当前位置:文档之家› 脉冲阀常见故障及修复

脉冲阀常见故障及修复

脉冲阀常见故障及修复
脉冲阀常见故障及修复

脉冲阀常见故障及修复

脉冲阀膜片是一个由安装有用来封堵压缩空气管道或者说封堵阀的出气口的铆头,放气卸荷孔和四周有固定支撑用的螺栓孔的一整张优质橡胶膜片,是电磁脉冲阀中的关键控制部件。

脉冲阀的工作原理:

脉冲阀膜片把脉冲阀分为前后二个气室,当电磁脉冲阀在脉冲袋式除尘器清灰系统中接通清洁压缩空气时,压缩空气通过节流孔,进入后气室,此时后气室的压力将膜片紧贴阀的出气口,脉冲阀处于关闭状态,脉冲控制仪输出信号,使脉冲阀衔铁移动,阀后气室放气孔打开,后气室迅速失压,使膜片后移,压缩空气通过阀的出气口喷吹,脉冲阀处于开启状态喷吹开始,脉冲控制仪输出的电信号消失,脉冲阀的电磁先导头衔铁复位,后气室放气孔关闭,后气室压力升高使脉冲阀膜片紧贴阀的出气口,脉冲阀处于关闭状态,喷吹停止,喷吹时间的长短气量大小由控制仪来进行控制。

1、弹簧损坏,脉冲阀阀芯上的弹簧容易损坏,造成的表象是脉冲阀长期向喷吹口放气,处理方式是更换弹簧。

2、胶垫损坏,使用时间长了以后,脉冲阀阀芯上的胶垫容易损坏,造成的表象是脉冲阀长期向喷吹口放气,处理方式是更换胶垫。

3、阀芯污垢,由于进气不清洁,造成阀芯处的污垢积结,造成的表象是喷吹口长期进气或者得电后脉冲阀不动作,处理方式是清洗阀芯。

4、膜片损坏,长期工作后,膜片易疲劳、氧化等,造成的表象是泄压口长期放气,脉冲阀不工作,处理方式是更换膜片。

5、节流孔堵塞或损坏,进气不清洁易导致节流孔堵塞,表象是脉冲阀长期向喷吹口放气,处理方式是清洗节流孔;节流孔损坏或缺失,令节流孔失去截留作用,导致泄压不正常,表象是得电后脉冲阀有动作,泄压口放气,但脉冲阀不进行喷吹,处理方式是个更换节流孔。

调节阀的常见故障及解决办法

在自动化程度较高的化工控制系统,调节阀作为自动调节系统的终端执行装置,接受控制信号实现对化工流程的调节。它的动作灵敏度直接关系着调节系统的质量,据现场实际统计大约有75%左右的故障出自调节阀。因此,在日常维护中总结分析影响调节阀安全运行的因素及其对策显得尤为重要。 1、卡堵 调节阀经常出现的问题是卡堵,常出现在新投入运行的系统和大修投运初期,由于管道内焊渣、铁锈等在节流口和导向部位造成堵塞从而使介质流通不畅,或调节阀检修中填料过紧,造成摩擦力增大,导致小信号不动作、大信号动作过头的现象。 此类故障处理办法:可迅速开、关副线或调节阀,让赃物从副线或调节阀处被介质冲跑。另外还可以用管钳夹紧阀杆,在外加信号压力的情况下,正反用力旋动阀杆,让阀芯闪过卡处。若不能解决问题,可增加气源压力、增加驱动功率反复上下移动几次,即可解决问题。如果还是不能动作,则需要对控制阀做解体处理,当然,这一工作需要很强的专业技能,一定要在懂行的人员或专家协助下完成,否则后果更为严重。 2、泄漏 调节阀泄漏一般有调节阀内漏、填料泄漏和阀芯、阀座变形引起的泄漏几种情况,下面分别加以分析。2.1 阀内漏 阀杆长短不适,气开阀阀杆太长,阀杆向上的(或向下)距离不够,造成阀芯和阀座之间有空隙,不能充分接触,导致不严而内漏。同样气关阀阀杆太短,也可导致阀芯和阀座之间有空隙,不能充分接触,导致关不严而内漏。解决方法:应缩短(或延长)调节阀阀杆使调节阀长度合适,使其不再内漏。 2.2 填料泄漏 填料装入填料函以后,经压盖对其施加轴向压力。由于填料的塑性变形,使其产生径向力,并与阀杆紧密接触,但这种接触并非十分均匀,有些部位接触的松,有些部位接触的较紧,甚至有些部位根本没有接触上。调节阀在使用过程中,阀杆同填料之间存在着相对运动,这个运动叫轴向运动。在使用过程中,随着高温、高压和渗透性强的流体介质的影响,调节阀填料函也是发生泄漏现象较多的部位。造成填料泄漏的主要原因是界面泄漏,对于纺织填料还会出现渗漏(压力介质沿着填料纤维之间的微小缝隙向外泄漏)。阀杆与填料间的界面泄漏是由于填料接触压力的逐渐衰减,填料自身老化等原因引起的,这时压力介质就会沿着填料与阀杆之间的接触间隙向外泄漏。 出现此类问题时的解决对策:为了使填料装入方便,在填料函顶端倒角,在填料函底部放置耐冲蚀的间隙较小的金属保护环,注意该保护环与填料的接触面不能为斜面,以防止填料被介质压力推出。填料函与填料接触部分的表面要精加工,以提高表面光洁度,减小填料磨损。填料选用柔性石墨,因为它的气密性好、摩擦力小,长期使用变化小,磨损的烧损小,易于维修,且压盖螺栓重新拧紧后摩擦力不发生变化,耐压性和耐热性良好,不受内部介质的侵蚀,与阀杆和填料函内部接触的金属不发生点蚀或腐蚀。这样,有效地保护了阀杆填料函的密封,保证了填料密封的可靠性,使用寿命也有很大地提高。 2.3 阀芯、阀座变形泄漏 阀芯、阀座泄漏的主要原因是由于调节阀生产过程中的铸造或锻造缺陷可导致腐蚀的加强。而腐蚀介质的通过,流体介质的冲刷也会造成调节阀的泄漏。腐蚀主要以侵蚀或气蚀的形式存在。当腐蚀性介质在通过调节阀时,便会产生对阀芯、阀座材料的侵蚀和冲击,使阀芯、阀座成椭圆形或其他形状,随着时间的推移,导致阀芯、阀座不匹配,存在间隙,关不严而发生泄漏。 解决方案为:关键把好阀芯、阀座的材质选型关。选择耐腐蚀的材料,对存在麻点、沙眼等缺陷的产品要坚决剔除。若阀芯、阀座变形不太严重,可用细砂纸研磨,消除痕迹,提高密封光洁度,以提高密封性能。若损坏严重,则应重新更换新阀。 3、振荡 调节阀的弹簧刚度不足,调节阀输出信号不稳定而急剧变动易引起调节阀振荡。还有所选阀的频率与系统频率相同或管道、基座剧烈振动,使调节阀随之振动。选型不当,调节阀工作在小开度存在着剧烈的流阻、流速、压力的变化,当超过阀的刚度,稳定性变差,严重时产生振荡。 解决对策:由于产生振荡的原因是多方面的,要具体问题具体分析。对振动轻微的,可增加刚度来消除,

