当前位置:文档之家› 自动控制元件 功放概述与线性功放

自动控制元件 功放概述与线性功放

自动控制元件 功放概述与线性功放
自动控制元件 功放概述与线性功放

微波线性功率放大器综述

微波线性功率放大器综述 1概述 微波线性功率放大器在现代微波(无线)通信系统中的重要性越来越大。特别是在CDMA 体制移动通信系统中,线性功率放大器已经是必不可少的重要部件。 2基本指标 2.1 AM/AM AM/PM失真 一个HPA的线性特征可以用AM/AM和AM/PM 曲线来表示. 输入的RF 信号可以表示为: x(t)=R i(t)?cos[ω0t+θx(t)] (1) 相应的输出表示为: y(t)=G[R i(f)] ?cos{ω0t+θx(t)+ψ[R i(f)]} (2) 其中G和ψ表示AM/AM 和AM/PM曲线,如图一。 图. 1 实测的放大器失真曲线 理想的线性功放的曲线如图2。 图. 2 理想的放大器AM/AM和AM/PM曲线

2.2 双音IMD 、IP3、P1dB 双音IMD ,在放大器输入端加入两个CW 信号,在放大器的输出端测量的3阶、5阶等信号大小,以dBc 表示。 IP3 IMD 、IP3及P 1dB 定义图示 2.3 ACPR ACPR 主要应用在象CDMA 这样的宽频谱信号的研究上。邻道功率(ACP )定义为当主信道加一信号时,紧邻主信道的两个信道内的功率大小。邻道功率的产生主要来自两个方面,一是由于器件的非线性作用产生,二是由于主信道信号本身频谱较信道宽。ACPR 定义为ACP 功率与主信道功率的比值。 图3 邻道功率(ACP )定义 图4 器件非线性产生的邻道功率 对移动通信的CDMA 信号而言,其IM3(即ACPR )与IP3的关系可以通过一公式表示。 IP3=-5log[P IM3(f 1,f 2)B 3/P O [(3B-f 1)3-(3B-f 2)3]]+22.2 (dBm) 其中: P IM3(f 1,f 2) 表示要求的IM3的输出功率(W ) B 表示二分之一CDMA 信号带宽 (KHz ) f 1,f 2表示两个边带频率相对于中心频率的差值(KHz )

功放喇叭保护电路

功放喇叭保护电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功放喇叭保护电路 大功率的家用功放的主声道均采用了OCL电路作功率放大。这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。另外。在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。 (1)直流保护: 当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。(2)过载保护: 当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。

(3)开机延时接通保护: 通过开机延时电路控制继电器驱动电路的工作状态,使继电器在开机时延时1—4秒钟接通扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。使其音圈移位。具体电路如图2所示。该电路以 Q4、Q5为中心,组成了直流电压取样检测电路。图中的Q1、Q2等系右声道功率输出电路(左声道功率输出电路图中未画出)。右声道的直流电压取样信号经由R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式直流检测电路进行监测。当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压时,电流经R6(或R21)、Q4的be结到地,Q4导通,其集电极输出控制电平,经R8、D2送Q7放大后,输往R-S触发器。同样。功率输出电路中出现负的直流失调电压时,电流经地、Q5的be 结、R6(或R21)、OCL电路中点。Q5导通,也输出控制电平。这种取样检测方式为互补方式。 R1、R2、R3、R4、Q3等组成了过载检测电路(左声道的过载检测电路未画出)。R1、R2分别用来对输出级上、下臂功率管的过载情况

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

线性化微波功放现状及发展趋势1..

线性化微波功放现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 教师:徐瑞敏教授 姓名:XXX 学号:2014210202XX 报告日期:2014.10.26

