

1)把两部分的电路接好,进行整体测试、观察

2)针对各阶段出现的问题,逐各排查校验,使其满足实验要求,即使正弦波的峰峰值大于1V。

2.5.4调试中遇到的问题及解决的方法

方波-三角波-正弦波函数发生器电路是由三级单元电路组成的,在装调多级电路时通常

按照单元电路的先后顺序分级装调与级联。

1)方波-三角波发生器的装调

由于比较器A

1与积分器A

2

组成正反馈闭环电路,同时输出方波与三角波,这两个单元电路

可以同时安装。需要注意的是,安装电位器R

P1与R

P2

之前,要先将其调整到设计值,如设计举

例题中,应先使R

P1=10KΩ,R

P2

取(2.5-70)KΩ内的任一值,否则电路可能会不起振。只要电路

接线正确,上电后,U

O1的输出为方波,U

O2

的输出为三角波,微调R

P1

,使三角波的输出幅度满足

设计指标要求有,调节R

P2

,则输出频率在对应波段内连续可变。

2)三角波---正弦波变换电路的装调

按照图3—75所示电路,装调三角波—正弦波变换电路,其中差分发大电路可利用课题三设计完成的电路。电路的调试步骤如下。

①经电容C4输入差摸信号电压Uid=50v,Fi =100Hz正弦波。调节Rp4及电阻R*,是传输特性曲线对称。在逐渐增大Uid。直到传输特性曲线形状入图3—73所示,记下次时对应的 Uid 即Uidm值。移去信号源,再将C4左段接地,测量差份放大器的静态工作点I0 ,Uc1,Uc2,Uc3,Uc4.

②Rp3与C4连接,调节Rp3使三角波俄输出幅度经Rp3等于Uidm值,这时Uo3的输出波形应接近正弦波,调节C6大小可改善输出波形。如果Uo3的波形出现如图3—76所示的几种正弦波失真,则应调节和改善参数,产生是真的原因及采取的措施有;

a.钟形失真如图(a)所示,传输特性曲线的线性区太宽,应减小Re2。

b.半波圆定或平顶失真如图(b)所示,传输特性曲线对称性差,工作点Q偏上或偏下,应调整电阻R*.

c.非线性失真如图(C)所示,三角波传输特性区线性度差引起的失真,主要是受到运放的影响。可在输出端加滤波网络改善输出波形。

③性能指标测量与误差分析

a.放波输出电压Up—p《=2Vcc是因为运放输出极有PNP型两种晶体组成复合互补对称电路,输出方波时,两管轮流截止与饮和导通,由于导通时输出电阻的影响,使方波输出度小于电源电压值。

b.方波的上升时间T,主要受预算放大器的限制。如果输出频率的限制。可接俄加速电容C1,一般取C1为几十皮法。用示波器或脉冲示波器测量T

2.6电路的实验结果

2.6.1 方波---三角波发生电路的实验结果

C=0.01uf fmin=4138HZ fmax=8333HZ

C=0.1uf fmin=198HZ fmax=1800HZ

C=1uf fmin=28HZ fmax=207HZ

2.6.2 三角波---正弦波转换电路的实验结果

R=15KΩ

Vc1=Vc2=5.530V

Vc3=-0.6218V

Vc4=-10.307V

Ic1=Ic2= 0.6813mA

实验结果分析

模拟仿真(R*= 13 K )

Vc1=Vc2=4.358V

Vc3=-0.831V

Vc4=-9.028V

Ic1=Ic2=0.5368mA

2.6.3 实测电路波形、误差分析及改进方法

将C6替换为由两个.1uF串联或直接拿掉,

C1=0.1uF U=54mv Uo=2.7v >1v

C1=0.01uF U=54mv Uo=2.8v>1v

Xc=1/W*C,当输出波形为高频时,若电容C6较大,则Xc很小,高频信号完全被吞并,无法显示出来。

2.7设计所用仪器及器件

1.直流稳压电源 1台

2.双踪示波器 1台

3.万用表 1只

4.运放741 2片

5.电位器50K 2只

100K 1只

100Ω1只

6.电容470μF 3只

10μF 1只

1μF 1只

0.1μF 2只

0.01μF 1只

7.三极管9013 4只

8.面包板 1块

9.剪刀1把

10.仪器探头线 2根

11.电源线 4根

3结论

为期一个星期的课程设计已经结束,在这一星期的学习、设计过程中我感触颇深。通过这次课程设计,使我对抽象的理论有了具体的认识。我掌握了如方波,三角波及正弦波的产生和三者之间的转换过程,此外,在设计过程中我掌握了常用元件的识别和测试,如电阻阻值的判断,三极管极性的判断等常用元件的识别和测试;熟悉了常用的仪器仪表;了解了电路的连接方法;以及如何提高电路的性能等等。

其次,这次课程设计提高了我的团队合作水平,使我们配合更加默契,体会了在接好电路后测试出波形的那种喜悦。

在实验过程中,我们遇到了不少的问题。比如:波形失真,甚至不出波形这样的问题。在老师和同学的帮助下,把问题一一解决,那种心情别提有多高兴啊。实验中暴露出我们在理论学习中所存在的问题,有些理论知识还处于懵懂状态。

还有值得我们自豪的一点就是我们的线路连得横竖分明,简直就是艺术啊,最后用一句话来结束吧。

“实践是检验真理的唯一标准”。与君共勉。

谢辞

这次课程设计终于顺利完成了,在设计中遇到许多编程问题,最后在向波老师的辛勤指导下,终于游逆而解。同时,在向波老师那里我学到了很多实用的,在此我表示感谢!同时,对

给过我帮助的所有同学和各位指导老师再次表示衷心的感谢!!!!!!!!