液压阀的种类

液压阀的种类(所有的) 溢流阀﹑减压阀、顺序阀、节流阀、集流阀、分流阀、调速阀、单向阀、换向阀、电磁阀、反向控制阀 压力控制阀:溢流阀﹑减压阀和顺序阀 流量控制阀:节流阀,集流阀,分流阀,调速阀 方向控制阀:单向阀和换向阀 压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。 (1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。 (2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。 (3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。 流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为5种。 (1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。 (2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。 (3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。 (4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。 (5)分流集流阀:兼具分流阀和集流阀两种功能。 方向控制阀按用途分为单向阀和换向阀。 单向阀:只允许流体在管道中单向接通,反向即切断。 换向阀:改变不同管路间的通﹑断关係﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与 A 通,B 与O 通;当阀芯移到左位时,P 与 B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 换向阀换向阀的作用是利用阀芯位置的改变,改变阀体上各油口的连通或断开状态,从而控制油路连通、断开或改变方向。生产销售换向阀的知名厂商有:Parker美国派克,DENISON美国丹尼逊,HAWE德国哈威,TOYOOKI日本丰兴,VICKERS美国威格士等。 电磁换向阀 (1)结构原理 1)WE型电磁换向阀图43、图44、图45和图46分别是不同通径的WE型电磁换向阀的结构原理图。 电磁换向阀的基本工作原理是相同的,通过电磁铁控制滑阀阀芯的不同位置,以改变形油液的流动方向。当电磁铁断电时,滑阀由弹簧保持在中间位置或初始位置(脉冲式阀除外)。若推动故障检查按钮可使滑阀阀芯移动。

电动阀门电装(电动执行机构)故障分析与维修

阀门电动执行器故障判断及维修 扬州贝尔阀门控制有限公司上海湖泉阀门有限公司技术部廖雄电话: 故障报修故障分析技术咨询请来电 .过力矩故障 1.普通户外型过力矩故障现象为通电后电源指示灯和故障灯 亮,开关不运行; 2.智能型过力矩故障现象为通电后频显过力矩故障,开关不运行; 以上排除故障方法为手动开关阀门,打开外盖回动过力矩触电,故障随之解除(智能型还得现场远程切换后频显才恢复正常)。 二.跳闸故障 1.送电跳闸:故障现象为松不上电,短路,排除方法为检测 线路是否短路,设备是否进水; 2.开关运行跳闸:故障现象为通电正常,阀开阀关运行跳闸,排除方法为:首先查看电流保护开关大小,如因电流保护开关小而导致更换电流保护开关即可排除故障;其次检测电机绕组电阻值,电阻值趋近于0说明电机烧坏,更换电机,故 障排除;最后如果执行器电压是220V的以上两项都正常,那用万用表测电容两边的电阻发现有一个开路,将其更换后故障排除。

.正反转故障出现反转故障表现为控制阀开实际发关运行,反之一样(普通户外型表现为只能开或者只能关,而起开关不会停止)故障排除方法为仍以调换两颗电机线即可; 备注:普通开关型如出现开关运行时一会儿正转一会儿反转现象故障并且执行机构运行噪音大,故障表现为输入电机电源缺项。 四.智能型显示故障 1.指示灯故障 1.1..故障现象:给电动执行器通电后发现电源指示灯不亮, 伺放板无反馈,给信号不动作。 故障判断和检修过程: 因电源指示灯不亮,首先检查保险管是否开路,经检查保险管完好,综合故障现象,可以推断故障有可能发生在伺放板的电源部分,接着检查电源指示灯,用万用表检测发现指示灯开路,更换指示灯故障排除。 1.2.故障现象:电动执行器的执行机构通电后,给信号开可以,关不动作。故障判断和检修过程:先仔细检查反馈线路,确认反馈信号无故障,给开信号时开指示灯亮,说明开正常,给关信号时关指示灯不亮,说明关可控硅部分有问题,首先检查关指示灯,用万用表检测发现关指示灯开路,将其更换后故障排除。 2.电阻电容

高加联成阀现场操作的实际问题

高加联成阀现场操作的实际问题 草图如下。 一:平常投运正常运行时,阀门1和2是全开的吗?5和6是全开的吗?P点的压力是多少,节流孔板来凝结水时P点的压力是多少?,联成阀动作时P点的压力是多少?,可惜我的机组此处无压力表。 二:这是高加进水的入口联成阀,对于里面的结构没有拆开看过,入口阀体上置活塞关闭系统,投运的时候,旋转上方强制手轮,随着手轮的旋转阀杆C跟着手轮向上移动,而阀杆D 不动,待强制手轮旋转到位,打开注水,然后阀杆D才会慢慢向上移动,这时候联成阀就缓慢的打开了。问这个活塞关闭系统到底是什么呢?里面有弹簧吗?强制手轮关闭的时候,弹簧被压缩,待强制手轮完全打开,弹簧处自由状态,不知道这样的理解对不对。总之此阀杆C向上移动的时候,阀杆D不会向上移动。 三:高加联成阀动作。电磁阀接受误信号,开启,导致联成阀被关闭,在关闭的过程中,阀杆D是向下移动的,阀杆D

是如何做到向下移动的呢?如果阀杆D向下移动,按我刚才的设想,活塞的弹簧会被拉伸,不知道这样的理解对不对。 四:电磁阀开启后,高加联成阀关闭,给水走旁路,这时我们再重新投入联成阀,恢复电磁阀,让电磁阀处关闭状态,这时注水,但是不关闭凝结水进水阀门1联成阀阀杆D怎么也起不来,不会向上移动。这时就很纳闷,阀杆D为什么顶不起来,表明活塞上还有大量凝结水,动作都很长时间了,为什么活塞上的凝结水还没有经过下部的排地沟小管排个差不多呢? 直没人回啊,我来说说。其实找个说明书看看就知道了,你也不怕麻烦啊,还画个图。 记得论坛里有相关的资料,也可搜索下看看,但不一定就和你厂的一样,只能起个参考作用。 你厂的这个带手轮的联成阀倒没见过。说说我厂的吧。对照下可能有参考作用。 我厂的联成阀没有这个手轮。开启都是靠水压的作用来实现,不过在高加出口装了个手动门。 我厂联成阀里面是没有弹簧的。开启时,起保护作用的电磁阀关闭状态,(和你图上的一样,水源是化学的除盐水.母管来的,如你厂的作用原理和我说的一样,电磁阀管上的那几个阀门运行中应该是打开的)。 投入时先开启给水母管来的注水阀,联成阀的活塞下部进水,并将联成阀顶起,给水进入高加,确认联成阀全开后,关闭

