当前位置:文档之家› ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模
ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模

曲哲

2006-5-29

一、试验标定

选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。李宏男(2004)本可以提供比较理想的基准试验。然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。

图1:剪力墙尺寸与配筋

该试件尺寸及配筋如图1所示。墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。

(a)墙体分区及网格(b)钢筋网

图2:ABAQUS中的有限元模型

剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。模型网格及外观如图2所示。墙下弹性梁底面嵌固。分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。

ABAQUS中损伤模型各参数取值如表1、图3所示。未说明的参数均使用ABAQUS默认值。

表1:有限元模型材料属性

混凝土 钢筋 材料非线性模型 Damaged Plasticity

Plasticity

初始弹性模量(GPa )

38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(με) 2000 峰值拉应力(MPa )

3.65

注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。

(a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线

图3:混凝土塑性硬化及损伤参数

ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。本文受压硬化曲线采用Saenz 曲线(式1),可用表1中列出的初始弹性模量、峰值应力和峰值应变唯一确定。受拉软化曲线采用Gopalaratnam 和Shah (1985)曲线(式2),并采取江见鲸建议参数k =63,λ=1.01,如图3(b )所示。本文模型只定义受拉损伤指标,损伤指标随开裂应变的变化如图3(c )所示,当开裂应变小于0.0014时,损伤指标线性增大,开裂应变超过0.0014后,损伤指标保持固定值0.6。

02

0000012c

c c c E E εσεεεσεε=

??????+?+????????????

(1)

e k t t

f λ

ωσ?=

(2)

图4比较了采用4节点单元和8节点单元得到的剪力墙荷载-位移曲线,并同时画出了

文献中提供的荷载-位移骨架线。可见8节点单元模型的计算结果较4节点单元模型更加平滑顺畅,下降段也比较稳定。二者在达到峰值之前差别不大,但软化行为则相差较多。这可能与基于开裂应变定义的损伤指标引入的网格依赖性有关,本文对此不做深入讨论。

与试验曲线相比,有限元分析得到的荷载-位移曲线初始刚度略大,且墙底开裂(图中1点)时刚度退化不如试验中显著,导致之后的分析结果位移偏小。受拉侧钢筋屈服后计算得到的刚度与试验曲线比较接近,不久主斜裂缝的出现使墙的承载力进入软化段,被主要裂缝穿过的钢筋均进行屈服段。软化过程中墙体形成了新的主斜裂缝并最终沿这条主斜裂缝破坏。图5、6分别展示了剪力墙在受力全过程中关键点处的混凝土主拉应变和钢筋大主应力。

与试验曲线相比,计算结果刚度偏差较大,承载力基本一致。

图4:荷载-位移曲线之比较

图5:混凝土主拉应变

图6

:钢筋大主应力

二、参数讨论

分析中存在两类参数。

一类是有限元模型中难以从试验直接得到的参数,

比如混凝土的损伤行为等,这类参数的不确定性直接影响了有限元分析结果的可靠性,也正是因为有限元模型中经常存在这类参数,利用有限元分析的结果时才需要比较慎重,并要求设计人员具有丰富的工程经验与扎实的力学概念;另一类是试件本身的参数,比如剪跨比等。关于这类参数的讨论有助于了解问题的机理。

现有的各种用于有限元分析的混凝土本构在模拟剪切行为时都不理想。本文使用的ABAQUS 自带的塑性损伤混凝土本构也存在类似的问题。下面首先讨论对上文有限元模型中的模型参数,然后再选用一套标准参数讨论剪力墙试验的试验参数。

从上文结果可以看出,4节点单元的计算结果与8节点相差不多,但可以大量节省计算成本。故这里采用4节点单元模型进行模型参数的讨论。

(1)模型参数:

以上述模型为基准,调整混凝土膨胀角、钢筋弹性模量、混凝土拉压损伤以及混凝土受拉软化曲线等参数,分析结果如图7-图11所示。

膨胀角定义混凝土的塑性流动势面在主应力空间中开口的大小,在剪切受力状态下,它严重影响体积应变的发展。膨胀角越大,剪胀现象越严重。从图7中可以看出,随着膨胀角从45度增加到55度,剪力墙的抗剪能力显著增强。

