当前位置:文档之家› 同位素在医学上的应用

同位素在医学上的应用

同位素在医学上的应用
同位素在医学上的应用

同位素在医学上的应用

放射性同位素用于医学领域已有90多年的历史,到本世纪30年代利用镭治疗肿瘤达到盛期,到50年代后,随着核技术和医学的相互结合,形成了一门年轻学科——核医学。核医学的发展是医学现代化的重要标志之一,它不仅为阐明代谢过程、探讨生命活动的物质基础及客观规律提供了灵敏、特异、快速和方便的研究手段,也为临床诊断、放射治疗、医学科学研究开辟了新的途径。

核医学按其内容分为临床核医学和基础核医学。前者主要任务是利用核技术诊断和治疗疾病;后者则主要是用核技术来研究疾病。

目前,世界上生产的放射性核素约有80%~90%用于医学,其中30多种核素大量用于临床。

一、放射治疗

放射性核素在医学上的应用,使多种类型恶性癌的疗效得到显著改善。50年代后,各国用60 Co治疗机代替以前的镭治疗机,它的射线能量为1.33MeV,穿透力强,深部组织吸收剂量高,皮肤吸收剂量低,适用于深部肿瘤的治疗。近年来,也开始把快中子、质子束等应用于放射治疗。放射治疗系利用它衰变时放出的射线在机体内引起电离作用,破坏病变细胞来达到治疗目的。

采用各种放射源(60 Co,137Cs,192Ir等)直接或通过手术植入病人体腔内或肿瘤部位,实施短程放射治疗,具有使肿瘤部位有较高剂量,而周围正常组织损伤较小的优点。近年来,腔内后装技术的发展,缩短了治疗时间,提高了工作效率,医务人员也几乎可免受射线照射,更便于开展门诊治疗。

另外,可把放射性药物直接引入体内进行治疗,如198Au,90Y,177Lu等可治疗白血病,支气管癌等。用”’I治疗甲状腺癌和甲状腺功能亢进。用’于治疗真性红细胞增多症。

将32P、90Sr、60Co等β放射性核素制成适当活度的放射源,敷贴在体表疾患处,可治某些浅表疾病,如神经性皮炎、慢性湿疹、毛细血管瘤等。

二、临床诊断

核医学临床诊断检查可分为体内检查(功能测定与显像技术)和体外检查(竞争放射分析等)两部分。核医学临床诊断是利用放射性核素作示踪剂,并通过核仪器测定其在脏器中的分布和强度,可以诊断疾病。

1.体内检查(功能测定与显像技术)

应用放射性核素或其标记化合物,可以测定甲状腺、肾、心、肺和消化系统的功能,并能进行血液系统检查。举例如下:

甲状腺有摄取或浓集131I的功能,131I的摄取速度和摄取量与甲状腺功能状态有关。口服 Na131I24/。时后,用核探测器在颈部(甲状腺部位)测量甲状腺摄取131I 的情况,可以判断甲状腺的功能状态。

甲状腺吸131I率的正常值范围,常因测量技术和方法、地区以及年龄、性别等略有差异。以北京地区为例,采用闪烁探头远距离测量法;24小时甲状腺吸131I率正常值范围为25%~65%,小于25%为功能低下,大于65%可能为甲状腺功能亢进。

把24Na标记的盐水溶液注入人体,2小时后,测定体液中24Na的含量,可计算出病人体内体液的总量,如体液重量超过体重的6O%,表示人体浮肿。

选用合适的放射性药物(放射性核素或标记化合物)作示踪剂引入体内,采用闪烁扫描机、γ照相机或断层显像技术(ECT,包括单光子发射计算机断层仪SPECT 和正电子发射计算机断层仪PECT),可以观察放射性在人体内的分布状况与动态变化,从而诊断脏器是否病变,并确定病变位置。举例如下:

脑的核素显像对脑部肿瘤、脑循环障碍及脑的代谢与机能的诊断等发挥重要作用。

γ照相技术已用于多种心血管疾病的诊断上。最近几年,由于快速成像技术的发展,ECT技术的推广,以及一些新显像剂的应用,冠心病的核素检查正在推向一个新的水平。

2.体外检查(竞争放射分析等)

利用放射性核素作体外微量分析,是六十年代发展起来的一项新技术。基于被测物质及其放射性核素标记物对特异性结合试剂竞争结合原理建立的“竞争放射分析法”,引起了医学临床检验的重大革新,目前国内的发展尤为迅速。

体外放射分析的广泛采用,不仅为研究许多含量甚微而又很重要的生物活性物质在机体内的代谢、分布和作用原理提供了新的方法,同时也为一些疑难病症提供了早期诊断、疗效观察和愈后分析的可能。

例如,现已用于其些癌症的早期诊断、心机梗塞的诊断、临床药物监测等。

三、基础医学研究

放射性核素作为示踪原子,广泛应用于基础医学研究中。将放射性核素特异地标记在核酸分子的链节上,通过超微量分析方法,可以进行结构分析。应用这种技术,已阐明了几十种不同来源的转运核糖核酸的排列,弄清了某些核糖核蛋白体的结构。在肿瘤病因研究中,应用放射性核素技术研究病变与正常核酸结构上表现的差异,从分子生物学角度探讨肿瘤细胞的起因的工作也取得成果。