液压系统常见故障及排除方法

液压系统常见故障及排除方法 一液压泵常见故障分析和排除方法 故障现象故障分析排除方法 不出油1、电动机转向不对1、检查电动机转向 输油量不足2、吸油管或过滤器堵塞2、疏通管道、清洗过滤器、换新油 压力上不去3、轴向间隙或径向间隙过大3、检查更换有关零件 4、连接泄露,混入空气4、紧固各连接处螺钉,避免泄露,严防 空气混入 5、油粘度太大或油温升太高5、正确选用油液,控制温升 噪音严重1、吸油管及过滤器堵塞或过滤器容量小1、清洗过滤器使过滤器畅通、正确选用 过滤器 压力波动2、吸油管密封处泄露或油液中有气泡2、在连接处或密封处加点油,如果噪音 减小,可拧紧接头处或更换密封圈; 回油管口应在油面以下,和吸油管要 有一定距离 3、泵和联轴节不同心3、调整同心 4、油位低4、加油液 5、油温低或粘度高5、把油液加热到适当温度 6、泵轴承损坏6、检查(用手触感)泵轴承部分温升 温升过高1、液压泵磨损严重,间隙过大泄漏增加1、修磨零件,使其达到合适间隙 2、泵连续吸气,液体在泵内受绝热高压,2、检查泵内进气部位,及时处理 产生高温 3、定子曲面伤痕大3、修整抛光定子曲面 4、主轴密封过紧或轴承单边发热4、修整或更换 内泄漏1、柱塞和缸孔之间磨损1、更换柱塞重新配研 2、油液粘度过低,导致内泄2、更换粘度适当的油液 二、液压缸常见故障分析和排除方法 故障现象故障分析排除方法 爬行1、空气入侵1、增设排气装置,如无排气装置,可开动液压 系统以最大行程使工作部分快速运动,强迫排气 2、不同心2、校正二者同心度 3、缸内腐蚀,拉毛3、轻微者去除毛刺,严重者必须镗磨

冲击1、靠间隙密封的活塞和液1、安规定配活塞和液压缸的间隙,减少泄露压缸之间间隙过大节流阀 失去作用 2、端头的缓冲单向阀失灵,缓冲不起作用2、修正研配单向阀和阀座 推力不足1、液压缸或活塞配合间隙太大或O型密封1、单配活塞和液压缸的间隙或更换O 或工作速度圈损坏造成高低压腔互通型密封圈 逐渐下降2、由于工作时经常用工作行程的某一段2、镗磨修复液压缸孔径,单配活塞 甚至停止,造成液压缸孔径线性不良(局部腰鼓) 至使液压缸高低压油腔互通, 3、缸端油封压得太紧或活塞杆弯曲3、放松油封,以不漏油为限,校直活塞 使摩擦力或阻力增加杆 4、泄露过多4、寻找泄露部位,紧固各结合面 5、油温太高,粘度太小,靠间隙密封或5、分析发热原因,设法散热降温,如密 密封质量差的油缸行速变慢,若液压缸封间隙过大则单配活塞或增设密封环 两端高低压油腔互通,运行速度逐步减 慢或停止 原位移动1、换向阀泄露量大1、更换换向阀 2、差动用单向阀锥阀和阀座线接触不良2、更换单向阀或研磨阀座 3、换向阀机能选型不对3、重新选型,有蓄能器的液压系列一般 常用YX或Y型机型 三、溢流阀的故障分析和排除方法 故障现象故障分析排除方法 压力波动1、弹簧太软或弯曲1、更换弹簧 2、锥阀和阀座接触不良2、如锥阀是新的即卸下调整螺母将导杆推 几下,使其接触良好,或更换锥阀 3、钢球和阀座密配合不良3、检查钢球圆度,更换钢球,研磨阀座 4、滑阀变形或拉毛4、更换或修研滑阀 5、锥阀泄露5、检查,补装 调整无效1、弹簧断裂或漏装1、更换弹簧 2、阻尼孔堵塞2、疏通阻尼孔 3、滑阀卡住3、拆出、检查、修整 4、进出油口反装4、检查油源方向 5、锥阀泄露5、检查、修补 泄露严重1、锥阀或钢球和阀座的接触不良1、锥阀或钢球磨损时更换新的锥阀或钢球 2、滑阀和阀体配合间隙过大2、检查阀芯和阀体的间隙

液压阀常见故障维修共15页文档

溢流阀常见故障与解决 1.系统压力波动 引起压力波动的主要原因: ①调节压力的螺钉由于震动而使锁紧螺母松动造成压力波动;②液压油不清洁,有微小灰尘存在,使主阀芯滑动不灵活.因而产生不规则的压力变化.有时还会将阀卡住;③主阀芯滑动不畅造成阻尼孔时堵时通;④主阀芯圆锥面与阀座的锥面接触不良好,没有经过良好磨合;⑤主阀芯的阻尼孔太大,没有起到阻尼作用;⑥先导阀调正弹簧弯曲.造成阀芯与锥阀座接触不好,磨损不均。 解决方法:①定时清理油箱,管路,对进入油箱,管路系统的液压油要过滤;②如管路中已有过滤器,则应增加二次过滤元件.或更换二次元件的过滤精度;并对阀类元件拆卸清洗,更换清洁的液压油;③修配或更换不合格的零件;④适当缩小阻尼孔径。 2.系统压力完全加不上去 原因: A:①主阀芯阻尼孔被堵死,如装配对主阀芯未清洗干净,油液过脏或装配时带人杂物;②装配质量差,在装配时装配精度差.阀间间隙调整不好,主阀芯在开启位置时卡住,装配质量差;③主阀芯复位弹簧折断或弯曲,使主阀芯不能复位。 解决方法:①拆开主阀清洗阻尼孔并从新装配;②过滤或更换油液; ③拧紧阀盖紧固螺钉更换折断的弹簧。 B:先导阀故障,①调正弹簧折断或未装入,②锥阀或钢球未装,③锥阀碎裂。 解决方法:更换破损件或补装零件,使先导阀恢复正常工作。 C:远控口电磁阀未通电(常开型)或滑阀卡死。 解决方法:检查电源线路,查看电源是否接通;如正常,说明可能是滑阀卡死,应检修或更换失效零件。 D:液压泵故障:①液压泵联接键脱落或滚动;②滑动表面间问隙过太;③叶片泵的叶片在转子槽内卡死;④叶片和转子方向装反;⑤叶片中的弹簧因所受高频周期负载作用,而疲劳变形或折断。