由于试验中总是或多或少的存在钢筋与混凝土之间界面的粘结滑移而模型中没有反映这一点,所以常有人采用折减钢筋弹性模量的方法隐式的考虑钢筋滑移的影响。从图8可以看出,当把钢筋弹模折减为原来的一半时,剪力墙的开裂后的刚度有轻微的下降。

图9、10分别展示了混凝土的拉、压损伤指标的不同定义对剪力墙行为的影响。图9中,less damage 曲线代表受拉损伤指标最大为0.2的模型的计算结果,more damage 曲线则代表受拉最大损伤指标为0.8的模型计算结果。各模型中的混凝土均在开裂应变达到0.0014时达到最大损伤指标。图9显示,受拉损伤对剪力墙的行为影响不大。有趣的是,less damage 曲线反而比标准模型的曲线更低。原因不详。图10显示受压损伤对剪力墙的行为也有一定的影响,特别是当剪力墙进行承载力软化阶段以后。

混凝土的受拉软化行为对剪力墙的行为有重要的影响。图10图例中的k 即为式(2)中控制受拉软化曲线形状的参数,k 越小,混凝土拉应力随裂缝宽度增大而减小得越慢。由图10可见,当受拉软化较慢时,剪力墙的承载能力将得到显著提高。

由以分析可见,有限元材料本构模型中有许多难以标定的参数都可能严重影响分析结果,所以在利用有限元分析结果时应该格外谨慎。 (2)试验参数

剪力墙的受力形态受高宽比(剪跨比)的影响很大。采用与上文中矮墙完全相同的材模型,保持暗柱配筋率和墙身纵横配筋率,保持轴压比,而把墙高从750mm 改变到1600mm ,即把剪跨比从不足14所示。

图13:高墙混凝土主拉应变

图14:高墙钢筋大主应力

图12比较了高墙(高宽比2.0)和矮墙(高宽比0.94)在静力推覆作用下的荷载-位移曲线。高墙承载力较低,延性较好。

从图13中可以看出,高墙的破坏形态与矮墙完全不同。矮墙的最终破坏由主斜裂缝的滑移控制,属于剪切破坏;而高墙则发生弯曲破坏。

下面分别讨论轴压比、分布配筋率和约束构件配筋率对矮墙受力性能的影响。 (a )轴压比

图15(a )比较了不同轴压比下矮墙的荷载-位移曲线。明显的趋势是,随着轴压比的增高,墙的抗剪承载力提高,延性下降。图15(b )和(c )对比了不同轴压比下破坏主斜裂缝的角度。当轴压比较高时,主斜裂缝倾角明显增大,这符合经验。

(b )低轴压比墙斜裂缝 (c )高轴压比墙斜裂缝

图15:轴压比对剪力墙的影响

(b )分布筋配筋率

墙内分布钢筋可以有效抑制斜裂缝的发展,提高墙的抗剪承载力。图16显示了这一变化。随着分布钢筋配筋率的增大,墙的承载力显著提高,延性也有增强。并且当分布筋配筋率较高时,墙的破坏模式也发生了变化。图17显示了较高配筋率墙体的破坏过程。

对于分布筋配筋率较高的墙体,墙身剪切斜裂缝得到有效抑制。随着墙体侧称的不断增大,墙根部裂缝得不到边缘约束构件中纵筋的有效约束(边缘纵筋已屈服),此处裂缝不断张开并横向扩展,最终墙底部被整体剪坏。

图17:高分布配筋率墙体的主拉应变发展过程

(c )暗柱配筋率

如图18所示,增大边缘约束构件的配筋率,可以增大墙的抗侧刚度,但这方面的效果不明显。配筋较多的边缘约束构件反而降低了墙的抗剪承载力,但延性有所改善。同时,高配筋的边缘约束构件增大了墙整体的纵向配筋率,从而增大了矮墙斜裂缝的倾角。

b )弱边缘约束墙斜裂缝 (

c )强边缘约束墙斜裂缝

图18:边缘约束构件对剪力墙的影响

参考文献

ABAQUS (2003). ABAQUS Analysis User ’s Manual. US: ABAQUS, Inc.