线性化微波功放现状及发展趋势 一、引言 电磁波和低频率端相比高频率端拥有其独特的优点,近年来尤其是微波毫米波电路作为航空航天的无线通信手段得到广泛应用。但是在几乎所有的微波电子系统中,要将信号放大都需要微波功放,因此微波功放在微波有源电路中拥有了无可比拟的重要地位。对微波功放,除了有一定的功率输出和增益指标以外,线性度也是一个十分重要的指标。例如在微波测试设备中,由于功放的非线性失真所产生的谐波往往影响了测试精度;在移动通信的基站和移动站中,功放的非线性失真往往会产生邻道干扰,从而引起信号失真。因此,在这些设备中对功放的线性度提出了很高的要求。 对功放线性度的衡量可从两个指标来考察:一为谐波抑制度,当放大器输人频率为f0的单频信号时,由于非线性失真,会产生频率为nf0等的谐波,如图1所示,输出主频与谐波的功率电平之差即为谐波抑制度,用dBc表示。 第二个衡量指标为三阶交调系数。当放大器输人一定频率间隔(例如SMH:)、幅度相同的频率为f,和f:两信号时,由于非线性失真,在放大器输出端除了放大的f’,和f:外,还有2j,;一J:和2j:一f,,此为三阶交调频率,如图1(b)所示,主频与三阶交调频率的功率电平之差即为功放的三阶交调系数,用(IBc表示也可用一分贝压缩点来表示功放的线性度的,一分贝压缩点与三阶交调之间具有换算关系。 二、功率放大器的非线性特性 现在一方面人们追求更高的功率利用率,另一方面是日益发展的无线通信产业的要求迫使我们不得不给予功率放大器的线性化问题以足够重视。要研究线性化技术,首先必须了解功率放大器的非线性失真特性,以做到有的放矢。 理想情况下,功率放大器工作在线性状态,传输系数与输入信号的幅度和相位无关。但在实际情况中并非这么简单,由于晶体管的特性,在达到一定输入功率时,放大器将呈现出非线性。信号的输入输出不在是上面简单的函数关系。放大器随着输入信号的增大,从线性区进入非线性区,此时功放的增益不再是常数,而是一个与输入信号有关的变量,输入输出呈非线性,甚至在达到一定输入功率后,功放输出将不再增加。此外功率放大器输出端产生了与输入频率有关的新的频率分量,当信号输入时,除了基波分量,还会出现各阶互调分量和高次谐波分量。这种非线性特性,在通信系统中对相邻信道的干扰,降低系统的性能。对于

功放电路集锦

功放电路集锦 一、双30W功放 图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。如电路有自激现象,则增大C5和C14的容量。该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。该功放也可用作家庭影院系统的环绕声功放。

二、40W功放 图2为采用高保真音响专用功放集成电路TDAl514构成的40W功率放大器,具有快速切断保护和延时静噪功能。电路输入阻抗20k,输入灵敏度600mV,电压增益30dB,信噪比80dB。制作两套该功放,分别用于左、右声道,即可构成2×40W立体声功率放大器。 三、50W功放 图3是50W高保真功率放大器,采用LM3886音频功放集成电路构成。电路输入阻抗20k,输入灵敏

度1000mV,电压增益26dB,信噪比110dB,输出连续平均功率50W,峰值功率可达135W,总静态电流50mA,电源电压范围±(30~40)V。Ll用φ1.2mm漆包线在10Ω/5W金属膜电阻(R7)上平绕10匝后与该电阻并联即可。LM3886还具有静音功能,其第8脚为静音控制端,当第8脚开路(或接地)时为静音状态;第8脚通过30k电阻接-35V时则无静音。调试时,如发现总静态电流过大,则是电路自激,可适当调节负反馈回路中的C3、R4或移相网络中的C4。 四、60W功放 图4是采用LM3875T构成的60W高保真功率放大器,具有外围电路简单、易于制作的特点。电路输入阻抗≥20k,输入灵敏度1100mV,电压增益26dB,频响范围5Hz~lOOkHz,总失真≤O.05%,信噪比114dB,电源电压范围±(20~40)v。L1绕制方法同图3电路。 五、70W功放 图5为采用STK4040X1构成的音频功率放大器,额定输出功率70W,最大谐波失真O.008%,频响范围20Hz-20kHz(-3dB),电路输入阻抗30k,输入灵敏度1000mV,电压增益27dB。L1可用φ1.2mm 漆包线在φ10mm骨架上平绕15圈后脱胎而成。

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

功放喇叭保护电路

功放喇叭保护电路 大功率的家用功放的主声道均米用了 OCL电路作功率放大。这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。另外。 在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。 (1)直流保护: 当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。(2)过载保护: 当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。 (3)开机延时接通保护:

通过开机延时电路控制继电器驱动电路的工作状态, 使继电器在开机时延时1—4秒钟接通 扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。使其音圈移位。 具体电路如图2 所示。该电路以Q4、Q5为中心,组成了直流电压取样检测电路。图中的 Q1、Q2等系右 声道功率输出电路(左声道功率输出电路图中未画出 )。右声道的直流电压取样信号经由 R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式 直流检测电路进行监测。当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压 时,电流经R6(或 R21) Q4的be 结到地,Q4导通,其集电极输出控制电平,经 R8、D2 送Q7放大后,输往R-S 触发器。同样。功率输出电路中出现负的直流失调电压时,电流经 地、Q5的be 结、R6(或 R21)、OCL 电路中点。Q5导通,也输出控制电平。这种取样检测 方式为互补方式。 R1、R2、R3 R4、Q3等组成了过载检测电路(左声道的过载检测电路未画出)。R1、R2分 别用来对输出级上、下臂功率管的过载情况进行取样。 Q3对输出电路进行过载状态监测。 R1两端的电压与功率管 Q1的发射极电流成正比,该电压经过 R3、R4、R2衰减分压,成 为Q1发射结的正向偏压。调整 R3、R4的阻值,可使此电压在额定输出状态下不能使 Q3 导通。当功放工作异常致使 Q1严重过载时,流过R1的电流大增。从而产生足以使 Q3导 通的正向偏压,使 Q3 导通,输出监控信号,经 Q7 放大后送到触发器,使触发器输出状态 卜 ■ ----------------- ■ ----------------- 一亠 y _ --------------- - ” ----- ----------- ■ ------------------------------------------------------ ... J" — iuin 厂 N 1 0 签£3弼 5M1 4001- HL 355J LFD 1N4I4A o oiOl- A IS+14U 17 IN4OQ2 H8 10k E 4003-

高效率功率放大器的现状及发展趋势

高效率功率放大器的现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 :王元佳 学号:201320000289 报告日期:2013.11.05

一、引言 现代通信系统中的射频系统要求功耗低、效率高以及体积小。近年来,无线通讯朝大容量、多电平、多载波、高峰均比和宽频带方向飞速发展,宽带数字传输技术(如OFDM、CDMA等)和高频谱效率的调制方式(如QPSK、QAM等)正获得越来越广泛的应用,从而对射频系统性能提出更为苛刻的要求。功率放大器作为射频系统的关键部件,其所消耗的功率在整个射频系统所占比例相当大。低效率的功率放大器严重影响系统的整体性能。所以,设计高效率射频功率放大器对于减少电源消耗,提高系统稳定性,节约系统成本都由十分重大的意义。 传统的功率放大器通过调整工作状态(即调整晶体管导通角)来提高效率,这就是A类、B类、AB类、C类功率放大器的演进过程。其中C类功率放大器的理论效率最高达到100%,但此时其输出功率却为零。其根本原因在于,上述功率放大器工作状态下电流、电压同时存在于晶体管中,要使晶体管的耗散功率为零,必然使输出功率也为零。通过不断减小导通角的方式已不能满足不断提高效率的要求。为进一步提高效率,晶体管工作在开关状态的功率放大器应运而生。 二、研究现状 2.1 高效率功率放大器 2.1.1 D类功率放大器 当前,国内外高效率射频功率放大器的研究都集中在开关模型功率放大器及高效率功率放大器结构上。开关模型功率放大器主要有D、E两类。其设计思想都是使晶体管上“电流、电压不同时出现”。D类功率放大器一般由两个晶体

管构成,两只晶体管轮流导通、截止,实现电流、电压的不同时出现条件。但其晶体管和寄生电容耗能都是单管放大电路的双倍。同时,在开关瞬间存在两晶体管同时导通或截止引起二次击穿造成晶体管损坏的危险。工作频率比较低时,晶体管开关延时可以忽略,晶体管近似理想开关,不会产生损耗;在高频下,晶体管开关延时不可忽略,会引入损耗,另外元器件本身也会有损耗。因此,D类功放适合于频率较低的应用,并不适用于射频领域,D类放大器现在主要应用于音频领域。如图所示为D类功率放大器的电路结构。 2.1.2 E类功率放大器 为了克服D类功放在不完全导通与不完全截止过程中引入的较大损耗,提出了E类功放的设计。与D类功放不同,E类功率放大器采用单只晶体管,可工作于较高的频段,漏极电流为直流和漏极分路电容的充电电流之和。E类放大器是一种开关式的高效率放大器,理想情况下,效率可达100%。在这种功率放大器中,足够强的驱动电压使得输出功率管在完全导通和完全截止之间瞬时切换,流过开关的电流与开关上电压波形没有重叠,因而开关不消耗功耗。E类功率放大器的主要设