溢流阀在液压系统中的作用

溢流阀在液压系统中起着控制压力的作用,如果出现故障,将会影响整个系统的稳定性、可靠性、运动粘度及正常工作。因此,对溢流阀出现的故障应引起足够重视,现介绍几种常见故障及维修方法。 1 .系统压力升不高 ( 1 )溢流阀主阀芯锥面密封差产生的原因有:①主阀芯锥面磨损或不圆。②阀座锥面磨损或不圆。③锥面处有脏物粘住。④主阀芯锥面与阀座锥面不同心。⑤主阀苍工作时有别劲现象,使阀芯与阀座配合不严密。⑥主阀压盖处有泄漏( 如密封垫损坏,装配不良,压盖螺钉有松动等) 。 ( 2 )先导阀故障调压弹簧弯曲或太弱、太短。锥阀与阀座结台处密封差( 如锥阀与阀座磨损,锥阀接触面不圆,接触面太宽容易进^脏物或被胶质粘住) 。 ( 3 )远控口电磁阀故障电磁阀常闭位置时内泄严重;阀口处阀体与滑阀磨损严重;滑阀换向未达到最终位置,造成油封长度不足;远控口管接头处有外泄漏维护方法:清洗、修配阀芯与阅座.使之密封良好,必要时更换溢流阀,消除外泄漏。 2.压力波动、不稳定、不规则的压力变化原因:油液中有微小灰尘,使主阀芯滑动不灵活,有时会使阀卡住,产生不规则的压力变化,或者主阀芯时堵时通。不顺畅。其次是主阀芯阀面与阀座锥面接触不良,磨损不均。阻尼L 径太大,阻尼作用差。先导阀调整弹簧弯曲锥阀与锥阀座接触不好、磨损不均。调节压力的螺钉由于锁紧螺母松动而使压力变动。 维护方法:无论是新旧机床的液压系统,在使用前和维修后,油箱和管路都要进行清洗,进入系统的液压油要过滤;阀类要拆卸清洗,修配或更换不合格的零件或整个阀,适当减小阻尼孔径。 3.压力完全加不上去 ( 1 )主阀故障由于主阀芯阻尼孔被堵,主阀芯在开启位置卡住卡死.主阀芯复位弹簧折断或弯曲,使主阀芯不能复位一维护方法:清洗阻尼孔,使之畅通;油液过滤或更换;拆开检修,重新装配,更换折断或弯曲的弹簧;阀盖紧固螺钉拧紧力要均匀。 ( 2 )先导阀的故障调压弹簧折断或未装入,锥阀或钢球未装,锥阀碎裂维护方法:更换或补装零件,使之正常工作。 ( 3 )远控口电磁阀故障电磁阀未通电( 常开)或滑阀卡死。维护方法:检查线路,接通电源,检修,更换零件。 ( 4 )装错进出油口装错了,要纠正过来。 ( 5 )液压泵故障滑动表面问间隙过大;叶片泵的太多数叶片在转子槽内卡死;叶片和转子方向装反。维护方法:修配间隙,清洗、纠正装错方向。 4.压力突然升高 ( 1 )主闽故障主阀芯工作不灵敏,在关闭状态突然卡死( 如零件加工精度低,装配质量差,油液中杂质多等) 。 ( 2 )先导闻故障先导阀阀芯与阀座结合面被粘住、脱不开;调压弹簧弯曲、别劲。维护方法:清洗、修配、更换溢流阈。 5 .压力突然下降

液压站常见故障及处理方法

液压站常见故障及处理方法 目前提升机是我国矿井提升机制动装置大多采用液压盘式闸制动装置,该装置由液压站与盘形闸和电控系统组成。其中液压站是机制动系统的驱动和调节压力机构,液压站的稳定可靠运行是矿井安全提升的必要保证,其性能和质量直接影响设备和人身的安全。使用表明恒减速控制液压站,在紧急制动时,能使平均制动力矩随负载变化而变化,能实现恒减速控制,符合提升系统恒减速要求。但由于该液压制动系统和控制系统较为复杂,使用与维护不当会出现制动减速度超限和制动力矩不足等多种故障,以致造成严重后果。 一提升机液压站的作用 提升机液压站可作为盘型制动器提供不同的油压值的压力油,以获得不同的制动力矩。在事故状态下,可以使制动器的油压迅速降到预先调定的某一值,经过延时后,制动器的油压迅速回到零,使制动达到全制动状态。供给单绳双滚筒提升机调绳装置所需要的压力油。 二提升机液压站常见故障分析及处理办法 2.1 漏油及油压不稳长期使用后,安全制动装置中的各集油路之间,以及阀与集油路间大量泄漏,且油压下降导致松不开阀,原因是它们之间的螺钉松动,将螺钉拧紧即可消除故障;油压不稳原因是液压系统中混入空气,应排除空气,或是电液调压装置线圈的电流滤波不好,线圈上下振动,造成油压不稳,加装电解电容器加强滤波即可。 2.2 油压值不能保证原因是系统内有空气吸入,油箱内的油有好多

泡沫,或者是溢流阀、电磁换向阀内泄漏大,处理方法:检查油泵吸油口是否泄漏;油泵吸油处管接头是否拧紧;吸油过滤器的螺钉是否拧紧;检查吸油过滤器到油泵吸油口处的管路是否漏气;检查油泵端盖螺钉是否拧紧;清洗溢流阀阀芯,如果阀芯在阀体内活动不灵活,可以用手拿住阀芯在体内来回研磨;清洗电磁换向阀阀芯,要求阀芯在阀体内运动灵活,保证工作时阀芯到位。 2.3 零油压制动器不松闸系统没有压力的原因:油泵旋转方向反了或油泵没有输出液;电液比例装置上的溢流阀阀芯卡死,阻尼孔堵塞;油泵吸油口不畅通,吸油过滤器堵塞;压力阀内有脏物,锥阀关不住。处理方法:纠正泵的旋转方向,排除油泵故障;把溢流阀拆开清洗,要求做到阀芯在阀体内运动灵活,用压缩空气把阻尼孔吹通;清洗过滤器滤芯,并检查吸油管路是否堵塞;拆开压力阀,把锥阀芯取下来清洗。 2.4 残压过大残压过大会使制动器失去作用,其主要原因是:电液调压装置的控制杆上的档板离喷嘴距离太小;溢流阀节流孔太大。处理方法:将控制杆上档板调整或更换;将溢流阀节流孔更换直径小一些的节流孔。 2.5 二级制动油压值保压性能故障产生二级制动油压值保压故障的原因有:油路块上的大溢流阀内有脏物卡住使阀芯关不严;单向节流截止阀开口太大,油大量泄出;电磁换向阀内有脏物,内泄漏太大。针对这一类故障可先取下阀芯清洗,去掉脏物,使阀芯到位,然后调整单向节流截止阀,使其开口尽量开得小,起到节流与补油作用。