参考文献

童诗白主编.模拟电子技术基础(第三版).北京:高教出版社, 2001

李万臣主编.模拟电子技术基础与课程设计.哈尔滨工程大学出版社,2001.3

胡宴如主编. 模拟电子技术. 北京. 高等教育出版社,2000

附录:信号发生器使用方法

信号发生器也称信号源,是用来产生振荡信号的一种仪器,为使用者提供需要的稳定、可信的参考信号,并且信号的特征参数完全可控。所谓可控信号特征,主要是指输出信号的频率、幅度、波形、占空比、调制形式等参数都可以人为地控制设定。随着科技的发展,实际应用到的信号形式越来越多,越来越复杂,频率也越来越高,所以信号发生器的种类也越来越多,同时信号发生器的电路结构形式也不断向着智能化、软件化、可编程化发展。

信号发生器能产生正弦波、方波、三角波、脉冲波等波形。电压输出时,频率范围为0.2 Hz~2 MHz;正弦波功率输出时为0.2 Hz~200KHz。空载时,最大输出电压12V,误差5%。

仪器面板示意图如图1.,信号发生器使用要点如下:

图1. 信号发生器面板示意图

a.按下(1)—“电源”至on位置,接通电源。

b.按开关(10)—“波形选择”,选择正弦波、三角波、方波和脉冲波其中的一种。按下某按键,为该波形的选中状态。若(5)—“直流偏置”旋钮拉出,可调节各波形的直流电平,当选择脉冲波时,可调节脉冲占空比。

c.选择信号发生器的输出频率

使用(12)—“频率倍乘”开关、(13)—“频率调节”旋纽和(11)—“频率微调”旋钮调节输出频率。其中,“频率调节”旋纽下方标识0.2~2.0表示频率调节范围为:频率倍乘值的0.2到2.0倍,即如果频率倍乘选择10kHz档位,则信号源输出频率能够覆盖2KHz至 20 KHz。

例:若使信号发生器的输出频率为5.5KHz,可先将“频率倍乘”档位选择为10K,然后通过“频率调节”和“频率微调”旋钮调到5.5KHz。

频率数值直接从(16)处频率计中读出,频率单位由(15)—“Hz、kHz灯”显示,灯亮表示所测频率的单位。此频率计不但能够测量信号源内部发出的频率,还能测量外部信号的频率,(14)处按键控制频率计的内测或外测。未按进时为内测,测量信号源频率;按进时测量外部频率。“-20db”按进时,表示对外测信号衰减20dB;进行外部测量时,由(2)处“计数输入”端输入外部信号,通过(12)处开关选择闸门时间,有10S、1S、0.1S和0.01S四档。

当频率超出显示范围时,(18)—“溢出”灯亮。当(17)—“闸门”灯闪烁,说明频率计正在工作。

d.确定信号发生器的输出幅度

该信号发生器的(6)--“电压输出”端,可以输出各种波形,其输出阻抗为50Ω。空载时,电压输出幅度为有效值大于7V。

(7)—“正弦波功率输出”端,只能输出0.2Hz-200kHz的正弦波,输出有效值大于7V,最大输出功率5W;当频率f>200KHz时,此输出端无输出。功率输出端带短路报警保护功能。

电压输出和正弦波功率输出幅值可由(8)—“幅度”旋钮调节,由交流电压表或示波器读出数值。若使输出幅值衰减可按(9)—“衰减”开关。当开关分别按下输出电压衰减20dB或40dB,即电压值缩小10倍或100倍;当两开关同时按下可衰减60dB,即电压值缩小1000倍。电路实验中一般不使用衰减开关。

另外,面板上位置(3)处是压控输入端口,表示用外接电压控制信号源频率。位置(4)处为TTL电平同步输出端口。

信号源使用注意事项:开电源前,应将幅度调节旋钮逆时针旋到底。电压输出端和正弦波功率输出端不允许短路。

外文资料

Direct digital synthesizer

A signal generator, also known variously as a test signal generator, function generator, tone generator, arbitrary waveform generator, or frequency generator is an electronic device that generates repeating electronic signals (in either the analog or digital domains). They are generally used in designing, testing, troubleshooting, and repairing

electronic or electroacoustic devices; though they often have artistic uses as well.

There are many different types of signal generators, with different purposes and applications (and at varying levels of expense); in general, no device is suitable for all possible applications.

Traditionally, signal generators have been embedded hardware units, but since the age of multimedia-PCs, flexible, programmable software tone generators have also been available.

General purpose signal generators

Function generators

A function generator is a device which produces simple repetitive waveforms. Such devices contain an electronic oscillator, a circuit that is capable of creating a repetitive waveform. (Modern devices may use digital signal processing to synthesize waveforms, followed by a digital to analog converter, or DAC, to produce an analog output). The most common waveform is a sine wave, but sawtooth, step (pulse), square, and triangular waveform oscillators are commonly available as are arbitrary waveform generators (AWGs). If the oscillator operates above the audio frequency range (>20 kHz), the generator will often include some sort of modulation function such as amplitude modulation (AM), frequency modulation (FM), or phase modulation (PM) as well as a second oscillator that provides an audio frequency modulation waveform.

function generators are typically used in simple electronics repair and design; where they are used to stimulate a circuit under test. A device such as an oscilloscope is then used to measure the circuit's output. Function generators vary in the number of outputs they feature, frequency range, frequency accuracy and stability, and several other parameters.