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

TDA2030A单电源功放的设计

一、设计目的 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.学会TDA2030A单电源功放的设计方法和性能指标测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 二、设计内容 1.TDA2030A单电源功放的设计 三、设计任务及要求 1. TDA2030A单电源功放: (1).TDA2030A极限参数: (2).T DA2030A主要参数(VCC= 16V,RL=4Ω,Ta=25℃): 2 3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。 4.批准后,进实验室进行组装、调试,并测试其主要性能参数。 四、设计步骤 1.电路图设计: (1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出TDA2030A单电源功放方框图。 (2)系统分析:根据系统功能,选择各模块所用电路形式。 (3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。 (4)总电路图:连接各模块电路。 2.电路安装、调试: (1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。 (2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。 (3)重点测试稳压电路的稳压系数。

(4)将各模块电路连起来,整机调试,并测量该系统的各项指标。 五、总体设计思路 1.TDA2030A单电源功放的设计原理 六、实验设备及元器件 1.万用表 2.示波器 3.交流毫伏表 4.计算机 5.腐蚀设备 6.电烙铁 7.转印机 8.打印机 9.TDA2030A单电源功放元件清单:

音响入门到高手必看知识

音响入门到高手必看知识音箱作为声频的终端器材,仿佛人的嗓门,在很大程度上决定了一套音响的好坏。可以毫不夸张地说:选择一对好的音箱是一套音响成功的关键所在,来不得半点马虎。然而纵观当今音响市场,成品音箱品牌不下数百种,其中不乏著名的国际品牌:如美国的BOSE(博士)、JBL、INFINITY(燕飞利仕)、Westlake Audio(西湖)、PolkAudio(音乐之声):英国的ATC(皇牌)、B&W、T annoy(天朗)、MonitorAudio(猛牌)、KEF、HARBETH(雨后初晴):丹麦的(皇冠)DYNAUD10(丹拿)、DALI(丹尼)、Jamo(尊宝):德国的Heco(德高)、密力(Maagnat)、ELAC(意力);法国的梦幻之声(VIS10NACOUSTIQUE)、JMLab(劲浪):国产精品有美之声战神系列、金琅、惠威、新德克、福音、小旋风等等,林林总总、不胜枚举。质量参差不齐,价格天差地别。即便是同品牌同系列的音箱,往往音质高出一丁点,价格就会成几何积数倍上升。这正是因为自人类发明电子声频工程以来,唯音箱进步最慢、技术最薄弱。据英国《发烧天书》记载:一部成名多年的英国老牌长青树音相Rogersls 3/5自六十年代推出,畅销近四十年,其音色这纯正优雅,至今仍为众多资深Hi-Fi发烧友视为炙手可热的抢手货。在音响科技高度发展的今天,实在有些令人费解。所以您可千万别小看了音箱的打造,别以为音箱只不过是把几个喇叭与几个Hi-Fi或Hi-END箱。音箱的学问大了,大到没法用

书写,各家各派众说纷纭。正如医学界的中医与西医之争,或如医治一些疑难杂症:说得明白的治不好病,治得好病的却说不明白。然而对消费者而言,我们只要学会如何鉴别与挑选就成。那么有没有一种通俗简便的方法,让毫无经验的大多数消费者不是凭贵价、不是碰运气,而是凭下面介绍的音箱试听“七要点”来学会判断一对音箱的好坏: 1.试听前对音箱的初步了解 对于一对音箱的最初了解,可用“观、掂、敲、认”的步骤来鉴别:即一观工艺,二掂重量、三敲箱体、四认铭牌。 外观工艺就是从音箱外表的第一部象来判断该次和品质优劣:用天然原木精工打造的音箱当然最好,许多天价级的世界名牌至尊音箱,包括意大利的Chario(卓丽)、Guarneri Homage(名琴)等,但此类好箱因环保、资源匮乏加工工艺难度大,时间长等因素,绝不会普及得象随处可见的“飘柔”洗发水,价格肯定没法低。故常见的音箱均是以MDF中密度纤维板表面敷以一层薄薄的木皮做装饰:敷真木皮精工外饰的音箱,尤其是如酸枝、雀眼、花梨、胡桃、桢楠、红橡等珍稀木皮,其天然木纹视觉效果极好,手感滑腻舒适。尤其以对称蝴蝶花纹真木皮经多层涂复打磨钢琴亮漆者,大多均可视为中高档精品音箱,仿冒品极少。用PVC塑料贴皮的箱子属大路货,虽做工精细,最好也只能算中低档货色。而以本纹纸贴面装饰的箱子虽然看上去极时应多注意箱体背后的贴皮接缝和喇叭安装位挖扎工艺是否精确到位。假冒伪