用核技术探讨中医理论,研究针刺麻醉的镇痛原理,研究中草药的作用原理,筛选中草药和寻找新药等,对发掘祖国医学宝库具有十分重要的意义。

放射性同位素应用与发展

放射性同位素应用与发展 一百年前天然放射性的发现,引起了人类对宇宙认识和知识更新的一场伟大变革。正是由于这场科学思想上的革命,在经历了半个世纪的探索和奋斗后,终于打开了核能的巨大宝库。当今全世界有437座核电站在运行,另有30座核电站在建造,核电已占世界总发电量的17%。 放射性元素及放射性同位素的应用业已遍及医学、工业、农业和科学研究等各个领域。在很多应用场合,放射性同位素至今尚无代用品;在很多其它应用场合,它要比现有可替代的技术或流程更有效、更便宜。目前,世界上总共有32个国家拥有核电。与此相比,放射性同位素几乎已在全球所有国家使用。其中有50个国家拥有进行同位素生产或分离的设施。其中一些国家的同位素生产部门已成为经济活动中一个相当重要的组成部分。 放射性同位素(以下简称同位素)主要由研究反应堆和回旋加速器生产。同位素生产设施还包括了核动力厂、同位素分离装置和非专门从事同位素生产的普通加速器。 全球有将近300台放射性同位素生产装置或设备。重要的同位素生产设施大约只有50个国家拥有。大量共享的生产设施属于经济合作和发展组织(OECD)。此外,主要的同位素生产国家还有中国、印度、俄罗斯和南非。 正在运行的研究堆在全世界有300个,但只有将近100个堆用作同位素生产(占运行时间的5%或更多一些)。其中包括6个高通量堆,主要生产60Co和252Cf。俄罗斯的2个快中子堆生产89Sr。大多数同位素由研究堆生产,主要有99Mo、60Co、192Ir和131I等。亚洲正在建造或计划建造新的研究堆,同位素生产能力期望会迅速增加。而欧洲和北美,现有的反应堆在老化,一旦关闭,还没有计划用新的装置来取代他们。目前有几个核电厂,如加拿大、阿根廷的压管式重水堆和俄国的RBMKS堆正在生产60Co。另一些国家包括法国、俄国、英国和美国在用一些研究堆生产民用氚。 全世界有180多台加速器在生产放射性同位素。其中约有50台回旋加速器致力于放射性药物生产。他们生产的主要同位素是201Tl以及少量的123I、67Ga和111In。还有大约125台回旋加速器致力于PET工作。由于这类应用正在扩展,全球估计每年要建造25台。由PET回旋加速器生产的主要同位素有18F、11C、13N和15O。此外,还有一些非专门从事同位素生产的普通加速器。 同位素分离设施包括工厂,车间和热室。在这里放射性同位素从裂变产物或放射性废料中提取出来。4家具有工业规模的设施(在比利时、加拿大、荷兰和南非运行)和几个小的车间(在阿根廷、澳大利亚、挪威、俄罗斯和中国运行)正在从事由裂变产物中提取99Mo。 另一些设施(包括热室)正在生产137Cs和85Kr。这些设施的大多数在印度、俄罗斯和美国运行。大约10个热室(在法国、德国、俄罗斯、英国和美国)采用很成熟的流程,从乏燃料中分离出超铀元素和α发射体。 在科学研究中,同位素的应用已深入到了生物医学、遗传工程、材料科学和地球科学。医学应用在同位素诸多有益应用领域里最为活跃。广泛而又多样的工业应用覆盖了众多的工业部门。辐射育种、昆虫不育和食品保藏等技术促进了农业的可持续发展。另一些应用还包括环境污染的监测与去除以及正在扩大的安全检查体系等。

同位素应用

应用编辑 同位素示踪法在生物化学和分子生物学中的应用 放射性同位素示踪法在生物化学和分子生物学领域应用极为广泛,它为揭示体内和细胞内理化过程的秘密,阐明生命活动的物质基础起了极其重要的作用。近几年来,同位素示踪技术在原基础上又有许多新发展,如双标记和多标记技术,稳定性同位素示踪技术,活化分析,电子显微镜技术,同位素技术与其它新技术相结合等。由于这些技术的发展,使生物化学从静态进入动态,从细胞水平进入分子水平,阐明了一系列重大问题,如遗传密码、细胞膜受体、RNA-DNA逆转录等,使人类对生命基本现象的认识开辟了一条新的途径。下面仅就同位素示踪技术在生物化学和分子生物学中应用的几个主要方面作一介绍。 物质代谢的研究 体内存在着很多种物质,究竟它们之间是如何转变的,如果在研究中应用适当的同位素标记物作示踪剂分析这些物质中同位素含量的变化,就可以知道它们之间相互转变的关系,还能分辩出谁是前身物,谁是产物,分析同位素示踪剂存在于物质分子的哪些原子上,可以进一步推断各种物质之间的转变机制。为了研究胆固醇的生物合成及其代谢,采用标记前身物的方法,揭示了胆固醇的生成途径和步骤,实验证明,凡是能在体内转变为乙酰辅酶A的化合物,都可以作为生成胆固醇的原料,从乙酸到胆固醇的全部生物合成过程,至少包括36步化学反应,在鲨烯与胆固醇之间,就有二十个中间物,胆固醇的生物合成途径可简化为:乙酸→甲基二羟戊酸→胆固醇又如在研究肝脏胆固醇的来源时,用放射性同位素标记物3H-胆固醇作静脉注射的示踪实验说明,放射性大部分进入肝脏,再出现在粪中,且甲状腺素能加速这个过程,从而可说明肝脏是处理血浆胆固醇的主要器官,甲状腺能降低血中胆固醇含量的机理,在于它对血浆胆固醇向肝脏转移过程的加速作用。 物质转化的研究 物质在机体内相互转化的规律是生命活动中重要的本质内容,在过去的物质转化研究中,一般都采用用离体酶学方法,但是离体酶学方法的研究结果,不一定能代表整体情况,同位素示踪技术的应用,使有关物质转化的实验的周期大大缩短,而且在离体、整体、无细胞体系的情况下都可应用,操作简化,测定灵敏度提高,不仅能定性,还可作定量分析。在阐明核糖苷酸向脱氧核糖核苷酸转化的研究中,采用双标记法,对产物作双标记测量或经化学分离后分别测量其放射性。如在鸟嘌呤核苷酸(GMP)的碱基和核糖上分别都标记上14C,在离体系统中使之参入脱氧鸟嘌呤核苷酸(dGMP),然后将原标记物和产物(被双标记GMP 掺入的dGMP)分别进行酸水解和层析分离后,测定它们各自的碱基和戊糖的放射性,结果发现它们的两部分的放射性比值基本相等,从而证明了产物dGMP的戊糖就原标记物GMP的戊糖,而没有别的来源,否则产物dGMP的碱基和核糖的比值一定与原标记物GMP的两部分比值有显著差别。这个实验说明戊糖脱氧是在碱基与戊糖不分记的情况下进行的,从而证明了脱氧核糖核苷酸是由核糖核苷酸直接转化而来的,并不是核糖核苷酸先分解成核糖与碱基,碱基再重新接上脱氧杭核糖。无细胞的示踪实验可以分析物质在细胞内的转化条件,例如以3H-dTTP为前身物作DNA掺入的示踪实验,按一定的实验设计掺入后,测定产物DNA 的放射性,作为新合成的DNA的检出指标。 动态平衡的研究 阐明生物体内物质处于不断更新的动态平衡之中,是放射性同位素示踪法对生命科学的重大贡献之一,向体内引入适当的同位素标记物,在不同时间测定物质中同位素含量的变化,就能了解该物质在体内的变动情况,定量计算出体内物质的代谢率,计算出物质的更新速度和更新时间等等。机体内的各种物质都在有大小不同的代谢库,代谢库的大小可用同位素稀释法求也。 生物样品中微量物质的分析