调节阀故障原因及处理方法

调节阀故障原因及处理方法 1 、前言 在自动化程度较高的工业控制系统,特点是正迅速发展的用计算机优化控制,将使生产取得最大效益。调节阀在控制流体流量的工作过程中,作为自动调节系统的终端执行装置,接受控制操作信号,按控制规律实现对流量的调节。它的动作灵敏与否,直接关系着调节系统的质量。据现场实际工作统计,调节系统有70% 左右的故障出自调节阀。因此,保证调节阀可*、准确运行,一直是一个很重要的问题。 2 、调节阀的故障形式及原因 2.1 卡堵 调节阀经常出现的问题是卡堵,常发生于新投运系统和大修后投运初期,由于管道中的焊渣、铁锈、渣子等在节流口、导向部位、下阀盖平衡孔内造成堵塞,使被测介质流通不畅,或填料装填过实,致使摩擦力增大,造成信号小时动作不了,信号大时一旦动作又过头的现象。 2.2 泄漏 2.2.1 阀杆长短不合适泄漏 (1 )风开阀,如图1 、图 2 ,当调节阀膜头接收入信号为0.02MPa 或0.02MPa 以下时,如果阀杆太长,阀杆向上(或向下)移动距离不够,造成阀芯和阀座之间的间隙,而不能充分接触,导致调节阀关 不严而内漏。 (2 )风关阀,如图 3 、图 4 ,当调节阀信号为0.1MPa 或0.1MPa 以上时,如果阀杆太短,阀芯向下(或向上)移动距离不够,造成阀芯和阀座之间有间隙,而不能充分接触,导致调节阀关不严而内漏。 2.2.2 填料泄漏 填料装入填料函以后,经压盖对其施加轴向压力。由于填料的塑性,使其产生径向力,并与阀杆紧密接触,但这种接触并不是非常均匀的。有些部位接触的紧,有些部位接触的松,还有些部位没有接触上。调节阀在使用过程中,阀杆同填料之间存在着相对运动,这个运动叫轴向运动。在使用过程中,随着高温、高压和渗透性强的流体介质的影响,调节阀填料函也是发生泄漏现象较多的部位。造成填料泄漏的主要原因是界面泄漏,对于纺织填料还会出现渗漏(压力介质沿着填料纤维之间的微小缝隙向外泄漏)。阀杆与填料间的界面泄漏是由于填料接触压力的逐渐减弱,填料自身老化等原因引起的,这时压力介质就会沿着填料 与阀杆之间的接触间隙向外泄漏。 发送图片到手机,此主题相关图片如下: 图1 图2 2.2.3 阀芯、阀座变形泄漏

液压缸常见故障及处理

液压缸常见故障及处理 故障现象原因分析消除方法 (一)活塞杆不能动作 1.压力不足 (1)油液未进入液压缸 1)换向阀未换向 2)系统未供油 (2)虽有油,但没有压力 1)系统有故障,主要是泵或溢流阀有故障 2)内部泄漏严重,活塞与活塞杆松脱,密封件损坏严重 (3)压力达不到规定值 1)密封件老化、失效,密封圈唇口装反或有破损 2)活塞环损坏 3)系统调定压力过低 4)压力调节阀有故障 5)通过调整阀的流量过小,液压缸内泄漏量增大时,流量不足,造成压力不足1 )检查换向阀未换向的原因并排除 2)检查液压泵和主要液压阀的故障原因并排除 1)检查泵或溢流阀的故障原因并排除2)紧固活塞与活塞杆并更换密封件

1)更换密封件,并正确安装 2)更换活塞杆 3)重新调整压力,直至达到要求值 4)检查原因并排除 5)调整阀的通过流量必须大于液压缸内泄漏量 2.压力已达到要求但仍不动作 (1)液压缸结构上的问题 1)活塞端面与缸筒端面紧贴在一起,工作面积不足,故不能启动 2)具有缓冲装置的缸筒上单向阀回路被活塞堵住 (2)活塞杆移动“别劲” 1)缸筒与活塞,导向套与活塞杆配合间隙过小 2)活塞杆与夹布胶木导向套之间的配合间隙过小 3)液压缸装配不良(如活塞杆、活塞和缸盖之间同轴度差,液压缸与工作台平行度差) (3)液压回路引起的原因,主要是液压缸背压腔油液未与油箱相通,回油路上的调速阀节流口调节过小或连通回油的换向阀未动作 1 )端面上要加一条通油槽,使工作液体迅速流进活塞的工作端面 2)缸筒的进出油口位置应与活塞端面错开 1)检查配合间隙,并配研到规定值 2)检查配合间隙,修刮导向套孔,达到要求的配合间隙3)重新装配和安装, 不合格零件应更换 检查原因并消除

电厂高压加热器运行中故障原因分析及预防措施(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电厂高压加热器运行中故障原 因分析及预防措施(通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

电厂高压加热器运行中故障原因分析及预 防措施(通用版) 摘要:文章针对各电厂高压加热器存在的管子及胀口泄漏,给水自动旁路密封不佳,疏水系统自动投入不良等一些较普遍的问题,分析了这些问题的成因,进而提出了针对性的处理对策。 关键词:高压加热器;泄漏;故障;原因分析;预防措施 前言 汽轮机采用回热加热系统是提高机组运行经济性的重要手段之一。回热加热系统的运行可靠性和运行性能的高低,直接影响整套机组的运行经济性,加热器的投入率是经济指标中重要的一项考核指标。随着火力发电厂机组向大容量高参数发展,高压加热器(以下简称高加)承受的给水压力和温度相应提高;在运行中还将受到机组负荷突变、给水泵故障、旁路切换等引起的压力和温度的骤变,