李宏男,李兵 (2004). “钢筋混凝土剪力墙抗震恢复力模型及试验研究.” 建筑结构学报 25, no. 5: 35-42.

江见鲸,陆新征,叶列平(2005). “混凝土结构有限元分析”.清华大学出版社,北京 左晓宝, 戴自强,李砚波(2001). “改善高强混凝土剪力墙抗震性能的试验研究.” 工业建筑 31, no. 6: 37-39.

本人学习abaqus五年的经验总结 让你比做例子快十倍

第二章 ABAQUS 基本使用方法 [2](pp15)快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE 不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外 丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。ABAQUS/CAE 推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几 何模型上。 载荷类型Pressure 的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss 和Cancel 按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数 据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel 按钮可关闭对话框,而不保存 所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance) 是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件 上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上, 对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE 中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part 功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直 接创建几何部件。(2)导入已有的CAD 模型文件,方法是:点击主菜单 File→Import→Part。网 格部件不包含特征,只包含节点、单元、 面、集合的信息。创建网格部件有三种方法:(1)导入 ODB 文件中的网格。(2)导入INP 文件中的网格。(3)把几何部件转化为网格部件,方法是:进 入Mesh 功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初 始分析步之后,需要创建一个或多个后续分析步,主要有两大类:(1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型:—Static, General: ABAQUS/Standard 静力分析 —Dynamics, Implicit: ABAQUS/Standard 隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit 显式动态分析

abaqus 壳单元

ABAQUS/Explicit: Advanced Topics
Appendix 2
Shell Elements in ABAQUS/Explicit
Copyright 2005 ABAQUS, Inc.
ABAQUS/Explicit: Advanced Topics
A2.2
Overview
? Conventional Shell Elements ? Continuum Shell Elements
Copyright 2005 ABAQUS, Inc.

ABAQUS/Explicit: Advanced Topics
Conventional Shell Elements
Copyright 2005 ABAQUS, Inc.
ABAQUS/Explicit: Advanced Topics
A2.4
Conventional Shell Elements
– Triangular and quadrilateral conventional shell elements are available with linear interpolation and your choice of large-strain and small-strain formulations. – A linear axisymmetric shell element is also available. – For most analyses the standard large-strain shell elements are appropriate. These include: ? S4R ? S3R ? SAX1 ? These elements are discussed briefly here and in more detail in the Element Selection in ABAQUS/Standard lecture notes. – If, however, the analysis involves small membrane strains and arbitrarily large rotations, the small-strain shell elements (S4RS, S3RS, and S4RSW) are more computationally efficient.
Copyright 2005 ABAQUS, Inc.

abaqus中查看壳模型结果应注意的问题

abaqus中查看壳模型结果应注意的问题 对于实体网格,我们往往采用软件默认方式直接查看模型的应力应变等结果,一般情况下我们也会用同样的方式去查看壳模型的分析结果,然而直接这样查看壳模型的分析结果是不全面的。下面我们简单看一下查看壳结果时可能被忽略的两个问题。1、众所周知,壳单元有上下面之分,当我们在做壳接触时ABAQUS软件会提示我们选择哪个方向作为接触面。在查看壳模型结果时,ABAQUS软件默认显示的是SNEG面,也就是Bottom面,于之对应的是SPOS面(TOP 面)。对于很薄的壳来说,TOP面与BOTTOM面结果几乎没有差异,但对于厚壳,有时同一位置的TOP面与BOTTOM 面结果差异可能会较为明显。我们先看一下如何在ABAQUS 中查看壳的TOP面结果,如下图1所示: 图1结果显示设置在ABAQUS的Visualization模块下打开一个壳模型的ODB文件,点击菜单栏Result,下拉框中选择SectionPoints…,弹出Section Points对话框,Activelocations:位置处选择Top,单击OK。下图2是一铁路货车车体模型局部的TOP面与BOTTOM面应力云图结果对比,我们可以看出,BOTTOM面与TOP面应力云图分布差异较大,因些在查看复杂壳模型结果时一定要注意同时查看BOTTOM面与TOP面结果。

