当前位置:文档之家› (完整版)数学建模logistic人口增长模型

(完整版)数学建模logistic人口增长模型

Logistic 人口发展模型

一、题目描述

建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测

的效果好?并结合中国实情分析原因。

表1 各年份全国总人口数(单位:千万)

二、建立模型

阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有:

0)0(,)(x x x x r dt dx

== (1)

对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 )

0,0()(>>-=s r sx

r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m

x ,当

m

x x =时人口不再增长,即增

长率

)(=m x r ,代入(2)式得

m x r

s =

,于是(2)式为

)1()(m

x x r x r -= (3)

将(3)代入方程(1)得:

??

???=-=0

)0()

1(x x x x rx dt

dx

m (4)

解得:

rt m

m

e x x x t x --+=

)1(

1)(0

(5)

三、模型求解

用Matlab 求解,程序如下: t=1954:1:2005;

x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];

x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988];

x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756];

dx=(x2-x1)./x2; a=polyfit(x2,dx,1);

r=a(2),xm=-r/a(1)%求出xm 和r

x0=61.5;

f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b');

title('1954-2005年实际人口与理论值的比较') x2010=f(2010,xm,r,x0) x2020=f(2020,xm,r,x0) x2033=f(2033,xm,r,x0)

解得:x(m)= 180.9516(千万),r= 0.0327/(年),x(0)=61.5

得到1954-2005实际人口与理论值的结果:

根据《国家人口发展战略研究报告》我国人口在未来30年还将净增2亿人左右。过去曾有专家预测(按照总和生育率2.0),我国的人口峰值在2045年将达到16亿人。根据本课题专家研究,随着我国经济社会发展和计划生育工作加强,20世纪90年代中后期,总和生育率已降到1.8左右,并稳定至今。实现全面建设小康社会人均GDP达到3000美元的目标,要求把总和生育率继续稳定在1.8左右。

按此预测,总人口将于2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右(见图1)。劳动年龄人口规模庞大。我国15-64岁的劳动年龄人口2000年为8.6亿人,2016年将达到高峰10.1亿人,比发达国家劳动年龄人口的总和还要多。在相当长的时期内,中国不会缺少劳动力,但考虑到素质、技能等因素,劳动力结构性短缺还将长期存在。同时,人口与资源、环境的矛盾越来越突出。

而据模型求解:

2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿误差为0.7%

2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿误差为1.3%

2033年人口:x(2033)= 157.2143(千万)专家预测15亿误差为4.8%

2045年人口:x(2045)= 164.6959(千万)专家预测16亿误差为4.1%

五、预测

1. 1954-2005总人口数据建立模型:

r=0.0327 xm=180.9516

2010年人口:x(2010)= 137.0200(千万)专家预测13.6亿误差为0.7% 2020年人口:x(2020)= 146.9839(千万)专家预测14.5亿误差为1.3% 2033年人口:x(2033)= 157.2143(千万)专家预测15亿误差为4.8% 2045年人口:x(2045)= 164.6959(千万)专家预测16亿误差为4.1% 2. 1963-2005总人口数据建立模型:

r=0.0493 xm=150.5261

2010年人口:x(2010)= 134.1612(千万)专家预测13.6亿误差为1.4% 2020年人口:x(2020)= 140.0873(千万)专家预测14.5亿误差为3.4%

2033年人口:x(2033)= 144.8390(千万)专家预测15亿误差为3.4%

2045年人口:x(2045)= 147.3240(千万)专家预测16亿误差为7.6%

3.1980-2005总人口数据建立模型:

r=0.0441 xm=156.3297

2010年人口:x(2010)= 135.2885(千万)专家预测13.6亿误差为0.5%

2020年人口:x(2020)= 142.1083(千万)专家预测14.5亿误差为2.0%

2033年人口:x(2033)= 147.9815(千万)专家预测15亿误差为1.3%

2045年人口:x(2045)= 151.3011(千万)专家预测16亿误差为5.4%总体来看,1980-2005这一组数据拟合出的人口模型比较好,即与已有数据吻合,又与专家预测误差较小。从历史原因来分析:1954年之后的1959-1961年间,有三年自然灾害故而使得实际人口数据与估计有所偏颇。1960年之后为过渡时期。1983年之后开始实施“计划生育政策”,一直至今,所以1980-2005年间的数据与预测分析最好。