这些都会给高加带来损害。为此,除了在高加的设计、制造和安装时必须保证质量外,还要在运行维护等方面采取必要的措施,才能确保高加的长期安全运行。 1.存在的问题 为了确保热电厂的安全经济满发,各高加均应投入运行。如因故障必须停用高加时,应按照制造厂规定的高加停用台数和负荷的关系,或根据汽轮机抽汽压力来确定机组的允许最大出力。各电厂高加在实际运行中存在的主要问题如下。 1.1管子及管子与管板的泄漏 管子及胀口泄漏,是各厂均存在的普遍问题。比如我厂4号机2号高加漏管率达5%以上,1号高加也有漏管现象,均已经过检修。但新高加投运一年后便有3根管漏,后稳定不再漏管。目前一般处理办法是在检修中查漏后加堵,这样,在未完全明了泄漏是胀口漏还是管子本身泄漏的情况下,就会把原应加以补焊的管子都堵死。 1.2给水自动旁路装置密封设计不佳 比如我厂50MW机组的进口联成阀壳体内旁路套筒间隙处微漏。

液压系统常用阀常见故障检查排除;

液压传动系统常见故障及排除法 二、液压缸常见故障及排除法 故障现象故障分析排除方法 爬行1、空气侵入 2、液压缸端盖密封圈压得太紧或 过松 3、活塞杆与活塞不同心 4、活塞杆全长或局部弯曲 5、液压缸的安装位置偏移 6、液压缸内孔直线性不良(鼓形 锥长等) 7、缸内腐蚀、拉毛 8、双活塞杆两端螺帽拧得太紧, 使其同心度不良1、增设排气装置:如无排气装置可开动液 压系统以最大行程使工作部件快速运 动;强迫排除空气。 2、调整密封圈;使它不紧不松, 3、保证活塞杆能来回用手平稳地拉动而无泄漏(大多允许微量渗油) 4、校正二者同心度 5、校直活塞杆 6、检查液压缸与导轨的平行性并校正 7、镗磨修复;重配活塞;轻微者修去锈蚀 和毛刺;严重者必须镗磨。 8. 螺帽不宜拧得太紧,一般用手旋紧即可, 以保持活塞杆处于自然状态 冲击1、靠间隙密封的活塞和液压缸间 隙过大, 2、节流阀失去节流作用。 3、端头缓冲的单向阀失灵,缓冲 不起作用1、按规定配活塞与液压缸的间隙,减少泄 漏现象 2、修正研配单向阀与阀座 三、溢流阀的故障分析及排除方法 故障现象故障分析排除方法 压力波动1、弹簧弯曲或太软 2、锥阀与阀座接触不良 3、钢球与阀座密合不良 4、滑阀变形或拉毛 5、油不清洁,阻尼孔堵塞1、更换弹簧 2、如锥阀是新的即卸下调整螺帽将导杆推 几下,使其接触良好;或更换锥阀。 3、检查钢球圆度,更换钢球,研磨阀座 4、更换或修研滑阀

5、疏通阻尼孔,更换清洁油液 调整无效1、弹簧断裂或漏装 2、阻尼孔阻塞 3、滑阀卡住 4、进出油口装反 5、锥阀漏装1、检查、更换或补装弹簧 2、疏通阻尼孔 3、拆出、检查、修整 4、检查油源方向 5、检查补装 泄漏严重1、锥阀或钢球与阀座的接触不良 2、滑阀与阀体配合间隙过大 3、管接头没拧紧 4、密封破坏1、锥阀或钢球磨损时更换新的锥阀或钢 球 2、检查阀芯与阀体间隙 3、拧紧联接螺钉 4、检查更换密封 噪音及振动1、螺帽松动 2、弹簧变形,不复原 3、滑阀配合过紧 4、主滑阀动作不良 5、锥阀磨损 6、出油路中有空气 7、流量超过允许值 8、和其他阀产生共振1、紧固螺帽 2、检查并更换弹簧 3、修研滑阀,使其灵活 4、检查滑阀与壳体的同心度 5、换锥阀 6、排出空气 7、更换流量对应的阀 8、略为改变阀的额定压力值(如额定压力 值的差在0.5Mpa以内时,则容易发生共振) 四、减压阀的故障分析及排除方法 故障现象故障分析排除方法 压力液动不稳定1、油液中混入空气 2、阻尼孔有时堵塞 3、滑阀与阀体内孔圆度超过规 定,使阀卡住 4、弹簧变形或在滑阀中卡住使 滑阀移动困难或弹簧太软 5、钢球不圆,钢球与阀座配合 1、排除油中空气 2、清理阻尼孔 3、修研阀孔及滑阀 4、更换弹簧 5、更换钢球或拆开锥阀调整

给水温度对机组效率的影响

浅析给水温度对机组效率的影响 在环保和节能已经成为社会发展主题的今天,火电厂如何提高效率、注重节能不仅是顺应主流,也是在竞价上网后获得最大利润的手段之一。标准煤耗率、汽耗率、汽轮机效率、锅炉燃烧效率等参数,是衡量机组经济性能的重要参数。 标准煤耗率简单来说,就是将不同发热量的各种煤统一折算成发热量为29308千焦/千克的“标准煤”后算得的煤耗率,也就是机组输出1KW.h功率所需要消耗的标准煤煤量,主要用于在燃用不同煤种的各个发电厂之间进行热经济性比较。 bs=q0/(29.31ηb*ηp) bsn=bs/(1-ξ) 式中q0——机组发电热耗率,kJ/(kW.h); ηb——锅炉效率,%; ηp——管道效率,%; ξ——厂用电率,%; bs——全厂发电标准煤耗率,g/(kW.h); bsn——全厂供电标准煤耗率,g/(kW.h)。 对于我厂330MW机组,q0可简略用下式来表示: 式中,D0——主蒸汽流量 h0——主蒸汽初焓 hfw——给水初焓 Drh——再热蒸汽流量 hrh——再热器出口蒸汽焓值 he——再热器入口蒸汽焓值 W——机组输出功率 当其他参数不变时,标准煤耗与给水焓值成反比。要降低标准煤耗,就要提高给水焓值。由焓熵表可知,当给水压力一定时,给水温度越高,给水焓值越高。(如下表,假定给水压力P为15MPa) 现代大容量火力发电厂都采用具有蒸汽中间再热的给水回热加热循环,用以提高经济性。因为采用汽轮机的抽汽来加热凝结水和给水,这部分抽汽不再排入凝汽器中,因而可减少在凝汽器中的冷源损失。同时给水回热加热提高了热力循环吸热过程的平均温度,使换热温差减少,单位蒸汽在锅炉中的吸热量降低了。所以可有效提高机组的经济性。给水温度,给水最终加热温度的高低对机组的经济性有直接的影响。 影响给水温度的因素很多,包括:

给水除氧系统

给水除氧系统 给水除氧系统的启动条件 1.1 给水泵组遇有下列情况之一,禁止启动给水泵 1.1.1主要表计(电流表、转速表、油压表、轴向位移表、出入口压力表等)缺少或损坏。 1.1.2给水泵出口逆止门关闭不严。 1.1.3保护试验不合格。 1.1.4勺管卡涩或调节不灵。 1.1.5油箱油位低至极限值或油质不合格,油温低于15℃时。 1.1.6密封水不能正常投用。 1.1.7电机绝缘不合格。 1.1.8辅助油泵故障及润滑油压低于0.12MPa。 1.1.9给水泵冷油器无冷却水。 1.1.10给水泵未暖泵或暖泵不良造成泵体上、下温差大于20℃。 1.1.11除氧器水位低I值2225mm。 1.2 高压加热器存在下列缺陷之一时禁止投入。 1.2.1水位计失灵,无法监视水位。 1.2.2高加钢管泄漏。 1.2.3#1、2抽汽逆止门卡涩或动作不正常。 1.2.4高加保护、高加危急疏水保护、抽汽逆止阀保护不能正常投入时。 给水除氧系统启动前的检查 2.1 除氧器上水加热投入运行。 2.1.1确认除氧器及系统检修已结束,现场清洁,设备完好,安全措施已拆除,有关的工作票已全部办结束。 2.1.2按“阀门检查卡”检查确认阀门开关位置正确。 2.1.3联系热工各仪表电动阀门、水位计及保护送电,指示正确。 2.1.4确认上水泵电机绝缘良好并送电。 2.1.5确认水位及压力高、低信号报警良好,电动门、调整门开关灵活无卡涩,开关动作方向正确。 2.1.6联系化学准备充足的除盐水,通知化学启动除盐水泵,将上水箱补至高水位,化验水质合格。 2.1.7向三抽母管供汽,供汽前应进行三抽母管暖管和疏水。 2.1.8启动上水泵,除氧器上水500mm,通知化学化验水质,如水质不合格应放水至合格。溢放水门置“自动”。 2.1.9水质合格上水至2225mm(低Ⅰ值),适当开启除氧器排氧门。 2.1.10缓慢开启再沸腾A、B侧进汽手动门,除氧器投入底部加热。注意,在本机向除氧器供汽前,控制除氧器压力≯0.15MPa。 2.1.11当水位升至正常水位2725mm时,停止除氧器上水。控制水温在100℃左右,如有特殊要求,经专责人同意情况下,可提高水温,但不得超 过150℃。 2.1.12汽轮机已启动,凝结水合格后回收,根据凝结水量决定开启凝结水至

液压阀常见故障维修技巧教学文案

液压阀常见故障维修 技巧

溢流阀常见故障与解决 1.系统压力波动 引起压力波动的主要原因: ①调节压力的螺钉由于震动而使锁紧螺母松动造成压力波动;②液压油不清洁,有微小灰尘存在,使主阀芯滑动不灵活.因而产生不规则的压力变化.有时还会将阀卡住;③主阀芯滑动不畅造成阻尼孔时堵时通;④主阀芯圆锥面与阀座的锥面接触不良好,没有经过良好磨合;⑤主阀芯的阻尼孔太大,没有起到阻尼作用;⑥先导阀调正弹簧弯曲.造成阀芯与锥阀座接触不好,磨损不均。 解决方法:①定时清理油箱,管路,对进入油箱,管路系统的液压油要过滤;②如管路中已有过滤器,则应增加二次过滤元件.或更换二次元件的过滤精度;并对阀类元件拆卸清洗,更换清洁的液压油;③修配或更换不合格的零件;④适当缩小阻尼孔径。 2.系统压力完全加不上去 原因: A:①主阀芯阻尼孔被堵死,如装配对主阀芯未清洗干净,油液过脏或装配时带人杂物;②装配质量差,在装配时装配精度差.阀间间隙调整不好,主阀芯在开启位置时卡住,装配质量差;③主阀芯复位弹簧折断或弯曲,使主阀芯不能复位。 解决方法:①拆开主阀清洗阻尼孔并从新装配;②过滤或更换油液;③拧紧阀盖紧固螺钉更换折断的弹簧。 B:先导阀故障,①调正弹簧折断或未装入,②锥阀或钢球未装,③锥阀碎裂。 解决方法:更换破损件或补装零件,使先导阀恢复正常工作。 C:远控口电磁阀未通电(常开型)或滑阀卡死。 解决方法:检查电源线路,查看电源是否接通;如正常,说明可能是滑阀卡死,应检修或更换失效零件。

D:液压泵故障:①液压泵联接键脱落或滚动;②滑动表面间问隙过太; ③叶片泵的叶片在转子槽内卡死;④叶片和转子方向装反;⑤叶片中的弹簧因所受高频周期负载作用,而疲劳变形或折断。 解决方法:①更换或从新调正联接键,并修配键槽;②修配滑动表面间间隙;③拆卸清洗叶片泵;④纠正装错方向;⑤更换折断弹簧。 E:进出油口装反,调正过来。 3.系统压力升不高 原因: A:①主阀芯锥面磨损或不圆,阀座锥面磨损或不圆;②锥面处有脏物粘住;③锥面与阀座由于机械加工误差导致的不同心;④主阀芯与阀座配合不好,主阀芯有别劲或损坏,使阀芯与阀座配合不严密,⑤主阀压盖处有泄漏,如密封垫损坏,装配不良,压盖螺钉有松动等。 解决方法:①更换或修配溢流阀体或主阀芯及阀座,②清洗溢流阀使之配合良好或更换不合格元件,③拆卸主阀调正阀芯,更换破损密封垫,消除泄漏使密封良好。 B:先导阀调正弹簧弯曲或太短、太软,致使锥阀与阀座结合处封闭性差,如锥阀与阀座磨损,锥阀接触面不圆,接触面太宽,容易进入脏物,或被胶质粘住。 解决方法:更换不合格件或检修先导阀,使之达到使用要求。 C:①远控口电磁常闭位置时内漏严重;②阀口处阀体与滑阀严重磨损; ③滑阀换向未达到正确位置,造成油封长度不足;④远控口管路有泄漏。 解决方法:①检修更换失效件,使之达到要求,②检查管路消除泄漏。 4.压力突然升高 原因: A:①由于主阀芯零件工作不灵敏,在关闭状态时突然被卡死;②加工的液压元件精度低,装配质量差,油液过脏等原因。 B:先导阀阀芯与阀座结合面粘住脱不开,造成系统不能实现正常卸荷;调正弹簧弯曲“别劲”。 解决方法:清洗主阀阀体,修配更换失效零件。 5.压力突然下降