专业功放电路图

专业功放电路图 贝拉利BEILARLY PM-700专业功放 根据贝拉利PM-700功放的实物绘制的一个声道的主功放电路图。Q1、Q2两只2SC2383构成差分输入级,R8、ZD1、C3组成差分放大器的恒流源。Q1的基极增加了R3、R4、RP1、D1、D2辅助电路,一是对输入端进行直流钳位,通过调整RP1可对输出中点进行调整;二是对输入的交流信号进行限幅,使输入信号峰峰值被限制在±0.7V以内,防止输入信号过强。电压放大级Q3、Q4组成第二级差分放大器,Q5、Q6构成集电极负载。恒压偏置管Q7、Q8两管并联使用,Q8由引线连接安装在散热片上,起到温度补偿作用。 该机每个声道的最大输出功率接近1000W,为保证足够的推动电流,电路设置了两级电流放大。第一级Q9、Q10使用一对中功率管,两只中功率管b、c极间设有吸收电容C11、Cl2,进行高频相位补偿防止高频自激。第二级Q11、Q12 则使用一对大功率管。Q11、Q12发射极之间R25、D3将后边七对功率管偏置钳位在很低的水平,上下对管b-e结偏置电压只有±0.3V左右。实际测量功率管的b-e结电压只有±0.1V,Q11、Q12的b-e结电压只有±0.5V。这就是该机的电

路设计独特之处,末端的低偏置使整机的静态功耗降到最低点。不追求理论上的高保真,力求使用中不失真的大功率输出和强负荷的经久耐用。这样的电路设计更适合商业性宣传演出。 一般功放保护电路中只在末级一对功率菅发射极各设置一 只取样电阻,可以说是抽选取样。而该机在每个功率管发射极都设有取样电阻{即R54~R67),任何一只功率管出现过流异常都会使Q27导通,经D8、R70使保护电路启控断开继电器。上下取样信号分别加在Q27的基极和发射极。NPN 管一侧有过流现象时发射极电阻压降增加,升高后正电压经过取样电阻加到Q27基极使其导通。PNP管一侧有过流发生时,将会有负电压加到Q27发射极,也等于抬高其基极电压而导通。D6、D7将Q27基极和发射极对地直流电压钳位,当输出中点发生偏移时Q27也将导通启动保护电路。韵沁专业音响设备制造有限公司 是香港贝拉利专业音响有限公司在中国大陆投资兴建的全 资有限责任公司,面向中国大陆代理制造销售BEIPI厅堂场馆扩声系列、娱乐场所建声系列,电影立体声还音系列BEIPI 功率放大器,HS与ALPHA电影立体声处理器等产品;组装、生产各类中高档专业扬声器系统,舞台机械设备和电气配套