图2 BOTTOM面与TOP面应力云图结果对比2、如上图2白色的圈内我们可以看到应力云图不连续的情况,为什么会出现这种情况?从下图3中可以清晰看出云图不连续的问题发生在壳的折线上,原来ABAQUS默认对于连续的壳单元之间的角度小于20度时认为它是一个连续面,大于20度时认为它是一个折面,在折面的折线处查看应力结果时是不进行节点平均计算的,因此会出现这种不连续的问题。 图3 不连续应力云图如何消除这种不连续,具体操作如下:点击菜单栏Result,弹出下拉菜单中选择Options,弹出Result Options对话框,去除Include shell/membranefeature edges前面的对勾,点击OK。如下图4。 图4 消除不连续设置结果如下图5所示。

ABAQUS教材:第五章 壳单元的应用

第五章壳单元的应用 用壳单元可模拟的是具有某一方向尺度(厚度方向)远小于其它方向的尺度,且沿厚度方向的应力可忽略的特征的结构。例如,压力容器的壁厚小于整体结构尺寸的1/10,一般可以用壳单元进行模拟分析,以下的尺寸可以作为典型整体结构尺寸: ?支撑点之间的距离 ?加强构件之间的距离或截面厚度尺寸有很大变化处之间的距离 ?曲率半径 ?所关注的最高振动模态的波长 基于以上的特点,平面假定成立,即ABAQUS壳单元假定垂直于壳面的横截面在变形过程中保持为平面。另外不要误解为上述厚度必须小于单元尺寸的1/10。精细网格可包含厚度尺寸大于壳平面内的尺寸的壳单元,尽管一般不推荐这样做,在这种情况下实体单元可能更合适。 5.1 单元几何尺寸 壳单元的节点位置定义了单元的平面尺寸、壳面的法向、壳面的初始曲率,但没有定义壳的厚度。 5.1.1 壳体厚度和截面计算点 壳体厚度描述了壳体的横截面,必须对它定义。除了应定义壳体厚度,还应当在分析过程中或分析开始时,计算出横截面的刚度。若选择在分析过程中计算刚度,则ABAQUS采用数值积分法分别计算厚度方向每一个截面点(积分点)的应力和应变值,并允许非线性材料行为。例如,一种弹塑性材料的壳在内部截面点还是弹性时,其外部截面点已经达到了屈服。S4R单元(4节点减缩积分)中积分点的位置和沿壳厚度方向截面的的位置如图5-1所示: 图5-1 壳的数值积分点位置

在进行数值积分时,可指定壳厚度方向的截面点数目为任意奇数。默认的情况下,ABAQUS在厚度方向上取5个截面点,对各项同性壳来说,处理大多数非线性问题已经是足够了。但是,对于一些复杂的模型必须取更多的截面点,尤其是处理交变的塑性弯曲问题(在这种情况下一般采用9个点)。对于线性材料,3个截面点已经提供了沿厚度方向的精确积分。当然,对于线弹性材料壳来说,选择在分析开始时计算材料刚度更为有效。 在选择分析前就计算横截面刚度时,材料必须是线弹性的。此时所有的计算都根据横截面上的合力和合力矩来进行。如果需要,ABAQUS将按默认设置提供壳底面、中面和顶面的应力和应变。 5.1.2 壳面和壳面法线 壳单元的相互连接需定义它们的正法线方向,如图5-2所示。 图5-2 壳的正法线方向 对于轴对称壳单元来说,其正法线方向的定义是从1节点到2节点经逆时针旋转90 形成的方向。对于三维壳单元,其正法线方向是绕着单元的节点序号按右手法则移动给出的方向。 壳体顶面是指在正法线方向的面,称为SPOS面;而壳体底面是指在正法线负方向的面,称为SNEG面,它们是为了处理接触问题而定义的。相邻壳单元的法线必须是一致的。 正法线方向约定了单元压力载荷方向和随壳厚度变化的输出量方向。壳体单元上压力的正方向即壳体的正法线方向(壳体单元上压力的正方向与实体上压力正方向刚好相反;而壳面压力约定与实体面上的压力是一致的,至于单元上分布载荷与面上分布载荷的差别的更多信息可参考ABAQUS/Standard用户手册的第19.4.2节)。