调节阀常见故障及处理方法

调节阀常见故障及处理方法 在工业自动化仪表中,调节阀算是笨重的了,加之结构简单,往往不被人们重视。但是,它在工艺管道上,工作条件复杂,一旦出现问题,大家又忙手忙脚。因其笨重,问题难找准,常常费力不讨好,还涉及系统投运、系统完全、调节品质、环境污染等。下面介绍几种调节阀常见故障的处理方法,绝大多数来自作者的工作实践,可供调节阀出现故障分析,处理时参考,这对现场维修人员、技术人员有一定帮助的。 1、提高寿命的方法(8种方法) 1.1 大开度工作延长寿命法 让调节阀一开始就尽量在最大开度上工作,如90%。这样,汽蚀、冲蚀等破坏发生在阀芯头部上。随着阀芯破坏,流量增加,相应阀再关一点,这样不断破坏,逐步关闭,使整个阀芯全部利用,直到阀芯根部及密封面破坏,不能使用为止。同时,大开度工作节流间隙大,冲蚀减弱,这比一开始就让阀在中间开度和小开度上工作提高寿命1~5倍以上。 1.2 减小S增大工作开度提高寿命法 减小S,即增大系统除调节阀外的损失,使分配到阀上的压降降低,为保证流量通过调节阀,必然增大调节阀开度,同时,阀上压降减小,使气蚀、冲蚀也减弱。具体办法有:阀后设孔板节流消耗压降;关闭管路上串联的手动阀,至调节阀获得较理想的工作开度为止。 1.3 缩小口径增大工作开度提高寿命法 通过把阀的口径减小来增大工作开度,具体办法有:①换一台小一档口径的阀,如DN32换成DN25;②阀体不变更,更换小阀座直径的阀芯阀座。 1.4 转移破坏位置提高寿命法 把破坏严重的地方转移到次要位置,以保护阀芯阀座的密封面和节流面。 1.5 增长节流通道提高寿命法 增长节流通道最简单的就是加厚阀座,使阀座孔增长,形成更长的节流通道。一方面可使流闭型节流后的突然扩大延后,起转移破坏位置,使之远离密封面的作用;另一方面,又增加了节流阻力,减小了压力的恢复程度,使汽蚀减弱。有的把阀座孔内设计成台阶式、波浪式,就是为了增加阻力,削弱汽蚀。这种方法在引进装置中的高压阀上和将老的阀加

浅谈定压溢流阀

主要作用 定压溢流作用:在定量泵节流调节系统中,定量泵提供的是恒定流量。当系统压力增大时,会使流量需求减小。此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。 稳压作用:溢流阀串联在回油路上,溢流阀产生背压,运动部件平稳性增加。 系统卸荷作用:在溢流阀的遥控口串接溢小流量的电磁阀,当电磁铁通电时,溢流阀的遥控口通油箱,此时液压泵卸荷。溢流阀此时作为卸荷阀使用。 安全保护作用:系统正常工作时,阀门关闭。只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加(通常使溢流阀的调定压力比系统最高工作压力高10%~20%)。 实际应用中一般有:作卸荷阀用,作远程调压阀,作高低压多级控制阀,作顺序阀,用于产生背压(串在回油路上)。 溢流阀一般有两种结构:1、直动型溢流阀。2、先导式溢流阀。

对溢流阀的主要要求:调压范围大,调压偏差小,压力振摆小,动作灵敏,过载能力大,噪声小。 注意事项 噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。

调节阀的常见故障及排除

调节阀的常见故障及排除 调节阀不同于手动阀门,它在使用过程中要处于不断地运动、调节状态,运动部件多,且要承受来自介质不平衡力等各种力量的冲击,难免出现各种预想不到的故障,这些故障可来自执行机构、调节机构,也可能来自连接的附件装置。 一、填料造成的故障 因填料原因造成的故障表现为外泄漏量增大、摩擦力增大及阀杆的跳动。分析如下: 1.填料材质不合适。由于填料材质不合适造成的故障主要是外泄漏量增大及摩擦力增大例如,在高温应用场合,采用聚四氟乙烯填料。故障处理方法是更换填料。 2.填料结构设计不当.o填料腔内,填料和有关附件的位置安装不合适,填料高度不合适故障处理方法是按产品说明书要求安装填料和有关附件。 3.填料安装不合适。例如,石墨填料采用螺旋式安装造成填料压紧力不均匀,中心没有对准等。故障处理方法是按层安装,使压紧力均匀。 4.填料有杂物。填料内的杂物造成阀杆划迹。故障处理方法是对填料进行清洁,除去杂物 5.上阀盖安装不当。上阀盖安装不当使填料受力不均匀。故障处理方法是重新安装上阀盖的垫圈,并对上阀盖固紧螺栓平均地用对角方式压紧o 二、执行机构的气密性造成的故障 执行机构的气密性造成的故障表现为响应时间增大,阀杆动作呆滞。分析如下: 1.气动薄膜执行机构的膜片未压紧。膜片未压紧或受力不均匀造成输入的气信

号外漏,使执行机构对信号变化的响应变得呆滞,响应时间增大。如果安装了阀门定位器,则其影响会减小。故障处理方法是用肥皂水涂刷检查,并消除泄漏点o 2.气动活塞执行机构的活塞密封环磨损。造成调节阀不能快速响应,阀杆动作不灵敏。故障处理方法是更换密封环,并检查汽缸内壁有否磨损。 3.气动薄膜执行机构的膜片破损。表现为阀杆动作不灵敏,可听到气体的泄漏声。故障处理方法是更换膜片,并应检查限位装置或托盘是否有毛刺等o 4.连接管线漏气。造成阀杆动作不灵敏,响应时间增大。故障处理方法是用肥皂水涂刷连接管线,检查泄漏点,并更换或焊接。 三、不平衡力造成的故障 不平衡力造成的故障表现为调节阀动作不稳定,关不严等。故障分析如下: 1.流向不当。调节阀安装不当,造成实际流体流向与调节阀标记流向不一致,使不平衡力变化。例如,流关调节阀被安装为流开。故障处理方法是重新安装。 2.执行机构不匹配。造成推力或推力矩不足,使调节阀动作不到位。故障处理方法是更换执行机构。 四、电动执行机构的故障 电动执行机构的故障除了常见的线路短路或断路外,还有伺服放大器和电动机等故障,常见故障分析如下: 1.各接插件松动或接线断路或短路。造成接触不良,并增大或降低有关线路阻抗。故障处理方法是检查和拨动连接导线,重新插拔和插入各接插件。 2.减速器机械传动部件。检查运转是否正常,齿轮啮合是否良好,故障处理方法是更换或修补残缺的齿轮,添加润滑剂。 3.电源。检查保险丝是否熔断,伺服放大器位置反馈有无冒烟和特殊气味,如

相关主题
文本预览
相关文档 最新文档