同位素医疗应用

3、放射性同位素在医学上的应用 疾病的研究和诊断 同位素标记和示踪技术在医学方面的应用,是目前从细胞水平进入到分子水平,对活体显示人体结构和病理变化的惟一方法。其研究领域已经深入到基因、核酸、蛋白质等,研究疾病发生、发展、转归与演变的过程,达到探索发病机制与正确诊断疾病的目的。 采用放射免疫分析方法,在体外对患者体液中生物活性物质进行微量分析,能够快速有效地进行疾病的体外诊断。 疾病的治疗 电离辐射具有杀灭癌细胞的能力。目前,放射治疗是癌症治疗三大有效手段之一,70%以上癌症患者都需要采用放射治疗。放射治疗可分为外部远距离照射、腔内后装近程照射、间质短程照射和内介入照射等。 体内放射性药物治疗是近来颇受医学界关注的临床手段。放射免疫的靶向治疗、受体介导的靶向治疗、放射性核素基因治疗以及放射性核素微粒肿瘤组织间定向植入治疗等,将会改变过去传统的治疗疾病的思维与规范,尤其是肿瘤疾病,核素治疗将成为化学治疗、手术治疗及放射治疗等综合治疗中的不可少的手段之一,在某些方面可代替外照射治疗或化疗。 放射免疫分析法 放射免疫分析法 radiommunoas-say 利用同位素标记的与未标记的抗原同抗体发生竞争性抑制反应的放射性同位素 体外微量分析方法。又称竞争性饱和分析法。1960年美国化学家R.S.耶洛和S.A.贝尔森提出此法,耶洛因此于1977年获得诺贝尔生理学或医学奖。 放射性标记抗原*Ag和未标记抗原(待测物)Ag与不足量的特异性抗体Ab竞争性结合,形成*Ag-Ab或Ag-Ab复合物。因为加入的*Ag和Ab的量是恒定的,当结合反应达到动态平衡后,若Ag量增多,生成的Ag-Ab量增多,*Ag-Ab生成量相对减少,游离的*Ag增多,即Ag与复合物的放射性成反比。反应达到平衡后,用有效的方法将*Ag-Ab和Ag-Ab复合物与游离的*Ag和Ag分离,测量其放射性,即可求得样品中抗原Ag的含量。 常用于标记抗原的放射性同位素有3H、125I、131I等。3H可以置换有机化合物中的氢,不影响原有化学性质,且半衰期长和能量低,便于防护。125I和131I原子的化学性质比较活泼,标记方法简便,多肽、蛋白质与小分子半抗原均可进行碘标记。一些不能直接用碘标记的半抗原,通过接上一个酪氨酸亦可用碘标记之。 放射免疫分析法是将检测放射性的高灵敏度与抗体抗原结合反应的惊人的特异 性结合在一起的微量分析法,优点是灵敏、特异、简便易行、用样量小,常可测至皮摩尔量。本法的缺点是有时会出现交叉反应、假阳性反应、组织样品处理不够迅速,不能灭活降解酶和盐,有时会影响结果等。 放射免疫分析法在内分泌学中用以测定胰岛素、生长激素、甲状旁腺激素、血管紧张素、催化素、黄体化激素、促卵泡成熟激素、前列腺素等,以鉴别、诊断、研究激素的生理和药理作用,以及研究激素和受体结合的机理。在传染病学方面广泛用于

2020高中生物必修2: 实验素养提升4 同位素标记法的原理与应用

[技能必备] 理解含义 同位素标记法也叫同位素示踪法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。 同位素是具有相同原子序数但质量数不同的核素。同一元素的不同核素之间互称为同位素。例如,氢有如1H、2H、3H三种核素互称同位素。同位素可分为稳定性同位素和放射性同位素两类,稳定性同位素是原子核结构稳定,不会发生衰变的同位素。放射性同位素是原子核不稳定会自发衰变的同位素。 同位素示踪法即同位素标记法,包括稳定性同位素示踪法和放射性同位素示踪法。放射性同位素示踪法在实践中运用较广,因为其灵敏度高,且容易测定。常用的放射性同位素有3H、14C、32P、35S、131I、42K等。如对孕妇及儿童某些疾病诊断中,要将食物或药物成分用示踪剂标记,就不能使用或多或少具有毒副作用的 1

放射性同位素,而只能使用对人体无害,使用安全的稳定性同位素。常用的稳定同位素有2H、13C、15N和18O等。高中生物学教材中涉及的鲁宾和卡门研究光合作用氧气来源的实验中,就是用18O分别标记CO2和H2O。还有梅塞尔森做的DNA半保留复制实验中,是用15N标记亲代的DNA分子。 [技能提升] 1.(2019·山师附中模拟)下列关于同位素示踪法的叙述错误的是( ) A.将用14N标记了DNA的大肠杆菌在含有15N的培养基中繁殖一代,若子代大肠杆菌的DNA分子中既有14N,又有15N,则可说明DNA的半保留复制 B.将洋葱根尖培养在含同位素标记的胸腺嘧啶的培养液中,经过一次分裂,子代细胞中的放射性会出现在细胞质和细胞核中 C.用DNA探针进行基因鉴定时,如果待测DNA是双链,则需要采用加热的方法使其形成单链,才可用于检测 D.由噬菌体侵染细菌实验可知,进入细菌体内的是噬菌体的DNA,而不是噬菌体的蛋白质,进而证明了DNA是噬菌体的遗传物质 解析将用14N标记了DNA的大肠杆菌在含有15N的培养基中繁殖一代,无论DNA复制方式是半保留复制、全保留复制还是混合复制,子一代大肠杆菌的DNA 分子中都既有14N,又有15N,所以由此不能证明DNA的复制方式是半保留复制,A错误;胸腺嘧啶是合成DNA的原料,而DNA主要分布在细胞核中,此外在 2