abaqus系列教程-05应用壳单元

5 应用壳单元 应用壳单元可以模拟结构,该结构一个方向的尺度(厚度)远小于其它方向的尺度,并忽略沿厚度方向的应力。例如,压力容器结构的壁厚小于典型整体结构尺寸的1/10,一般就可以用壳单元进行模拟。以下尺寸可以作为典型整体结构的尺寸: ?支撑点之间的距离。 ?加强件之间的距离或截面厚度有很大变化部分之间的距离。 ?曲率半径。 ?所关注的最高阶振动模态的波长。 ABAQUS壳单元假设垂直于壳面的横截面保持为平面。不要误解为在壳单元中也要求厚度必须小于单元尺寸的1/10,高度精细的网格可能包含厚度尺寸大于平面内尺寸的壳单元(尽管一般不推荐这样做),实体单元可能更适合这种情况。 5.1 单元几何尺寸 在ABAQUS中具有两种壳单元:常规的壳单元和基于连续体的壳单元。通过定义单元的平面尺寸、表面法向和初始曲率,常规的壳单元对参考面进行离散。但是,常规壳单元的节点不能定义壳的厚度;通过截面性质定义壳的厚度。另一方面,基于连续体的壳单元类似于三维实体单元,它们对整个三维物体进行离散和建立数学描述,其动力学和本构行为是类似于常规壳单元的。对于模拟接触问题,基于连续体的壳单元与常规的壳单元相比更加精确,因为它可以在双面接触中考虑厚度的变化。然而,对于薄壳问题,常规的壳单元提供更优良的性能。 在这本手册中,仅讨论常规的壳单元。因而,我们将常规的壳单元简单称为“壳单元”。关于基于连续体的壳单元的更多信息,请参阅ABAQUS分析用户手册的第15.6.1节“Shell elements:overview”。 5.1.1 壳体厚度和截面点(section points) 需要用壳体的厚度来描述壳体的横截面,必须对它进行定义。除了定义壳体厚度

ABAQUS教材:第六章 梁单元的应用

第六章梁单元的应用 对于某一方向尺度 (长度方向)明显大于其它两个方向的尺度,并且以纵向应力为主的结构,ABAQUS用梁单元对它模拟。梁的理论是基于这样的假设:结构的变形可以全部由沿梁长度方向的位置函数来决定。当梁的横截面的尺寸小于结构典型轴向尺寸的1/10时,梁理论能够产生可接受的结果。典型轴向尺寸的例子如下: ·支承点之间的距离。 ·有重大变化的横截面之间的距离。 ·所关注的最高振型的波长。 ABAQUS梁单元假定梁横截面与梁的轴向垂直,并在变形时保持为平面。 切不要误解为横截面的尺寸必须小于典型单元长度的1/10,高度精细的网格可能包含长度小于横截面尺寸的梁单元,不过并不推荐这种方式,这种情况下实体单元更适合。 6.1 梁横截面的几何形状 可以给出梁横截面的形状和尺寸来定义梁的外形,也可以给出梁横截面工程性质(如面积和惯性矩)来定义一般梁的外形。 如果用梁横截面的形状和尺寸来定义梁的外形,ABAQUS提供了如图6-1所示的各种常用的梁横截面形式可资利用。使用其中的任意多边形横截面可以定义任意形状的薄壁截面梁。详情可参考ABAQUS/标注用户手册中15.3.9节。 图6-1梁横截面形状 在定义梁横截面的几何形状时,ABAQUS/CAE会提示输入所需尺寸,不同的横截面类型会有不同的尺寸要求。如果梁的外形与梁横截面的截面性质有关时,可以要求在分析过程中计算横截面的工程性质,也可以要求在分析开始前预先计算横截面的工程性质。当材料的力学特性既有线性又有非线性时(例如,截面刚度因塑性屈服而改变),可以选用第一种方式,而对线弹性材料,第二种方式效率更高。 也可以不给出横截面尺寸,而直接给出横截面的工程性质(面积、惯性矩和扭转常数),这时材料的力学特性既可以是线性的也可以是非线性的。这样就可以组合梁的几何和材料特性来定义梁对荷载的响应,同样,响应也可以是线性或非线性的。详情可参考ABAQUS/标准用户手册中15.3.7节。 6.1.1 截面计算点 梁横截面的几何形状和尺寸确定后,就要在分析过程中计算横截面的工程性质,