[edit] Arbitrary waveform generators

Main article: Arbitrary waveform generator

Arbitrary waveform generators, or AWGs, are sophisticated signal generators which allow the user to generate arbitrary waveforms, within published limits of frequency range, accuracy, and output level. Unlike function generators, which are limited to a simple set of waveforms; an AWG allows the user to specify a source waveform in a variety of different ways. AWGs are generally more expensive than function generators, and are often more highly limited in available bandwidth; as a result, they are generally limited to higher-end design and test applications.

[edit] Special purpose signal generators

In addition to the above general-purpose devices, there are several classes of signal generators designed for specific applications.

[edit] Tone generators and audio generators

焊接操作规程

XXXXX 操作规程XXXX-XXXX-XXXX 焊接操作规程共 7 页第1 页 第A版第0次修改 1 目的 通过对焊接过程的控制,确保产品的焊接质量。 2 适用范围 本程序适用于公司电子仪器设备的焊接过程。 3 职责 3.1生产车间负责产品的焊接。 3.2质管部负责产品焊接效果的检验。 3.3人力资源部负责焊接作业人员的培训、考核。 4工作程序 4.1作业前 4.1.1为确保焊接质量,须对焊接作业人员的工序认知及操作水平进行考核,考核合格后方可上岗。 4.1.2根据焊件大小与性质选择合适的烙铁头。 焊件及工作性质选用烙铁 烙铁头温度(℃)(室温、220V电压) 一般印制电路板、安装导线20W内热式,30W外热式、恒温式 300~400 集成电路20W内热式、恒温式、储能式 焊片、电位器、2~8W电阻、大电解电容35~50W内热式、恒温式 50~75W外热式 350~450 8W以上大电阻,φ2以上到线等较大元器件100W内热式 150~200W外热式 400~550 维修、调试一般电子产品 20W内热式、恒温式、感应式、 储能式、两用式 4.1.3焊接作业前先清洗烙铁头,去除表面氧化层,然后将电烙铁插头插入电源插座上,检查烙铁是否发热。若在确保插头插好的情况下烙铁不发热,则应及时更换烙铁,切勿随意拆开烙铁,不能用手直接触碰烙铁头。 4.2焊接步骤 4.2.1加热焊件 电烙铁的焊接温度由实际使用情况决定。一般来说以焊接一个锡点的时间限制在3±1秒

XXXXX 焊接操作规程共 7 页第2 页 第A版第0次修改最为合适。焊接时烙铁头与印制电路板成45°角,电烙铁头顶住焊盘和元器件引脚然后给元器件引脚和焊盘均匀预热。 4.2.2移入焊锡丝 焊锡丝从元器件脚和烙铁接触面处引入,焊锡丝应靠在元器件脚与烙铁头之间。 4.2.3移开焊锡 当焊锡丝熔化(要掌握进锡速度)焊锡散满整个焊盘时,即可以45°角方向拿开焊锡丝。 4.2.4移开电烙铁 焊锡丝拿开后,烙铁继续放在焊盘上持续1~2秒,当焊锡只有轻微烟雾冒出时,即可拿开烙铁,拿开烙铁时,不要过于迅速或用力往上挑,以免溅落锡珠、锡点、或使焊锡点拉尖等,同时要保证被焊元器件在焊锡凝固之前不要移动或受到震动,否则极易造成焊点结构疏松、虚焊等现象。 加热焊件移入焊锡 移开焊锡移开电烙铁 4.3焊接要领 4.3.1烙铁头与被焊件的接触方式 4.3.1.1接触位置 烙铁头应同时接触要相互连接的2个被焊件(如焊脚与焊盘),烙铁一般倾斜45度,应避免只与其中一个被焊件接触。当两个被焊件热容量悬殊时,应适当调整烙铁倾斜角度,烙铁与焊接面的倾斜角越小,使热容量较大的被焊件与烙铁的接触面积增大,热传导能力加强。两个被焊件能在相同的时间里达到相同的温度,被视为加热理想状态。 4.3.1.2接触压力 烙铁头与被焊件接触时应略施压力,热传导强弱与施加压力大小成正比,但以对被焊件表面不造成损伤为原则。

高频信号发生器的设计与制作

一、概要 在高等学校课程设计是一个重要的教学环节,它与实验、生产实习、业设计构成实践性教学体系。由此规定了课程设计的三个性质:一是教学,学生在教师指导下针对某一门课程学习工程设计; 二是实践性,课程设包括电路设计、印刷板设计、电路的组装和调试等实践内容; 三是群众性、主动性,课程设计以学生为主体,要求人人动手,教师只起引导作用,主任务由学生独立完成,学生的主观能动性对课程设计的完成起决定性作。学生较强的动手能力就是依靠实践性教学体系来培养的。 1.1 何谓课程设计 所谓课程设计就是大型实验,是具有独立制作和调试的设计性实验,其基本属性体现在工程设计上。但课程设计毕竟不同于一般实验。 首先是时间和规模不同,一般实验只有两学时,充其量为四学时;而课程设计一般为一~两周。实验所要达到的目的较小。通常只是为了验证某一种理论、掌握某一种参数的测量方法、学习某一种仪器的使用方法等等;而课程没计则是涉及一门课程甚至几门课程的综合运