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

人口增长模型的确定

题目:人口增长模型的确定 摘要 人口问题已成为当前世界上最普遍关注的问题之一,人口增长规律的发现以及人口增长的预测问题对一个国家制定长远的发展规划有着非常重要的意义。本文分别使用了马尔萨斯人口指数增长模型和阻滞增长模型,以美国1790-1980年间每隔10年的人口数量为依据,对接下来的每隔十年进行了预测五次人口数量。通过对比我们可以发现阻滞增长模型在预测准确度方面要明显优于原始的马尔萨斯人口指数增长模型。 关键词:人口增长;马尔萨斯人口指数增长模型;阻滞增长模型;人口预测

一、问题重述 1.1 问题背景 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 1.2 问题提出 我们需要解决以下问题: 1.试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 2.如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测,并对两次预测结果进行对比分析。 3.查阅资料找出中国人口与表1同时期的人口数量,用以上建立的两个模型进行人口预测与分析。 二、问题分析 首先,我们运用Matlab 软件绘制出1790到1980年的美国人口数据图,如图1。 17801800182018401860188019001920194019601980 050 100 150 200 250

图1 1790到1980年的美国人口数据图 从图表中我们可以清晰地看到人口数在1790—1980年是呈增长趋势的,而且我们很容易发现上述图表和我们学过指数函数的图表有很大的相似性,所以我们很自然想到建立指数模型。因此我们首先建立马尔萨斯模型,马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数N的变化率与生物总数成正比。 三、问题假设 为简化问题,我们做出如下假设: (1)在模型中预期的时间内,人口不会因发生大的自然灾害,突发事件或战争而受到大的影响; (2)所给出的数据具有代表性,能够反映普遍情况; (3)一段时间内我国人口死亡率不发生大的波动; (4)在查阅的资料与文献中,所得数据可信; (5)假设人口净增长率为常数。 四、变量说明 在此,对本文所使用的符号进行定义。 表2 变量说明 符号符号说明 N(0)起始年人口容纳量 N(t)t年后人口容纳量 t年份 r增长率 五、模型建立 5.1 问题一:马尔萨斯(Malthus)人口指数增长模型 设:t表示年份(起始年份t=0),r表示人口增长率,N(t)表示t年后的人口数量。 当考察一个国家或一个很大地区的人口时,N(t)是很大的整数。为了利用微积分这一数学工具,将N(t)视为连续、可微函数。记初始时刻(t=0)的人口为N(0),人口增长率为r,r是单位时间内N(t)的增量与N(t)的比例系数。根据r是常数的基本假设,于是N(t)满足如下的微分方程: dN(t)/dt=r*N(t) (5-1) 由这个线性常系数微分方程容易解出: N(t)=N(0)e rt(5-2) 表明人口将按指数规律无限增长(r>0)。将以t年为单位,上式表明,人口以e r为公

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模人口模型

摘要 以2010年11月1日零时为标准时点,中国大陆31个省、自治区、直辖市和现役军人的人口共13.397亿。13亿是一个忧虑的数字。13亿人要吃饭、要穿衣、要上学、要就业、要住房……,消费的需求乘以13亿,就是一个庞大的数目,而我国的耕地、水资源、森林以及矿产资源本来就稀缺,再除以13亿,就少得可怜。平均每人耕地面积只有1.4亩,水资源只相当于世界人均水平的1/4…….、 中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。当前中国的人口存在着最为明显的三大特点:(1)人口基数大,人口数量的控制难度仍很大。(2)人口整体素质不高,特别是县域及以下农村人口素质普遍偏低。(3)人口结构不合理,城乡差别、地区差别和人口素质差别很大。 人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。 我国是世界第一人口大国,地球上每九个人中就有二个中国人,在20世纪的一段时间内我国人口的增长速度过快,如下表: 有效地控制人口的增长,不仅是使我国全面进入小康社会、到21世纪中叶建成富强民主文明的社会主义国家的需要,而且对于全人类社会的美好理想来说,也是我们义不容辞的责任。 长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。 我国人口问题已积重难返,对我国人口进行准确的预测是制定合理的社会经济发展规划