同位素示踪在植物光合作用研究中应用

题目:同位素示踪在植物光合作用研究中应用 学院:XXXXXXX学院 专业班级:XXXXXX班 姓名:XXX 引言: 同位素示踪法是利用放射性核素或稀有稳定核素作为示踪剂对研究对象进行标记的微量分析方法,Hevesy创立了示踪实验并于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie于1934年发现了人工放射性,以及其后生产方法的建立(加速器、反应堆等),为放射性同位素示踪法的更快的发展和广泛应用提供了基本的条件和有力的保障。 中文名称:同位素示踪 英文名称:isotopic tagging;isotopic tracing 定义:化合物的同位素标记物与其非标记物具有相同 的生物化学性质,且同位素能够很灵敏地被检测,因而 追踪同位素标记物在所研究对象中的移动、分布、转变 或代谢等,是生物科学研究的有力手段。 正文: 同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性

质。因此,就可以用同位素作为一种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。利用放射性同位素不断地放出特征射线的核物理性质,就可以用核探测器随时追踪它在体内或体外的位置、数量及其转变等,稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪,气相层析仪,核磁共振等质量分析仪器来测定。放射性同位素和稳定性同位素都可作为示踪剂(tracer),但是,稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,其应用范围受到限制;而用放射性同位素作为示踪剂不仅灵敏度,测量方法简便易行,能准确地定量,准确地定位及符合所研究对象的生理条件等特点: 1.灵敏度高 放射性示踪法可测到10-14-10-18克水平,即可以从1015个非放射性原子中检出一个放射性原子。它比目前较敏感的重量分析天平要敏感108-107倍,而迄今最准确的化学分析法很难测定到10-12克水平。 2.方法简便 放射性测定不受其它非放射性物质的干扰,可以省略许多复杂的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的r射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析,随着液

同位素标记法在高中生物学中的应用总结

同位素标记法在高中生物学中的应用总结 同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。 1.分泌蛋白的合成与分泌(必修 1P40简答题) 20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。 2.光合作用中氧气的来源 1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O和C18O2,另一组提供H218O和CO2。

在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。 3.光合作用中有机物的生成 20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。为此,卡尔文荣获“诺贝尔奖”。 4.噬菌体侵染细菌的实验 1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。此实验有力证明了DNA是遗传物质。 5.DNA的半保留复制 1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链

同位素示踪法在生物学科中的应用

同位素示踪法在生物学科中的应用 用放射性同位素标记的化合物,其化学性质不变,根据其放射性,对生物体内各种复杂的生理、生化过程进行追踪,叫同位素示踪法。常利用14C、18O、15N、3H、32P、35S等同位素作为示踪原子。 1.推断动、植物细胞的结构和功能 用同位素标记的氨基酸或核苷酸引入细胞内,探测这种放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。 例1.用示踪原子3H标记的四种脱氧核苷酸,将其配制到培养基中培养人的白细胞,待细胞恢复分裂后,发现子代细胞中除细胞核外,细胞质中也探测到3H的存在,你认为细胞质中的3H主要存在于() A.叶绿体B.核糖体C.线粒体D.高尔基体 例2.用14C标记的葡萄糖培养去掉细胞壁的植物细胞,3h后用放射自显影技术观察,该植物细胞内含有14C最多的结构是() A.核糖体B.高尔基体C.内质网D.细胞核 例3.若用放射性同位素15N标记的氨基酸研究胰腺细胞合成并分泌消化酶的过程,则放射性同位素15N先后出现在() A.高尔基体、内质网、核糖体B.内质网、高尔基体、核糖体 C.核糖体、内质网、高尔基体D.核糖体、高尔基体、内质网 2.判断光合作用和呼吸作用过程中原子转移的途径 (1)光合作用:O2来自于水的光解,C6H12O6中的C和O全来自于CO2 (2)有氧呼吸:CO2中的O来自于C6H12O6和H2O,H2O中的O来自于O2。 例4.用C18O2参与光合作用,再经过有氧呼吸,则18O转移的途径是()A.CO2O2 B.CO2 C3 C6H12O6 H2O C.CO2C3 C6H12O6 CO2 D.CO2 C3C6H12O6 H2O+ CO2 例5.在某动物有氧呼吸实验中,若所用的水中有12%含18O,氧气中有4%含18O,则该动物有氧呼吸释放的CO2中约含() A.6%的C18O2 B.12%C18O2 C.4% C18O2 D.2%C18O2 例6.将生长旺盛的两盆绿色植物分别放置于两个玻璃钟罩内,甲钟罩内的花盆浇足含18O 的水,乙钟罩内充足含18O的CO2,将两个花盆用塑料袋包扎起来,并用玻璃钟罩密封,在适宜温度下光照1h,回答: (1)甲钟罩的壁上出现了许多含18O的水珠,这些水是经过植物的蒸腾作用产生的。还有许多18O2,这是植物进行产生的。 (2)乙钟罩的壁上有许多含18O的水珠,这是C18O2进行作用产生的。 (3)将甲移入黑暗环境中,几小时后,钟罩内18O2减少,减少的18O2被转移到植物体内形成了,这一生理过程的主要意义是。3.定蛋白质代谢过程中元素的转移情况 例7.有人给农作物施用15N标记的肥料,结果在食用该农作物的动物尿液中查出15N。(1)含15N的化肥从土壤溶液中先后经过和过程进入根细胞。(2)含15N的物质在植物体内的核糖体处合成植物蛋白。以后动物摄取该植物蛋白,在消化道内先后经等酶的作用,又分解为含15N的氨基酸。(3)含15N的氨基酸被吸收到动物体内,又经过作用被分解为含15N的物质,进而在内转化为,随尿液排出体外。 4.证明植物生长素的极性运输