用,所以课程设计是大型的。 其次,完成任务的独立性不同,一般实验学生采用教师事先安排好的实验板和仪器,实验指导书上详细地介绍了做什么和如何做,实验时还有教师现场指导,学生主要任务是搭接电路,用仪器观察现象和读取数据,因此实验是比较容易完成的;而课程设计不同,课程设计只给出所要设计的部件或整机的性能参数,由学生自己去设计电路、设计和制作印刷电路板,然后焊接和调试电路,以达到性能要求。 课程设计和毕业设计性质非常接近,毕业设计是系统的工程设计实践,而课程设计则是工程设计实践的初步训练,它为毕业设计打下一定基础。课程设计与毕业设计在规模上和要求上,大小高低不同,但它们都属于工程设计,因此工作步骤是类似的。 1.2 课程设计的目的要求 1 、课程设计的目的是帮助学生综合运用所学的理论知识,把一些单元电路有机地组合起来,组成小的系统,使学生建立系统的概念;并使学生巩固和加强已学理论知识。并掌握一般电子电路分析和设计的基本步骤。 2 、掌握常用元器件的检测、识别方法及常用电子仪器的正确使用方法。 3 、掌握印制板的制作流程以及protel 99 SE的使用等基本技能。 4 、培养一定的独立分析问题、解决问题的能力。对设计中遇到的问题能通过独立思考、查阅有关资料,寻找解决问题的途径;对调试中

模电课程设计报告

模电课程设计实验报告课题:函数信号发生器 指导老师:________________ 学院:___________________ 班级:___________________ 姓名:___________________ 学号:___________________

日期:__________________ 一.设计目的与要求 1.1设计目的 1.设计电路产生RC桥式正弦波产生电路,占空比可调的矩形波电路,占空比可调的三角波电路,多用信号源产生电路,分别产生正弦波、方波、三角波 2.通过设计,可以将所学的电子技术应用到实际当中,加深对信号产生电路的理解,锻炼自己的动手能力与查阅资料的能力。使自己的对模电的理解更为透彻。 1.2设计内容及要求 1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

(3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围100Hz~3KHz、输出幅值≥5V、负载电阻1KΩ。 软件仿真部分元器件不限,只要元器件库中有即可,但需要注意合理选取。 二.单信号发生电路 2、1 RC桥式正弦波产生电路 参数计算:

器件选择: 2、2占空比可调的矩形波产生电路 参数计算: 器件选择:

2、3占空比可调的三角波产生电路 参数计算: 器件选择:

FSSS作业指导书

编写日期:2008-08-05 编写:马光伟 审核: 批准: 前言 FSSS系统一般分为两个部分,即燃烧器控制系统BCS(Burner ControlSystem)和燃料安全系统FSS(Fuel Safety System)。燃烧器控制系统的功能是对锅炉燃烧系统设备进行监视和控制,保证点火器,油枪和磨煤机组系统的安全启动、停止和运行。燃料安全系统的功能是在锅炉点火前和跳闸停炉后对炉膛进行吹扫,防止可燃物在炉膛堆积。在检测到危及设备、人身安全的运行工况时,启动主燃料跳闸(MFT),迅速切断燃料,紧急停炉。 FSSS系统对保证电厂锅炉系统的安全运行具有重要作用,为了规范FSSS系统现场调试及大修后检测FSSS系统的各项功能和试验,严格执行有关规程要求,保证校验人员在大量现场工作中可以安全、优质地完成任务,内蒙古电力科学研究院热控自动化研究所编写了FSSS系统现场作业指导书。 由于编写者水平有限,有不正确的地方望大家提出。 目录 1.适用范围-----------------------------------------------4 2.引用文件-----------------------------------------------4 3.现场作业前准备-----------------------------------------4 4.现场作业流程-------------------------------------------9 5.试验条件检查-------------------------------------------9 6.FSSS所涵盖的系统及设备--------------------------------10 7.FSSS系统试验内容--------------------------------------10 8.试验后应达到的指标------------------------------------23 9.结束工作----------------------------------------------24 关键词:作业指导书

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

序列信号发生器分析

华南师范大学实验报告 学生姓名林竞浩李瑜贤学号20102804016 专业多媒体与网络技术年级、班级2010级4班 课程名称模拟电路与数字电路实验项目555定时器的应用 实验类型□验证□设计□综合实验时间2011年月日 实验指导老师实验评分 一、实验目的 1 学会构建序列发生器的基本方法 2掌握对序列信号发生器序列信号的测试分析方法。 二、实验仪器 安装有Multisim10软件的个人电脑 三、实验原理 序列信号器产生序列信号,有多种方法。本实验采用计数器和数据选择器构成发生。图一中四位二进制同步计数器74S163状态输出端QC,QB,QA输出的数据,送入8选1数据选择器74S151的地址输入端ABC,需要获取产生的序列信号接至数据选择器74S151数据输入端D0-D7,数据从Y或W端输出,实验电路原理图如下

四、实验步骤 1设定产生周期为00010111序列信号。 2打开电脑Multisim10操作平台,从TTL元件库中取出74S163,74S151,显示器件库中取下带译码器的数码管及探针等器件,以及逻辑分析仪,按实验电路图连接好。 3设定时钟信号发生器V1的频率为100HZ .调整好实验电路后,数码管有0-7计数显示,探针有闪动。 4双击打开逻辑分析仪工作界面,以备测试波形。调整逻辑分析仪时钟源为外同步。正常后,观察数码管,探针,逻辑分析仪波形的变化,把相关数据填入表1中 输入时钟脉冲计数器输出逻辑指示灯数码管显示 QC QB QA Y 0 0 0 0 N 0 1 0 0 1 N 1 2 0 1 0 N 2 3 0 1 1 Y 3 4 1 0 0 N 4 5 1 0 1 Y 5