数学建模笔记

数学模型按照不同的分类标准有许多种类: 1。按照模型的数学方法分,有几何模型,图论模型,微分方程模型.概率模型,最优控制模型,规划论模型,马氏链模型. 2。按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型. 3.按模型的应用领域分,有人口模型,交通模型,经济模型,生态模型,资源模型。环境模型。 4.按建模的目的分,有预测模型,优化模型,决策模型,控制模型等。 5.按对模型结构的了解程度分,有白箱模型,灰箱模型,黑箱模型。 数学建模的十大算法: 1.蒙特卡洛算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法。) 2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具。) 3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用lingo、lingdo软件实现) 4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。) 5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题时用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需谨慎使用) 7.网格算法和穷举法(当重点讨论模型本身而情史算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8.一些连续离散化方法(很多问题都是从实际来的,数据可以是连续的,而计算机只认得是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

matlab曲线拟合人口增长模型及其数量预测

实验目的 [1] 学习由实际问题去建立数学模型的全过程; [2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解 其中的数学模型; [4] 提高论文写作、文字处理、排版等方面的能力; 通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。 应用实验(或综合实验) 一、实验内容 从1790—1980年间美国每隔10年的人口记录如表综2.1所示: 表综2.1 用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。 二、问题分析 1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程: ?????==0 )0(d d x x rx t x 2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人 口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程: ?? ???=-=0)0()1(d d x x x x rx t x m

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

数学建模logistic人口增长模型

Logistic 人口发展模型 一、题目描述 建立Logistic 人口阻滞增长模型 ,利用表1中的数据分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测我国未来50年的人口情况.并把预测结果与《国家人口发展战略研究报告》中提供的预测值进行分析比较。分析那个时间段数据预测 表1 各年份全国总人口数(单位:千万) 二、建立模型 阻滞增长模型(Logistic 模型)阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r 的影响上,使得r 随着人口数量x 的增加而下降。若将r 表示为x 的函数)(x r 。则它应是减函数。于是有: )0(,)(x x x x r dt dx == (1) 对)(x r 的一个最简单的假定是,设)(x r 为x 的线性函数,即 ) 0,0()(>>-=s r sx r x r (2) 设自然资源和环境条件所能容纳的最大人口数量m x ,当 m x x =时人口不再增长,即增 长率 )(=m x r ,代入(2)式得 m x r s = ,于是(2)式为

)1()(m x x r x r -= (3) 将(3)代入方程(1)得: ?? ???=-=0 )0() 1(x x x x rx dt dx m (4) 解得: rt m m e x x x t x --+= )1( 1)(0 (5) 三、模型求解 用Matlab 求解,程序如下: t=1954:1:2005; x=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; x1=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988]; x2=[61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80.7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104.357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85,121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.988,130.756]; dx=(x2-x1)./x2; a=polyfit(x2,dx,1); r=a(2),xm=-r/a(1)%求出xm 和r x0=61.5; f=inline('xm./(1+(xm/x0-1)*exp(-r*(t-1954)))','t','xm','r','x0');%定义函数 plot(t,f(t,xm,r,x0),'-r',t,x,'+b'); title('1954-2005年实际人口与理论值的比较')

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

人口增长数学模型

软件学院 人口增长模型数学建模报告 专业:软件工程 班级:卓越131班 学号:201370044120 学生姓名:郭俊成 指导教师:于志云 2015 年11 月12 日 题目:计划生育政策调整对人口数量、结构及其影响的研究