科普园地--同位素在医学上的应用

同位素在医学上的应用 放射性同位素用于医学领域已有90多年的历史,到本世纪30年代利用镭治疗肿瘤达到盛期,到50年代后,随着核技术和医学的相互结合,形成了一门年轻学科——核医学。核医学的发展是医学现代化的重要标志之一,它不仅为阐明代谢过程、探讨生命活动的物质基础及客观规律提供了灵敏、特异、快速和方便的研究手段,也为临床诊断、放射治疗、医学科学研究开辟了新的途径。 核医学按其内容分为临床核医学和基础核医学。前者主要任务是利用核技术诊断和治疗疾病;后者则主要是用核技术来研究疾病。 目前,世界上生产的放射性核素约有80%~90%用于医学,其中30多种核素大量用于临床。 一、放射治疗 放射性核素在医学上的应用,使多种类型恶性癌的疗效得到显著改善。50年代后,各国用60Co治疗机代替以前的镭治疗机,它的射线能量为1.33MeV,穿透力强,深部组织吸收剂量高,皮肤吸收剂量低,适用于深部肿瘤的治疗。近年来,也开始把快中子、质子束等应用于放射治疗。放射治疗系利用它衰变时放出的射线在机体内引起电离作用,破坏病变细胞来达到治疗目的。 采用各种放射源(60 Co,137Cs,192Ir等)直接或通过手术植入病人体腔内或肿瘤部位,实施短程放射治疗,具有使肿瘤部位有较高剂量,而周围正常组织损伤较小的优点。近年来,腔内后装技术的发展,缩短了治疗时间,提高了工作效率,医务人员也几乎可免受射线照射,更便于开展门诊治疗。 另外,可把放射性药物直接引入体内进行治疗,如198Au,90Y,177Lu等可治疗白血病,支气管癌等。用”’I治疗甲状腺癌和甲状腺功能亢进。用’于治疗真性红细胞增多症。 将32P、90Sr、60Co等β放射性核素制成适当活度的放射源,敷贴在体表疾患处,可治某些浅表疾病,如神经性皮炎、慢性湿疹、毛细血管瘤等。 二、临床诊断 核医学临床诊断检查可分为体内检查(功能测定与显像技术)和体外检查(竞争放射分析等)两部分。核医学临床诊断是利用放射性核素作示踪剂,并通过核仪器测定其在脏器中的分布和强度,可以诊断疾病。 1.体内检查(功能测定与显像技术) 应用放射性核素或其标记化合物,可以测定甲状腺、肾、心、肺和消化系统的功能,并能进行血液系统检查。举例如下: 甲状腺有摄取或浓集131I的功能,131I的摄取速度和摄取量与甲状腺功能状态有关。口服Na131I24/。时后,用核探测器在颈部(甲状腺部位)测量甲状腺摄取131I的情况,可以判断甲状腺的功能状态。 甲状腺吸131I率的正常值范围,常因测量技术和方法、地区以及年龄、性别等略有差异。以北京地区为例,采用闪烁探头远距离测量法;24小时甲状腺吸131I率正常值范围为25%~65%,小于25%为功能低下,大于65%可能为甲状腺功能亢进。 把24Na标记的盐水溶液注入人体,2小时后,测定体液中24Na的含量,可计算出病人体内体液的总量,如体液重量超过体重的6O%,表示人体浮肿。 选用合适的放射性药物(放射性核素或标记化合物)作示踪剂引入体内,采用闪烁扫描机、γ照相机或断层显像技术(ECT,包括单光子发射计算机断层仪SPECT和正电子发射计算机断层仪PECT),可以观察放射性在人体内的分布状况与动态变化,从而诊断脏器是

专题33-同位素标记法的应用

专题1:同位素示踪法的应用 【同位素】:在中子和质子组成的原子核内,质子数相同,中子数不同的这一类原子称为同位素。同位素包括稳定同位素和放射性同位素。稳定同位素是指原子核结构稳定,不会发生衰变的同位素,如15N,18O等。放射性同位素是指原子核不稳定会发生衰变,发出α射线或β射线或γ射线的同位素,如3H、14C、32P、35S、131I等。 (1)放射性同位素标记:利用放射性同位素标记某一特定物质,然后用放射自显影技术来检测和追踪物质的运行和变化规律,可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化和反应机理等。 (2)稳定同位素标记:使用稳定同位素标记,虽然不能用放射自显影技术来显现、追踪同位素的去向,但可用测量分子质量或密度梯度离心技术来区别不同的物质。 一、研究分泌蛋白的合成、加工与运输过程 【资料1】:科学家在研究分泌蛋白的合成和分泌时,曾经做过这样一个实验:在豚鼠的胰脏腺泡细胞中注射3H标记的亮氨酸,3min后,放射性出现在粗面内质网中,17min后,出现在高尔基体中,117min后,出现在靠近质膜内侧的运输蛋白质的小泡中,最后出现在释放到细胞外的分泌物中。 实验结论:。 1.如图为某动物细胞结构示意图,如果让该细胞吸收含同位素15N标记的氨基酸,同位素示踪可以发现,这种氨基酸首先出现在图中哪一序号所示的细胞器中() 2.用放射性同位素标记的某种氨基酸培养胰腺细胞得到带有放射性的胰岛素。如果用仪器测试放射性在细胞中出现的顺序,这个顺序最可能是() ①线粒体②核糖体③内质网④染色体⑤高尔基体⑥细胞膜⑦细胞核 A.①③④⑦⑥ B.⑥②③⑤⑥ C.②③⑤①⑥ D.⑥②⑦④⑤ 3.从某腺体的细胞中提取一些细胞器,放入含有15N 氨基酸的培养液中(培养液还具备这些细胞器完成其功能所需要的物质和条件),连续取样测定标记的氨基酸在这些细胞器中的数量,下图中正确的是()