模电课程设计报告

广西大学 模拟电路课程设计报告 课题名称:基于STC12系列单片机的串联型开关电源设计与实现 --模拟电路部分 学院计算机与电子信息学院 专业通信工程 班级通信142班 学号1407200134 姓名韦杰

摘要: 随着电子工业的发展,高频率、高耐压、大功率开关管问世,开关型稳压电源以其自身功耗小、体积小、重量轻,得到越来越广泛的作用。本系统的设计采用STC12C5A60S2单片机作为控制核心,构成一个闭环控制的串联型开关稳压电源。该开关电源为脉冲宽度调制型(PWM),其中,STC12C5A60S2单片机以及其外围器件实现输出电压实时测量、人机交互、按键等功能。 关键词:单片机、稳压、开关电源、AD 1、系统方案

原理分析:本次模电课程设计的目的是实现一个串联型开关稳压电源,开关稳压电源电路的换能电路将输入的直流电压转换成脉冲电压,再将脉冲电压经LC滤波转换成直流电压。 首先,我们看到原理图中有六个元件,分别是两个电阻,一个电解电容,一个二极管,一个电感,还有一个NPN型的三极管,原理图中虽然只有那么六个简单的元件,却蕴藏着丰富的电路知识。电阻R2的作用主要是用来限流,因为PWM信号是要经过R1流入三极管,而该三极管的集电极最大电流为1.5A,通过R2电阻限流后,可以对电路起到保护的作用,因此需要一个1K的限流电阻;电阻R1的作用是负载电阻,也就是开关电源的输出部分,我们要在这里进行输出电压的采集,然后构成一个闭环的控制系统;二极管为1N4007,是普通的硅整流二极管,它的作用是在三极管截止后,使得整个电流继续构成一个完整的回路,因为三极管截止后,电源就与LC回路以及负载断开了,这时通过一个反接的二极管可以继续保持整个电路构成一个回路,所以该二极管也就是续流的作用。电感与电容构成一个LC滤波电路,以及构成换能电路,在换能电路中,如果电感L数值太小,在导通期间储能不足,那么在截止还未结束时,能量已放尽,将导致输出电压为零,出现台阶,这是绝对不允许的,同时为了使输出电压的交流分量足够小,C的取值应足够大。换言之,只有在L和C足够大时,输出电压UO和负载电阻IO才是连续的,L和C愈大,UO的波形愈平滑。由于输出电流IO是UI 通过开关调整管和LC滤波电路轮流提供,通常脉动成分比线性稳压电源要大一些,这是开关型稳压电路的缺点之一;开关管为NPN型三极管,型号为2SC8550,从该三极管的资料上,我们可以知道,当三极管的基极开路时,集电极与发射极有一个反向击穿电压(在资料书上可看到,该最大承受电压为25V),如果超过了最大值,就会把三极管烧掉,该系统的设计的电源电压为5V,整个电路中不会有超过5V电压的部分,因此,选择该三极管作为开关管是合适的。 系统框图如下:

SPM作业指导书

SPM智能化静止进相机作业指导书 XDL/JS/0D3-27 一、紧固件的检查 (1) 二、控制线与转子电缆的连接 (1) 三、通电试车 (1) 四、常见故障及处理 (1) 附表:电源板的电压输出参数 (2) 襄樊大力工业控制股份有限公司制 2003/08/23

一、紧固件的检查 由于长途运输,设备在调试前应检查并紧固所有紧固件。包括所有器件和端子排上的螺钉、螺帽。 二、控制线与转子电缆的连接 1.电源线从端子排X1上A.B.C.N接至配电柜,A.B.C接三相火线,N接零线。电源线型号 的选择参见随机《进相机使用说明书》。 2.控制线的连接要求参见随机《进相机电器图》。 3.转子电缆接在KM3下端,起动柜过来的电缆接在KM2的下端。 4.通电前认真核对接线有无漏接、错接、松动的现象。 三、通电试车 1.模拟试车 短接311和313,将检测转子电流信号的霍尔互感器(TA1,TA2,TA3)上的插件取下,接在信号发生器上,将“中控/现场”旋钮打至“现场”位置。合上空开,电源指示灯亮,待KA1吸合后,按下“进相”按钮,此时KM3吸合KM2释放,同时进相指示灯亮。进相机顶端的排风扇的风向应自下而上(若风向相反,对调任意两相电源进线即可)。 试验正常后,按下“退相”按钮,此时KM2吸合KM3释放,进相指示应灯熄。 断开空开,去掉311和313的短接线;恢复霍尔互感器上的信号线(注意相序)。 2.带载试车(负载需达到60%以上) 2.1. 通电前认真核对接线有无漏接、错接、松动的现象。主电机正常运行后,观 察面板上的功率因素表若在超前位置,则需停机将12、14号线对调。如果仍不正常,必须严格检查功率因素表的信号是否是A、C相的电压,B相电流信号。 2.2.合上空开,观察各控制板指示灯的状态。控制板第一指示灯常亮,第二、三、 四指示灯应交替闪亮;触发板第一指示灯先闪亮十秒钟左右,随即六个指示灯闪亮;电源板上的所有指示灯常亮。表明允许进相。 2.3.按下“进相”按钮,进相指示灯亮,电流下降,功率因素上升。 2.4.观察逆变变压器输入输出电流范围,如下表所示。 若复位后各指示灯状态仍不正常,参见故障处理第一条。 2.6.如果电流上升,需先退相,关掉电源。对调进相机背面端子排X3上的01和03 号线。 2.7.如果电流波动较大,说明有环流产生,处理方法见故障处理第二条。 四、常见故障及处理 1.进相机触发板六个指示灯具有故障指示功能。指示灯所指示故障如表:

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

模电课程设计报告

模拟电路课程设计 题目:OCL功率放大器 学院:信息学院 专业:自动化 班级学号: 学生姓名: 指导教师;

目录

一、课程设计任务及要求 1、设计目的 ①学习OCL功率放大器的设计方法 ②了解集成功率放大器内部电路工作原理 根据设计要求,完成对OCL功率放大器的设计,进一步加强对模拟电子技术的了解 ④采用集成运放与晶体管原件设计OCL功率放大器 ⑤培养实践技能,提高分析和解决实际问题的能力 2、设计指标 ①频率响应:50Hz≤f≤20KHz ②额定输出功率:P o=8W ③负载电阻:R L=8Ω ④非线性失真尽量小 ⑤输入信号:U i<=100mv

3、设计要求 (1)进行方案论证及方案比较 (2)分析电路的组成及工作原理 (3)进行单元电路设计计算 (4)画整机电路图 (5)写出元件明细表 (6)小结和讨论 (7)写出对本设计的心得体会 分析设计要求,明确性能指标;查阅资料、设计方案分析对比。 4、制作要求 论证并确定合理的总体设计方案,绘制结构框图。 5、OCL功率放大器各单元具体电路设计。 总体方案分解成若干子系统或单元电路,逐个设计,计算电路元件参数;分析工作性能。

6、完成整体电路设计及论证。 7、编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 二、总体方案设计 1、设计思路 功率放大器的作用是给负载R l提供一定的输出功率,当R I一定时,希望输出功率尽可能大,输出信号的非线性失真尽可能小,且效率尽可能高。放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或失真

EDA实验 函数信号发生器

EDA设计实验 题目:函数信号发生器 作者: 所在学院:信息科学与工程学院 专业年级: 指导教师: 职称: 2011 年 12 月 11 日

函数信号发生器 摘要:函数信号发生器在生产实践和科技领域有着广泛的应用。本设计是采用了EDA技术设计的函数信号发生器。此函数信号发生器的实现是基于VHDL语言描述各个波形产生模块,然后在QuartusⅡ软件上实现波形的编译,仿真和下载到Cyclone芯片上。整个系统由波形产生模块和波形选择模块两个部分组成。最后经过QuartusⅡ软件仿真,证明此次设计可以输出正弦波、方波、三角波,锯齿波,阶梯波等规定波形,并能根据波形选择模块的设定来选择波形输出。 关键字:函数信号发生器;Cyclone;VHDL;QuartusⅡ 引言: 函数信号发生器即通常所说的信号发生器是一种常用的信号源,广泛应用于通信,雷达,测控,电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格要求的电信号设备是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。随着现代电子技术的飞速发展,现代电子测量工作对函数信号信号发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波性,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度、及分辨率高等。本文基于

EDA设计函数信号发生器,并产生稳定的正弦波、方波、锯齿波、三角波、阶梯波。 正文: 1、Quartus II软件简介 1)Quartus II软件介绍 Quartus II 是Alera公司推出的一款功能强大,兼容性最好的EDA工具软件。该软件界面友好、使用便捷、功能强大,是一个完全集成化的可编程逻辑设计环境,具有开放性、与结构无关、多平台完全集成化丰富的设计库、模块化工具、支持多种硬件描述语言及有多种高级编程语言接口等特点。 Quartus II是Altera公司推出的CPLD/FPGA开发工具,Quartus II提供了完全集成且与电路结构无关的开发包环境,具有数字逻辑设计的全部特性,包括:可利用原理图、结构框图、VerilogHDL、AHDL和VHDL完成电路描述,并将其保存为设计实体文件;芯片平面布局连线编辑;功能强大的逻辑综合工具;完备的电路功能仿真与时序逻辑仿真工具;定时/时序分析与关键路径延时分析;可使用SignalTap II逻辑分析工具进行嵌入式的逻辑分析;支持软件源文件的添加和创建,并将它们链接起来生成编程文件;使用组合编译方式可一次完成整体设计流程;自动定位编译错误;高效的期间编程与验证工具;可读入标准的EDIF网表文件、VHDL网表文件和Verilog网表文件;能生成第

三位二进制加法计数器、序列信号发生器的设计、用集成芯片设计一个256进制加法计数器

目录 1课程设计的目的与作用 (1) 2设计任务 (1) 2.1同步计数器 (1) 2.2序列信号发生器 (1) 3设计原理 (1) 3.1同步计数器 (1) 3.1.1加法计数器 (2) 3.1.2减法计数器 (2) 3.1.3用集成芯片设计一个256进制的加法器 (2) 3.2序列信号发生器 (3) 4实验步骤 (3) 4.1同步计数器 (3) 4.1.1加法计数器 (4) 4.1.2减法计数器 (7) 4.1.3用集成芯片设计一个256进制的加法器 (10) 4.2序列信号发生器 (11) 5设计总结与体会 (14) 6参考文献 (15)