摘要 本论文针对2007年国家人口发展战略研究课题组发布的《国家人口发展战略研究报告》中关于“计划生育实施以来,全国少生了4亿多人,使世界60亿人口日推迟4年”的论述做了研究。论文根据计划生育实施之前1949-1980年的人口普查数据,使用最小二乘法拟合并建立灰色预测模型,利用数学软件,预测出了如果未实行计划生育现今中国人口的数量,从而对研究报告中“少生4亿”的结论产生质疑。 同时,本论文针对2006年全国老龄工作委员会发布的《中国人口老龄化发展趋势预测研究报告》中关于“2051年,中国老年人口规模将达到峰值4.37亿,老龄化水平基本稳定在31%左右”的论述做了研究,根据近几年的人口老龄化程度、老龄人口比重、老龄人口数量、死亡率的变化等诸多因素,建立阻滞增长模型(Logistic模型),预测40年到70年的老龄人口数量和老龄化率,验证了报告中的关于老龄人口数目持续增加、数目庞大、老龄化严重的预测。 论文基于近期的计划生育调整、“单独二孩”政策的逐步实施、城镇化所导致的人口迁移等现象,结合江苏省的实际情况,利用差分方程模型、LESLIE矩阵,分析新政策对江苏人口数量的影响。论文从出生率着手,重点研究了新政策对江苏省14岁以下儿童、60岁以上老人的影响,分析了儿童和老人数量的变化对人口结构、教育改革、养老的直接影响作用。 关键字 单独二孩、人口老龄化、Logistic 模型、差分方程模型、LESLIE模型 一、问题描述

数学建模统计模型

数学建模

论文题目: 一个医药公司的新药研究部门为了掌握一种新止痛剂的疗效,设计了一个药物试验,给患有同种疾病的病人使用这种新止痛剂的以下4个剂量中的某一个:2 g,5 g,7 g和10 g,并记录每个病人病痛明显减轻的时间(以分钟计). 为了解新药的疗效与病人性别和血压有什么关系,试验过程中研究人员把病人按性别及血压的低、中、高三档平均分配来进行测试. 通过比较每个病人血压的历史数据,从低到高分成3组,分别记作,和. 实验结束后,公司的记录结果见下表(性别以0表示女,1表示男). 请你为该公司建立一个数学模型,根据病人用药的剂量、性别和血压组别,预测出服药后病痛明显减轻的时间.

一、摘要 在农某医药公司为了掌握一种新止痛药的疗效,设计了一个药物实验,通过观测病人性别、血压和用药剂量与病痛时间的关系,预测服药后病痛明显减轻的时间。我们运用数学统计工具m i n i t a b软件,对用药剂量,性别和血压组别与病痛减轻

时间之间的数据进行深层次地处理并加以讨论概率值P (是否<)和拟合度R-S q的值是否更大(越大,说明模型越好)。 首先,假设用药剂量、性别和血压组别与病痛减轻时间之间具有线性关系,我们建立了模型Ⅰ。对模型Ⅰ用m i n i t a b 软件进行回归分析,结果偏差较大,说明不是单纯的线性关系,然后对不同性别分开讨论,增加血压和用药剂量的交叉项,我们在模型Ⅰ的基础上建立了模型Ⅱ,用m i n i t a b软件进行回归分析后,用药剂量对病痛减轻时间不显着,于是我们有引进了用药剂量的平方项,改进模型Ⅱ建立了模型Ⅲ,用m i n i t a b 软件进行回归分析后,结果合理。最终确定了女性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模型: Y=1x 3x 1x 3x 2 1 x 对模型Ⅱ和模型Ⅲ关于男性病人用m i n i t a b软件进行回归分析,结果偏差依然较大,于是改进模型Ⅲ建立了模型Ⅳ,用m i n i t a b软件进行回归分析后,结果合理。最终确定了男性病人服药后病痛减轻时间与用药剂量、性别和血压组别的关系模 型:Y=1x1x 3x 2 1 x关键词止痛剂药剂量性别病痛减轻时 间

leslie人口增长模型模型

l e s l i e人口增长模型 模型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

人口增长预测模型 摘要 本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。 模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为亿、亿、亿。 模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应 Leslie模型;然后,根据中外专家给出的人口更替率,构造Leslie矩阵,建立相应的 Leslie模型。 首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到亿人,在2020年达到亿人,在2023年达到峰值亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。 其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达亿人,比重达%;65岁以上老年人口达亿人,比重达%;人口抚养呈现增加的趋势。 再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。 最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。 关键词 Logistic人口模型 Leslie人口模型人口增长预测 MATLAB软件

数学建模模拟题,图论,回归模型,聚类分析,因子分析等 (48)