ATX电源改功放电源

ATX 电源改功放电源 本人将旧ATX 电源改造为±22V 电源,加一功放电路做成功放,成本约70元,效果相当不错,已成功改造3台。用开关电源给功放供电最明显的是交流声非常小。本文主要介绍ATX 电源的改造方法,供参考。 首先要选定功放电路,然后才能根据功放要求改造电源。功放体积要小,否则放在电源内就困难了。我用的是小余电子买的LM1875的PCB 板,功放IC 用TDA2050,改造一下做成电流反馈型功放,固定在电源外壳的内部,外面加散热器。TDA2050最大输出功率32W ,最高电压25V ,最大输出电流5A ,电源电压按22V 设计。下面重点介绍采用TL494芯片电源的改造。 一、从回收电脑的地方买一个坏电源,不超过10块钱,先把它修好,如果不会修也就别想改了。一定要先修好再改,不然改造完了不能正常工作查故障可就麻烦了。修好后将输出部分所有连接线、电感、电容、LM339和整流部分全部拆除。改造要利用原来的焊孔和线路计划安放新器件,因为器件较少很容易放下,无法走通时可通过切断,焊连线跳线措施完成线路。输入电路和辅助电源部分不要动,不在电路板上的PFC 和EMI 滤波要拆掉,因为空间紧张。 二、主变压器改造 输出变压器的拆开重绕,是整个改造中难度最大的一步,方法是: 1、用电烙铁将变压器磁芯加热70 多度,拆开磁芯(磁芯易碎,温度高时更易碎!),完好的拆下磁芯是非常关键的一步,如果磁芯坏了市场上也能买到。 2、ATX 电源主变压器普遍采用三明治绕法,高压绕组分成两部分在最里层和最外层,低压绕组在中间,这样的好处是漏感小。拆掉外层的一次绕组,记清这一绕组的匝数和绕向。接着拆掉所有的二次绕组,只保留最内层的一次绕组,检查内层绝缘材料是否破损,必要时再加一层胶布,注意如果击穿将使次级输出带电,很危险! 3、一般ATX 电源变压器的次级5V 是3匝,12V 是7匝,每匝1.7V 左右,改造后也要保证每匝1.7V 左右,高电压小电流可取稍高些,低电压大电流可取稍低些。本电源 V V 7.122=13匝。 4、准备直径0.8的漆包线10米(可以到电机修理部去找)。绕法是双线并绕13 匝,一定要绕的密实平整,绕好后把一组的头和另一组的尾相接做为接地端。再用绝缘材料包好,这一层间是高压一定要包好绝缘材料。 5、最后把拆下的外层一次线圈按原匝数原方向绕回,方向错了相当于一次线圈短路。焊好外引线,二次侧使用原5V 和12V 输出的引角并联,分别做正负输出用(见图)。外面再包上一层绝缘材料。装好磁芯,用胶粘牢。磁芯与骨架之间不能有缝隙,可以塞牙签,否则重负载时变压器会吱吱叫。

线性功放知识简介

目录 1、术语、定义和缩略语 2、为什么宽带信号要采用线性功放技术(NCDMA、WCDMA) 3、功放线性功化技术分类(前馈和预失真) 4、预失真技术原理简介 5、前馈技术原理 6、800MHz 30W线性功放实现原理和调试方法 7、工艺结构及信号流向图 8、附录 一、术语、定义和缩略语 1、前馈技术:利用主环路和误差环路来改善功率放大器的非线性失真,即将主环路提取的交调失真信号,在误差环中反相并放大后和主功率放大器输出的信号进行交调失真抵消,从而改善功率放大器非线性失真的一种技术 2、主环:将功率放大器输出的信号(含交调失真信号)与输入的信号(不含交调失真信号)在载频抵消电路中进行载频抵消,其输出只含交调失真信号的一种闭环电路 3、误差环:将功率放大器输出的信号(含交调失真信号)与只含交调失真的信号在交调抵消电路中进行交调失真抵消,其输出只含较小失真信号的一种闭环电路。 4、载频抵消:依靠一个定向耦合电路,将耦合通路上的载频信号(含交调失真信号)与通道上同载频信号在定向耦合电路上进行模拟抵消载频信号的过程 5、交调抵消:依靠一个定向耦合电路,将主环输出的交调失真信号放大后耦合在主功率输出的通道上,在定向耦合电路上模拟抵消交调失真信号的过程 6、预失真技术:是依靠在功率放大器的输入通道中插入预失真部件,造成输入信号的预先岐变失真,由于预失真部件的失真特性与功率放大器的非线性失真特性正好相反,从而消除功率放大器输出信号中的非线性失真产物,实现功率放大器线性化改善目标的信号处理方案。预失真技术根据预失真器件的实现方法可以分为模拟预失真和数字预失真。利用模拟器件的非线性行为直接实现功率放大器输入信号预失真的方法称为模拟预失真,通过数字算法对基带信号进行处理实现预失真的方法称为数字预失真。 C D M A码分多址(C o d e D i v i s i o n M u l i t i p l e A c c e s s) L M D S本地点对多点分布系统(L o c a l M u l i t i p o i n t D i s t r i b u t i o n S y s t e m) W L A N无线局域网(W i r e l e s s L o c a l A r e a N e t w o r k) A C P R邻信道泄漏功率抑制比(A d j a c e n t C h a n n e l L e a k a g e P o w e r R a t i o) D S P数字信号处理器(D a t a S i g n a l P r o c e s s o r) F P G A现场可编程门阵列(F i e l d P r o g r a m G a t e A r r a y) L P A线性功率放大器(L i n e r P o w e r A m p l i f i e r) V S W R电压驻波比(V o l t a g e S t a n d i n g W a v e R a t i o) R F射频(R a d i o F r e q u e n c y) I F中频(I n t e r m e d i a t e F r e q u e n c y)