1课程设计的目的与作用 1.了解同步计数器及序列信号发生器工作原理; 2.掌握计数器电路的分析,设计方法及应用; 3.掌握序列信号发生器的分析,设计方法及应用; 2设计任务 2.1同步计数器 1.使用设计一个循环型3位2进制加法计数器,其中无效状态为(001,010),组合电路 选用与门和与非门等。 2.根据自己的设计接线。 3.检查无误后,测试其功能。 2.2序列信号发生器 1.使用设计一个能循环产生给定序列的序列信号发生器,其中发生序列(1000001),组 合电路选用与门和与非门等。 根据自己的设计接线。 2.检查无误后,测试其功能。 3设计原理 3.1同步计数器 (1)计数器是用来统计输入脉冲个数电路,是组成数字电路和计算机电路的基本时序逻辑部件。计数器按长度可分为:二进制,十进制和任意进制计数器。计数器不仅有加法计数器,也有减法计数器。如果一个计数器既能完成累加技术功能,也能完成递减功能,则称其为可逆计数器。在同步计数器中,个触发器共用同一个时钟信号。 (2)时序电路的分析过程:根据给定的时序电路,写出各触发器的驱动方程,输出方程,

(完整版)高频电子线路课程设计

课程设计 班级:电信12-1班 姓名:徐雷 学号:1206110123 指导教师:李铁 成绩: 电子与信息工程学院 信息与通信工程系

目录 摘要 (1) 引言 (2) 1. 概述 (3) 1.1 LC振荡器的基本工作原理 (3) 1.2 起振条件与平衡条件 (4) 1.2.1 起振条件 (4) 1.2.2平衡条件 (4) 1.2.3 稳定条件 (4) 2. 硬件设计 (5) 2.1 电感反馈三点式振荡器 (5) 2.2 电容反馈三点式振荡器 (6) 2.3改进型反馈振荡电路 (7) 2.4 西勒电路说明 (8) 2.5 西勒电路静态工作点设置 (9) 2.6 西勒电路参数设定 (10) 3. 软件仿真 (11) 3.1 软件简介 (11) 3.2 进行仿真 (12) 3.3 仿真分析 (13) 4. 结论 (13) 4.1 设计的功能 (13) 4.2 设计不足 (13) 4.3 心得体会 (14) 参考文献 (14)

徐雷:LC振荡器设计 摘要 振荡器是一种不需要外加激励、电路本身能自动地将直流能量转换为具有某种波形的交流能量的装置。种类很多,使用范围也不相同,但是它们的基本原理都是相同的,即满足起振、平衡和稳定条件。通过对电感三点式振荡器(哈脱莱振荡器)、电容三点式振荡器(考毕兹振荡器)以及改进型电容反馈式振荡器(克拉波电路和西勒电路)的分析,根据课设要求频率稳定度为10-4,西勒电路具有频率稳定性高,振幅稳定,频率调节方便,适合做波段振荡器等优点,因此选择西勒电路进行设计。继而通过Multisim设计电路与仿真。 关键词:振荡器;西勒电路;Multisim Abstract The oscillator is a kind of don't need to motivate, circuit itself automatically device for DC energy into a waveform AC energy applied. Many different types of oscillators, using range is not the same, but the basic principles are the same, to meet the vibration, the equilibrium and stability conditions. Based on the inductance of the three point type oscillator ( Hartley), three point capacitance oscillator ( Colpitts) and improved capacitor feedback oscillator (Clapp and Seiler) analysis, according to class requirements, Seiler circuit with high frequency stability, amplitude stability frequency regulation, convenient, suitable for the band oscillator etc., so the final choice of Seiler circuit design. Then through the Multisim circuit design and simulation. Key Words:Oscillator; Seiler; Multisim 1

模电课程设计报告

模电课程设计报告 It was last revised on January 2, 2021

模拟电路课程设计 题目:OCL功率放大器 学院:信息学院 专业:自动化 班级学号: 学生姓名: 指导教师;

目录

一、课程设计任务及要求 1、设计目的 ①学习OCL功率放大器的设计方法 ②了解集成功率放大器内部电路工作原理 根据设计要求,完成对OCL功率放大器的设计,进一步加强对模拟电子技术的了解 ④采用集成运放与晶体管原件设计OCL功率放大器 ⑤培养实践技能,提高分析和解决实际问题的能力 2、设计指标 ①频率响应:50Hz≤f≤20KHz ②额定输出功率:P o=8W ③负载电阻:R L=8Ω ④非线性失真尽量小 ⑤输入信号:U i<=100mv

3、设计要求 (1)进行方案论证及方案比较 (2)分析电路的组成及工作原理 (3)进行单元电路设计计算 (4)画整机电路图 (5)写出元件明细表 (6)小结和讨论 (7)写出对本设计的心得体会 分析设计要求,明确性能指标;查阅资料、设计方案分析对比。 4、制作要求 论证并确定合理的总体设计方案,绘制结构框图。 5、OCL功率放大器各单元具体电路设计。 总体方案分解成若干子系统或单元电路,逐个设计,计算电路元件参数;分析工作性能。

6、完成整体电路设计及论证。 7、编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 二、总体方案设计 1、设计思路 功率放大器的作用是给负载R l提供一定的输出功率,当R I一定时,希望输出功率尽可能大,输出信号的非线性失真尽可能小,且效率尽可能高。放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