第11章第2题 摘要 本题分析4 种化肥和3 个小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,可视为两因素方差分析,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。 试验的目的是分析化肥的四个不同水平以及小麦品种的三个不同水平对小麦产量有无显着性影响。 关键词:方差分析显着性化肥种类小麦品种

一.问题重述 为了分析4 种化肥和3 个小麦品种对小麦产量的影响,把一块试验田等分成36个小块,分别对3种种子和四种化肥的每一种组合种植3 小块田,产量如表1所示(单位公斤),问不同品种、不同种类的化肥及二者的交互作用对小麦产量有无显着影响。 二.问题分析 本题意在分析四种化肥和三种小麦品种对小麦产量的影响,以及二者交互作用对小麦产量的影响,为两因素方差分析问题,即化肥和小麦品种两个因素,4种化肥可看作是化肥的四个不同水平,3个小麦品种也可以看作是小麦品种的三个不同水平。通过对这两种因素的不同水平及交互作用的分析,从而分析 4 种化肥和3 个小麦品种对小麦产量的影响。 三.模型假设 1.假设只有化肥种类和小麦品种两个因素,其他因素对试验结果不构成影响。 2.假设不存在数据记录错误。 3.假设每一块试验田本身各项指标相同,不会影响结果。 四.符号说明 数字1,2,3,4——不同的化肥种类 数字1,2,3——不同的小麦品种 五.模型建立 将化肥种类和小麦品种视为两个因素,四种化肥种类看作是化肥种类的四个不同水平,三个小麦品种看作是小麦品种的三个不同水平,将表1的数据进行整理,如表2所示。

六.模型求解 将表2数据导入到spss软件中,进行两因素方差检验,得到结果如下:表3

数学建模模型

五邑大学 数学建模 课程考核论文 2010-2011 学年度第 2 学期 010 20 30 40 50 60 70 8090 第一季度第三季度 东部西部北部 论文题目 抑制物价快速上涨问题 得分 学号 姓名(打印) 姓名(手写) ap0808221 林加海 ap0808204 陈荣昌 指导老师—邹祥福

——2011.6.20 抑制物价快速上涨问题 摘要 本文通过一个多元线性回归模型较好地解决了影响物价因素的问题。使我国经济快速发展的同时,使百姓得到真的实惠,又保证了经济的长远的发展。 物价问题比较复杂。在本次实验中我们参阅大量资料把影响物价的的因素主要概括括需求性因素(消费,投资,进出口,政府支出等)、货币性因素(货币供给量)、结构性因素(房地产价格,农产品价格等)以及其他因素(如预期因素等)。 总结出原先物价计算方法的不足之处,需要建立一种新的计算和预测的方法。首先,为了确定物价和影响因素之间的关系我们用了多元线性回归,从国家统计局找到相关数据经过挑选,建立了函数关系,为了使函数更具有说服力我们进一步用了残差分析,检验所得到的结果的合理性 。本文利用matlab 软件实现了拟合出多元线性回归函数y=86.4798967193207+0.00441024146152813*x1+4.32730555279258e-007*x2+0.00377788223112076*x3+2.70211635024846e-006*x4+7.58738000216411e-005*x5,置信度95%,且20.932609896853743,_R F ==检验值8.30338450288840>,但是显著性概率.α=005相关的0.055839341752489056>0.p =。再利用逐步回归的方法,拟合出Y=94.4958+0.00771506*x1+5.8917e-007*x2+0.00250019*x3+1.90595e-006*x4+ 6.62396e-005*x5.93269896853743R =200,修正的R 2值.R α =20897797,F_检验值=26.3535,与显著性概率相关的p 值=..<000106754005,残差均方RMSE =0.204517,以上指标值都很好,说明回归效果比较理想。通过对物价形成及演化问题的讨论,提出以量化分析为基础的调节物价的方法,深入分析找出影响物价的主要因素,并就此分析现在物价的上涨情况,根据《关于稳定消费价格总水平保障群众基本生活的通知》,根据模型分析给出抑制物价的政策建议,并对未来的形势走向根据模型给出预测。 关键字:物价,逐步回归分析,上涨因素,预测,多元回归分析