同位素示踪法在高中生物学实验中的应用

同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下: 1 研究蛋白质或核酸合成的原料及过程 把具有放射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。 2 研究分泌蛋白的合成和运输 用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。 3 研究细胞的结构和功能 用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。 4 探究光合作用中元素的转移 利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。他们用氧的同位素18O分别标记H2O和CO2,使它们分别成为H218O和C18O2,然后进行两组光合作用实验:第一组向绿色植物提供H218O和CO2,第二组向同种绿色植物提供H2O和C18O2。在相同条件下,他们对两组光合作用释放的氧进行了分析,结果表明第一组释放的氧全部是18O2,第二组释放的氧全部是O2,从而证明了光合作用释放的氧全部来自水。另外,卡尔文等用14C标记的CO2,供小球藻进行光合作用,追踪检测其放射性,探明了CO2中的碳在光合作用中转化成有机物中碳的途径。 5 研究细胞呼吸过程中物质的转变途径 利用18O作为示踪原子研究细胞呼吸过程中物质的转变途径,揭示呼吸作用的机理。例如,用18O标记的氧气(18O),生成的水全部有放射性,生成的二氧化碳全部无放射性,即18O→H218O。用18O标记的葡萄糖(C6H1218O6),生成的二氧化碳全部有放射性,生成的水全部无放射性,即C6H1218O6→C18O2。例如将一只实验小鼠放入含有放射性18O2气体的容器内,18O2进入细胞后,最先出现的放射性化合物是水。 6 研究某些矿质元素在植物体内的吸收、运输过程 研究矿质元素的吸收部位时,常用放射性同位素32P等来做实验,发现根毛区是根尖吸收矿质离子最活跃的部位。研究矿质离子在茎中的运输部位时,用不透水的蜡纸将柳树的韧皮部和木质部隔开,并在土壤中施用含42K的肥料,5小时后测定42K在柳茎各部位的分布;有蜡纸隔开的木质部含有大量42K,韧皮部几乎无42K,说明运输42K的是木质部;柳茎在用蜡纸隔开韧皮部和木质部的以下区段以及不插入蜡纸的对照实验中,韧皮部中也有很多42K,说明42K可从木质部横向运输到韧皮部。 7 研究有丝分裂过程中染色体的变化规律

同位素标记法在高中生物学中的应用总结

同位素标记法在高中生物学中的应用总结同位素标记法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法,生物学上经常使用的同位素是组成原生质的主要元素,即H、N、C、S、P和O等的同位素。 1.分泌蛋白的合成与分泌(必修1P40简答题) 20世纪70年代,科学家詹姆森等在豚鼠的胰腺细胞中注射3H标记的亮氨酸。3min后被标记的亮氨酸出现在附有核糖体的内质网中;17min后,出现在高尔基体中;117min后,出现在靠近细胞膜内侧的囊泡中及释放到细胞外的分泌物中。由此发现了分泌蛋白的合成与分泌途径:核糖体→内质网→高尔基体→囊泡→细胞膜→外排。 2.光合作用中氧气的来源 1939年,鲁宾和卡门用18O分别标记H2O和CO2,然后进行两组对比实验:一组提供H2O和C18O2,另一组提供H218O和CO2。在其他条件相同情况下,分析出第一组释放的氧气全部为O2,第二组全部为18O2,有力地证明了植物释放的O2来自于H2O而不是CO2。 3.光合作用中有机物的生成 20世纪40年代美国生物学家卡尔文等把单细胞的小球藻短暂暴露在含14C 的CO2里,然后把细胞磨碎,分析14C出现在哪些化合物中。经过10年努力终于探索出了光合作用的“三碳途径”——卡尔文循环。为此,卡尔文荣获“诺贝尔奖”。 4.噬菌体侵染细菌的实验 1952年,赫尔希和蔡斯以T2噬菌体为实验材料,用35S、32P分别标记噬菌体的蛋白质外壳和DNA,再让被35S、32P分别标记的两种噬菌体去侵染大肠杆菌,经离心处理后,分析放射性物质的存在场所。此实验有力证明了DNA是遗传物质。 5.DNA的半保留复制 1957年,美国科学家梅塞尔森和斯坦尔用含15N的培养基培养大肠杆菌,使之变成“重”细菌,再把它放在含14N的培养基中继续培养。在不同时间取样,并提取DNA进行密度梯度离心,根据轻重链浮力等的不同,就分出新生链和母链,这就证实了DNA复制的半保留性。 6.基因工程 在目的基因的检测与鉴定中,采用了DNA分子杂交技术。将转基因生物的基因组DNA提取出来,在含有目的基因的DNA片段上用放射性同位素作标记,以此为探针使之与基因组DNA杂交,如果显示出杂交带,就表明目的基因已导入受体细胞中。 另外,还可采用同样方法检测目的基因是否转录出了mRNA,不同的是从转基因生物中提取的是mRNA。 7.基因诊断 基因诊断是用放射性同位素(如32P)、荧光分子等标记的DNA分子作探针,依据DNA分子杂交原理,鉴定被检测样本上的遗传信息,从而达到检测疾病的目的。 另外,还可以用在植物有机物的运输研究过程中。 示踪原子不仅用于科学研究,还用于疾病的诊断和治疗。例如,射线能破坏甲状腺细胞,使甲状腺肿大得到缓解。因此,碘的放射性同位素就可用于治疗甲状腺肿大。