高频课程设计

中原工学院 课程设计报告 课题名称:AM传输系统设计 姓名:xxxxx 班级:信息类101 学号:xxxxx 同组人员:xxxxxx 指导教师:魏平俊、高丽

现代通信电路 课程设计任务书 1、设计题目:AM传输系统的设计 2、包含项目: (1)信号源产生模块(模拟语音信号); (2)载波信号产生模块 (3)AM调制器:平衡调制器 (4)AM解调器:解调AM信号 3、设计要求: (1)在进入实验室进行实际操作前,提交准备报告:包括综合设计概况、主要技术指标、相应模块的实现方法;提交模块的 电路原理图;提交采用的器件资料。 (2)实验操作可在ZH5006综合设计实验箱上进行,也可在高频电路实验台上进行。要求自行安装语音信号产生模块,其他 模块采用标准模块。 (3)在进入实验室进行实际操作后,提交课程设计报告。报告格式参照中原工学院课程设计指导手册。 4、分组安排: 实验操作分两组进行:一组进行电路安装、调试,一组进行设计电路原理图、软件仿真。然后再对调工作。 5、时间安排: (1)第1天:布置任务,讲解设计方法,进行预设计; (2)第2-3天:第一组进行电路安装、调试,第二组进行设计电路原理图、软件仿真。 (3)第3-4天:第二组进行电路安装、调试,第一组进行设计电路原理图、软件仿真。 (4)第5天:撰写设计报告。

目录 一、绪论 (4) 1.1设计目的 (4) 1.2设计内容 (4) 1.3设计要求 (4) 1.4设计流程 (5) 二、课程设计详细内容及步骤 (6) 2.1信号源产生模块 (6) 2.2载频信号产生模块 (9) 2.3AM调制器模块 (12) 2.4AM解调器模块 (14) 三、课程设计过程分析 (17) 3.1仿真分析 (17) 3.2焊接连线调试分析过程 (22) 3.3遇到问题,解决办法及心得体会 (24) 四、参考文献 (24) 附录A工具元件清单附录B仿真结果

模电课程设计报告

模拟电子技术课程设计 题目:多功能三角波产生器 院系:工学院电气与电子工程系 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 二〇一六年十二月

摘要 信号发生器根据用途不同,有产生三种或多种波形的信号发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案也有多种 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。 关键词:ICL8038方波正弦波三角波

目录 第1章绪论 (1) 1.1 项目概况 (1) 1.2 项目的意义 (1) 1.3 设计要求 (2) 第2章方案的选择及论证 (3) 2.1 设计方案 (3) 2.1.1 方案一 (3) 2.1.2 方案二 (3) 2.2 方案选取及论证 (4) 第三章电路的设计过程 (5) 3.1 信号发生器原理图 (5) 3.2 电路主要元件的分析 (5) 3.2.1 ICL8038 管脚功能图及实物图 (5) 3.2.2 ICL8038的性能特点 (6) 3.2.3 ICL8038的工作原理 (7) 3.3 系统电路的仿真 (8) 3.5 电源电路的设计 (11) 3.5.1 电源电路的原理 (11) 3.5.2 电源电路的仿真 (11) 第四章元器件的选择 (13) 总结 (14) 参考文献 (15)

函数信号发生器

基于labview的函数信号发生器的设计 [摘要] 介绍一种基于labvIEW环境下自行开发的虚拟函数信号发生器,它不仅能够产 生实验室常用的正弦波、三角波、方波、锯齿波信号,而且还可以通过输入公式,产生测试和研究领域所需要的特殊信号。对任意波形的发生可实现公式输入;对信号频率、幅度、相位、偏移量可调可控;方波占空比可以调控;噪声任意可加、创建友好界面、信号波形显示;输出频谱特性;所有调制都可微调与粗调。该仪器系统操作简便,设计灵活,功能强大,可以完成不同环境下的测量要求。因此具有很强的实用性。 关键词:虚拟仪器,labvIEW,虚拟函数信号发生器,正弦波,三角波,方波,锯齿波, 特殊信号。 引言: 在有关电磁信号的测量和研究中,我们需要用到一种或多种信号源,而函数信号发生器则为我们提供了在研究中所需要的信号源。它可以产生不同频率的正弦波,方波,三角波,锯齿波,正负脉冲信号,调频信号,调幅信号和随机信号等。其输出信号的幅值也可以按需要进行调节。传统信号发生器种类繁多,价格昂贵,而且功能固定单一,不具备用户对仪器进行定义及编程的功能,一个传统实验室很难拥有多类信号发生器。然而,基于虚拟仪器技术的实验室均能满足这一要求。 1、虚拟仪器简介: 自从1986年美国NI(National Instrument)公司提出虚拟仪器的概念以来,随着计 算机技术和测量技术的发展,虚拟仪器技术也得到很快的发展。虚拟仪器是指:利用现有的PC机,加上特殊设计的仪器硬件和专用软件,形成既有普通仪器的基本功能,又有一般仪器所没有的特殊功能的新型仪器。与传统的仪器相比其特点主要有:具有更好的测量精度和可重复性;测量速度快;系统组建时间短;由用户定义仪器功能;可扩展性强;技术更新快等。虚拟仪器以软件为核心,其软件又以美国NI公司的Labview虚拟仪器软件开发平台最为常用。Labview是一种图形化的编程语言,主要用来开发数据采集,仪器控制及数据处理分析等软件,功能强大。目前,该开发软件在国际测试、测控行业比较流行,在国内的测控领域也得到广泛应用。函数信号发生器是在科学研究和工程设计中广泛应用的一种通用仪器。下面结合一个虚拟函数信号发生器设计开发具体介绍基于图形化编程语言Labview的虚拟仪器编程方法与实现技术。 2、虚拟函数信号发生器的结构与组成 2.1 虚拟函数信号发生器的前面板

相关主题
文本预览
相关文档 最新文档