音 响 基 础 知 识

基础知识 一、功放 1、功率放大器:用来放大音频信号的器材,也就是说前置放大器和功率放大器(纯 功放)的统称。 2、中心机:是由功放、卡拉OK、独立声道输入系统、均衡器、调音台等器材组 成(如H2000,包括独立声道输入系统、独立Hi-Fi音乐中心、专业宽频带卡 拉OK、专业均衡器组成) 3、纯功放:即两声道,要求对音频信号进行高保真功率放大的放大器。(后级放大 器) 4、AV功放:用于家庭影院音响系统的放大器。 放大器: 按功能分: ⑴纯功放 ⑵A V功放:①4声道放大器(定向逻辑) ②5+1声道放大器(THX) ③5.1声道放大器(AC-3、DTS)流行 ④6.1声道放大器(THX EX、DTS EX) ⑤7声道放大器(AC-3+DSP) ⑶卡拉OK放大器:①卡拉OK扩音机(有扩音) ②卡拉OK机(无扩音,功放放大) 按名称分: ⑴晶体管放大器(石机) ⑵电子管放大器(胆机) ⑶电子管和晶体管放大器(混合机) ⑷合并式放大器 ⑸前级放大器、后级放大器 ⑹甲类放大器 ⑺甲乙类放大器 ⑻单声道放大器 ⑼双声道放大器 前级放大器:对音频信号进行电压放大的电路和对音频信号进行必要控制的电路(主要进行音频处理) 后级放大器:将前级放大器放大和控制后级的信号进行专门的功率放大。 合并式放大器:将前级放大器和后级放大器装置在一个外壳内的放大器。 胆机:用电子管作为放大器件构成的放大器(不能放置于A V功放内)即电子管。特点:低音柔和,传输音频慢。 石机:用晶体管作为放大器件构成的放大器。 混血机:用晶体管和电子管共同构成的放大器。(这种机器充分利用晶体管和电子管的特性来发挥各自的长处,改善了石机的冷色面、金属声,改良胆机的低音力度和速度,使之具有混血的优势,主要用于纯功放。) 甲类放大器:一种性能优越的放大器,主要用于纯功放中。(它以牺牲放大器的功率换取高品质的音质,以声音靓丽著称)

短波线性功率放大器调试

短波线性功率放大器的原理与调试 本文就300瓦线性短波功率放大器的原理和调试作个简单介绍。 1 电路结构: z功率放大器由T1(9:1)输入变压器,T3,T4组成的1:4输出变压器,T5,C6,R11-R14组成的负反馈电路,U1,R3,R4,R15,D1,T2等组成的偏流电路,C2-C5,R7-R10组成的频率补偿电路,Q1,Q2功放管等组成的AB类推挽放大器。 z T1把50欧的输入端阻抗转换成5.5欧以配合晶体管的输入阻抗,由C1补偿T1的寄生电感。 z T5,C6,R11-R14组成负反馈电路,C6与T5的一组线圈(1圈)组成谐振电路,降低高频段的反馈量,并减少负反馈电阻R11-R14对T1次级阻抗的影响。 z C2-C5是频率补偿电容,目的是提高放大器在高端的增益。 z上面所述电路的元件参数对放大器的输入驻波、增益的平坦性等有很大的影响,在调试中要通过多次试验而取得放大器各种参数的平衡。 z U1,R3,R4,R15,D1,T2等组成的偏流电路,由紧贴在功放管上的D1跟踪功放管的温度变化,保持偏流的稳定。 z R16是用来检测放大器的工作电流的。 z输出变压器T4的阻抗比是1:4,在低阻端阻抗为12.5欧,根据推挽放大器的理论可计算出功放的不失真最大输出功率 P max=2(48-2)(48-2)/12.5=338W。(P max=2(Vcc-Vsat)*2/R) z输出变压器采用传输变压器形式,用3mm的25欧电缆绕制。 z C12-C17是隔直耦合电容,隔离直流电位,耦合高频信号。 z功放管是用货源较多的拆机ENI21(类似于MRF448,原用于13.56MHZ的射频源),当然可以用TH430,2SC2652,681033等晶体管来代替,但反馈和频率补偿网络的相关参数要作调整。

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

相关主题
文本预览
相关文档 最新文档