数据建模目前有两种比较通用的方式

数据建模目前有两种比较通用的方式1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。1987年高等教育出版社出版了国内第一本《数学模型》教材。20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。本文主要介绍了数学建模中常用的方法。 一、数学建模的相关概念 原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。一个原型,为了不同的目的可以有多种不同的模型。数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。 数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。 二、教学模型的分类 数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。 三、数学建模的常用方法 1.类比法 数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,

基于人口增长模型的数学建模(DOC)

数学建模论文 题目:人口增长模型的确定专业、姓名: 专业、姓名: 专业、姓名:

人口增长模型 摘要 随着人口的增加,人们越来越认识到资源的有限性,人口与资源之间的矛盾日渐突出,人口问题已成为世界上最被关注的问题之一。问题给出了1790—1980年间美国的人口数据,通过分析近两百年的美国人口统计数据表,得知每10年的人口数的变化。预测美国未来的人口。对于问题我们选择建立Logistic模型(模型2)现实中,影响人口的因素很多,人口也不能无限的增长下去,Logistic 模型引进常数N 表示自然资源和环境所能承受的最大人口数,因而得到了一个贝努利方程的初值问题公式,从实际效果来看,这个公式较好的符合实际情况的发展,随着时间的递增,人口不是无限增长的,而是趋近于一个数,这个即为最大承受数。我们还同时对数据作了深入的探讨,作数据分析预测,通过观测比较选择一个比较好的拟合模型(模型3)进行预测。预测接下来的每隔十年五次人口数量,分别为251.4949, 273.5988 , 293.4904 , 310.9222 325.8466。关键词:人口预测Logistic模型指数模型

一、问题重述 1790-1980年间美国每隔10年的人口记录如下表所示。 表1 人口记录表 年份1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 人口(?106) 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 年份1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 人口(?106) 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。 二、问题分析 人口预测是一个相当复杂的问题,影响人口增长除了人口数与可利用资源外,还与医药卫生条件的改善,人们生育观念的变化等因素有关…….可以采取几套不同的假设,做出不同的预测方案,进行比较。 人口预测可按预测期长短分为短期预测 (5年以下)、中期预测(5~20年)和长期预测(20~50年)。在参数的确定和结果讨论方面,必须对中短期和长期预测这两种情况分开讨论。中短期预测中所用的各项参数以实际调查所得数据为基础,根据以往变动趋势可较准确加以估计,推算结果容易接近实际,现实意义较大。 三、问题假设 1.在模型中预期的时间内,人口不会因发生大的自然灾害、突发事故 或战争等而受到大的影响; 2.假设美国人口的增长遵循马尔萨斯人口指数增长的规则 3.假设人口增长不受环境最大承受量的限制 四、变量说明

数学建模 之 人口模型

数学建模 ———关于人口增长的模型

摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。首 先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。对两种模型的求解,我们引入了微分方程。其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。 一、 问题的提出: 人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百 模型一(指数增长模型) 1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。 附图A

2、基本假设:人口的增长率是常数 增长率——单位时间内人口增长率与当时人口之比。 故假设等价于:单位时间人口增长量与当时人口成正比。 设人口增长率为常数r 。时刻t 的人口为X(t),并设X(t)可微,X(0)=X O 由假设,对任意△t>0 ,有 )() ()(t rx t t x t t x =?-?+ 即:单位时间人口增长量=r ×当时人口数 当△t 趋向于0时,上式两边取极限,即: o t →?lim )() ()(t rx t t x t t x =?-?+ 引入微分方程: )1( )0()(0 ??? ??==x x t rx dt dx 3、模型求解: 从(1)得 rdt x dx = 两边求不定积分: c rt x +=ln ∵t=0时0x x =,∴C x =0 ln rt e x rt x x 00ln ln ln =+= ∴rt e x t x 0 )(= (2) 当r>0时.表明人口按指数变化规律增长. 备注; r 的确定方法: 要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33 .5==r ,359.1307.0=e ,则(2)式现为: t t x )359.1(9.3)(?= 4、结论:由上函数可预测得:2010的人口为x(22):

相关主题
文本预览
相关文档 最新文档