浅论放射性同位素示踪技术的应用

浅论放射性同位素示踪技术的应用-----《原子物理》课程论文 这学期通过学习XX老师的《原子物理》课程,我对原子物理其中一个领域—放射性同位素产生了很大的兴趣,这兴趣源于我在高中时期对生物学科中同位素示踪法的学习经历,当时我就感觉这一技术十分奇妙,但不明原理,《原子物理》课程让我认识并理解了物理和生物两大学科之间的这一联系。课堂上老师简明扼要地介绍了一些有关的应用,但是我仍不满足。老师只能作为课程的引路人,为学生指明入门方向,要想横向更加广泛地,纵向更加深入地了解这一课程的某个领域还是要学生在课外多方搜集资料,筛选整合有价值的信息,通过比较和研究,最终形成自己对这一领域的独特而深刻的认识,放射性同位素的应用浩瀚广博,即使仅仅只谈它的示踪技术应用,也远非我这篇小论文可以概述详尽的,所以我也只能用“浅论”这两个字。下面我就对放射性同位素示踪技术的应用进行浅显的介绍和论述。 具体论述前我们首先要明确相关的基本概念,无论结构多么复杂的物理学大厦,它的地基都是由一块块叫做“基本概念”的砖石筑成的。基本概念不明晰,我们就无法理解为什么放射性同位素具有如此广泛而丰富的应用。那么什么是“放射性同位素”呢?科学家发现,元素周期表中同一位元素的原子并不完全一样,有的原子重些,有的原子轻些;有的原子很稳定,不会变,有的原子有放射性,会变化,衰变后成了另一种元素的原子。我们把这些处于同一位的元素但有不同性质(质子数相同,但中子数不同)的原子称为同位素。同位素中有的会放出射线,因此称放射性同位素。 放射性同位素不断发出射线,它到哪里,人们就可以追踪到哪里,可作为示踪剂使用。示踪剂可以是示踪原子,也可以做成示踪化合物。因为加入示踪剂之后,就像贴上标记一样,所以又称之为标记化合物。人们已经用氚、碳-14、磷-32、硫-35、碘-125等许多核素合成了许许多多标记化合物。用放射性同位素示踪技术(以下简称示踪技术)作检测,具有灵敏度高、方法简便、干扰少、准确性好等优点,因此,在工农业生产、医疗、环保、国防和科学研究等许多领域有着十分广泛的应用,并且这种应用还在迅速扩展。 (一)示踪技术在生物学领域的应用 高中时期我们就曾经学过同位素示踪法在生物学科的应用,即用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。它可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能——在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。利用示踪剂二氧化碳-14还可以研究有关植物呼吸的详细情况。例如,由于昼夜之间的差别,植物的呼吸情况有什么不同?呼吸对光合作用有什么影响?不同植物之间,呼吸有什么差异等等。 (二)示踪技术在工业生产领域的应用 放射性示踪剂在工业生产中有着广泛的应用。石油蕴藏在地下,油层非均匀性质很严重,油水分布复杂。搞清地下油水分布的情况,对提高采油率有着十分重要的意义。如果用氚或碘-125、硫-35作示踪剂,注入油井中,打一些监测井进行监测,就可以知道地下油水的分布情况。再如,不同公司生产的石油往往共用一条输油管道,要想把哪个公司输送过来的石油分辨得一清二楚,也可找示踪剂来帮忙。例如在甲公司的石油中加入放射性碘做示踪剂,在乙公司的石油中加入放射性硫做示踪剂,当接收站测到放射性碘示踪剂信号时,就知道甲公司的石油过来了,就会自动打开甲公司的贮油槽。当测到放射性硫示踪剂信号时,就知道是乙公司的石油过来了,就会打开乙公司的贮油槽,保证不会认错货。 (三)示踪技术在科学研究领域的应用 用氚标记示踪剂可以帮助水利学家们研究江河中泥沙是怎么淤积的。利用氯-36示踪剂可以帮助人们了解地下水运动走向和渗透率的大小。利用碳-14示踪剂可以研究大洋水流的循环模式和全球气候变暖的原因,等等。磷-32、硫-35、碘-125、碳-14或氚作示踪剂,可以帮助医生从分子水平研究神经系统、内分泌系统疾病的机制,进行药物代谢,基因工程等研究。用磷-32或硫-35标记的核苷酸,可用于DNA(脱氧核糖核酸)和RNA(核糖核酸)分子序的测定。 (四)示踪技术在医学领域的应用 通过查阅相关医学文献,我发现在医学研究中,经常需要了解某种物质在机体内的分布情况和代谢规律,包括药物、抗体、细胞膜受体,基因片段以及蛋白质等各种分子。如何能够较为方便地在活体动物或人体条件下了解这些情况呢?示踪技术是一种较为常用的方法。随着放射性标记药物的品种不断增加,在体外探测体内放射性分布的设备不断进步,示踪技术应用越来越广泛。最早,我们为了解甲状腺的功能,给病人口服放射性碘,然后测定甲状腺部位的放射性高低,定量显示甲状腺的摄碘功能,这一方法沿用至今,对于甲状腺整体和甲状腺肿块局部功能的评价,用数字或图像的方式很容易获得。还可以用于

同位素示踪法及其在中学生物学中的应用

同位素示踪法及其在中学生物学中的应用娄志义 (安徽省合肥市中国科技大学附属中学230026) 左丽丽 (山东省寿光市第五中学262735) 同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。示踪实验的创建者是Hevesy,HeX,esy于1923年首先用天然放射性z1Pb研究铅盐在豆科植物内的分布和转移。目前,由于中学《生物》课本中介绍的实验越来越多,涉及的同位素示踪法也频繁地出现,本文对同位素示踪法的原理及其应用做一介绍 1 同位素示踪法基本原理和特点 1.1基本原理具有相同的质子数和不同中子数的原子互称同位素,如16O、17O和18O是氧的三个同位素。而具有放射性的同位素叫放射性同位素,如235U和236U是铀元素的两个放射性同位素。同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质和生物学性质是相同的,只是具有不同的核物理性质。因此,就可以用同位素作为一种标记,制成含有同位素的标记化合物(如标记食物,药物和代谢物质等)代替相应的非标记化合物。利用放射性同位素不断地放出特征射线(如a、B 一、B’、Y、X射线等)的核物理性质,就可以用核探测器随时追踪它在体内或体外的位置、数量及其转变等;稳定性同位素虽然不释放射线,但可以利用它与普通相应同位素的质量之差,通过质谱仪、气

相层析仪、核磁共振等质量分析仪器来测定。。 1.2放射性同位素示踪法的特点 放射性同位素和稳定性同位素都可作为示踪剂,但是,稳定性同位素作为示踪剂其灵敏度较低,可获得的种类少,价格较昂贵,其应用范围受到限制;而用放射性同位素作为示踪剂不仅灵敏度高,测量方法简便易行,而且具有能准确地定量,准确地定位及符合研究对象的生理条件等特点:①灵敏度高。放射性示踪法可以检测10-18~10-19放射性核素,比普通化学分析法的灵敏度(10—12g)要高得多。②方法简便。放射性测定不受其它非放射性物质的干扰,可以省略许多复杂的物质分离步骤,体内示踪时,可以利用某些放射性同位素释放出穿透力强的Y射线,在体外测量而获得结果,这就大大简化了实验过程,做到非破坏性分析。③定位定量准确。放射性同位素示踪法能准确定量地测定代谢物质的转移和转变,可以确定放射性示踪剂在组织器官中的定量分布,并且对组织器官的定位准确度可达细胞水平、亚细胞水平乃至分子水平。④符合生理条件。在放射性同位素实验中,所引用的放射性标记化合物的化学量是极微量的,它对体内原有的相应物质的质量改变是微不足道的,体内生理过程仍保持正常的平衡状态,获得的分析结果符合生理条件,更能反映客观存在的事物本质。 2各种同位素及其在中学生物学中的应用 2.1 氢的同位素已知氢有三种同位素,即氕、氘和氚,氕和氘是稳定的同位素,而氚具有放射性,能够发射负B射线,因而可以通过

放射性同位素在能源

放射性同位素在能源,农业,医疗,考古的作用 在元素周期表中,一个元素占据一个位置。后来,科学家又进一步发现,同一位元素的原子并不完全一样,有的原子重些,有的原子轻些;有的原子很稳定,不会变,有的原子有放射性,会变化,衰变后成了另一种元素的原子。我们把这些处于同一位的元素但有不同性质的原子称为同位素。同位素中有的会放出射线,因此称放射性同位素。放射性同位素具有以下三个特性: 第一,能放出各种不同的射线。有的放出α射线,有的放出β射线,有的放出γ射线或者同时放出其中的两种射线。还有中子射线。其中,α射线是一束α粒子流,带正电荷,β射线就是电子流,带有负电荷。 第二,放出的射线由不同原子核本身决定。例如钴-60原子核每次发生衰变时,都要放射出三个粒子:一个β粒子和两个光子,钴-60最终变成了稳定的镍-60。 第三,具有一定的寿命。人们将开始存在的放射性同位素的原子核数目减少到一半时所需的时间,称为半衰期。例如钴-60的半衰期大约是5年。 放射性同位素有三个主要来源——加速器中带电粒子的产物,反应堆中的中子轰击产物和分离出的裂变产物。使用放射性同位素的主要优点是可以通过测定它们发射的粒子和鉴定其特有的半衰期和辐射性质,探测它们的存在。放射性同位素在能源、工业、农业、医疗、环境、考古等诸多方面都有着广泛的应用。 示踪技术 示踪方法是引入少量放射性同位素,并随时观察其行踪的方法。例如在肥料中掺入少量的放射性磷-32(半衰期为14.28天,发射1.7兆电子伏的β粒子),可以找到给植物施磷肥的最好方法。用探测或照相胶片测量辐射随时间的变化及其在植物中的位置,就能得到磷的摄入率和累积率的准确资料。同样,给人体注射无害的放射性钠-24(半衰期15.03小时)溶液,可以进行人体血液循环的示踪实验。为了医学诊断的目的,希望引入足够的放射性物质以便提供所需要的数据,但是放射性物质不能达到有害于人体的程度。 再如,监视掺合了放射性同位素流体的行踪可以确定许多种物质的流速,如人体中的血液,输油管中的石油或排入江河中的污水等。利用示踪技术还可以对生物体内的农药形式进行分析,研究农药施用后发生的变化及其在生态系统中运动的规律。 有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能--在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。

稳定同位素技术的应用

稳定同位素技术的应用 稳定同位素是元素周期表中某元素中不发生或极不易发生放射性衰变的同位素,目前地球上发现的稳定同位素共有200多种。现在稳定同位素技术还已经应用于医学、农业和环境科学等各领域。 稳定同位素的常规分析方法主要有:质谱法、核磁共振谱法、气相色谱法、中子活化分析法、光谱法等。 1.稳定性同位素探针技术 将稳定同位素运用于微生物中的技术主要是稳定性同位素核酸探针技术,稳定性同位素核酸探针技术是将复杂环境中微生物物种组成及其生理功能耦合分析的有力工具。由于自然环境中微生物具有丰富的多样性,在整体水平上清楚认知复杂环境中微生物群落生理代谢过程的分子机制具有较大难度。而稳定性同位素核酸探针技术则能有效克服这一难点,在群落水平揭示复杂环境中重要微生物生理生态过程的分子机制。 稳定性同位素核酸探针技术的基本原理与DNA半保留复制实验类似、主要区别在于后者以纯菌为研究对象,证明子代DNA源于父代DNA,而前者主要针对微生物群落,揭示复杂环境中参与标记底物代谢过程的微生物作用者。一般而言,重同位素或轻同位素组成的化合物具有相同的物理化学和生物学特性,因此,微生物可利用稳定性重同位素生长繁殖。 2.稳定同位素标记的相对定量与绝对定量方法 2.1稳定同位素标记的相对定量方法 稳定同位素在蛋白质组学中也有重要的应用。根据同位素引入的方式,基于稳定同位素标记的蛋白质组定量方法可以分为代谢标记法、化学标记法和酶解标记法。采用不同方法,标记同位素的样品在不同步骤混合;越早混合,样品预处理步骤引入的误差越小,定量的准确度越高。 代谢标记是指在细胞或生物体成长过程加入含有稳定同位素标记的培养基,完成细胞或生物体标记的方法。该方法是在细胞培养过程中加入稳定同位素标记的必需氨基酸,使得每条肽段相差的质量数恒定。与15N方法相比,由于肽段的质量差异数与氨基酸种类和数目无关,因此简化了相对定量分析的难度。 除代谢水平标记外,通过体外化学标记引入同位素是一种非常有价值的蛋白质组相对定量方法;适用于细胞、体液、组织等多种样品分析。现有的化学标记试剂多数通过与氨基或巯基反应引入稳定同位素。最常用的是基于N -羟基琥珀酰胺化学和还原胺反应。 18O标记是目前酶解标记的唯一方法。采用该方法仅需要在酶解过程中使用H218O。18O标记既可用于非修饰蛋白质组的相对定量,而且也可以将肽段末端的

相关主题
文本预览
相关文档 最新文档