庄茁书笔记-abaqus精通

庄茁书笔记-abaqus精通 隐式求解:先由平衡方程计算出各节点位移,再利用计算出来的位移计算应力及应变。每个求解step结束之后,需要求解一次 显示求解:描述应力波传递的过程,不同的step中,应力波传递到的位置不一样如果模型中出现了numerical singularity(数值奇异)或者zero pivot主元素为0,查看是否缺少了限制刚体平动或转动的约束。 Step步中可以指定输出变量 Interaction module:可以定义tie,equation and rigid body,与step相关联,必须指定相互作用发生在哪个分析步。 Load中指定荷载、边界和场变量。这也与step相关联 Standard、explicit作为element library(单元库)选择 Linear、quadratic作为geometric(几何阶次)选择 Truss作为单元族选择 刚性体:对于变形可忽略的部分可作为刚性体,减小模型规模。 单元的表征:单元名字的第一个字母或者字母串表示该单元属于哪个单元族。仅在角点处布置节点的单元称为线性单元;在每条边上有中间节点的单元,称为二次单元。单元的节点数目存在单元名字中,如C3D8八节点实体单元,S8R八节点一般壳单元,B31一阶三维梁单元,C3D20表示20节点实体单元,C3D10M表示10节点四面体单元,C3D4表示一阶四面体单元。 ABAQUS/Standard提供了对于线性和二次单元的广泛选择。除了二次梁单元 B32和修正的四面体和三角形单元外,ABAQUS/Explicit仅提供线性单元数学描述formulation:定义单元的数学理论,在不考虑自适应网格的情况下,abaqus中所有的应力/位移单元的行为都是基于拉格朗日或材料描述的,分析中,

本人学习abaqus五年的经验总结,让你比做例子快十倍

第二章ABAQUS基本使用方法 [2](pp15)快捷键: Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ②(pp16)ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 [3](pp17)平面应力问题的截面属性类型是Solid(实心体)而不是Shell (壳)。 ABAQUS/CAE推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。 载荷类型Pressure的含义是单位面积上的力,正值表示压力,负值表示拉力。 [4](pp22)对于应力集中问题,使用二次单元可以提高应力结果的精度。 [5](pp23)Dismiss和Cancel按钮的作用都是关闭当前对话框,其区别在于: 前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel按钮可关闭对话框,而不保存所修改的内容。 [6](pp26)每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 [7](pp26) ABAQUS/CAE中的部件有两种: 几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:

(1)使用Part功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。 (2)导入已有的CAD模型文件,方法是: 点击主菜单File→Import→Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法: (1)导入ODB文件中的网格。 (2)导入INP文件中的网格。 (3)把几何部件转化为网格部件,方法是: 进入Mesh功能模块,点击主菜单Mesh→Create Mesh Part。 [8](pp31)初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类: (1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: —Static, General: ABAQUS/Standard静力分析 —Dynamics, Implicit: ABAQUS/Standard隐式动力分析 —Dynamics, Explicit: ABAQUS/ Explicit显式动态分析 (2)线性摄动分析步(linear perturbation step)只能用来分析线性问题。在ABAQUS/Explicit中不能使用线性摄动分析步。在ABAQUS/Standard中以下分析类型总是采用线性摄动分析步。

abaqus实体单元和壳单元

1.实体单元 实体单元可在其任何表面与其他单元连接起来。 C3D:三维单元 CAX:无扭曲轴对称单元,模拟3600的环,用于分析受轴对称载荷作用,具有轴对称几何形状的结构; CPE:平面应变单元,假定离面应变ε33为零,用力模拟厚结构; CPS:平面应力单元,假定离面应力σ33为零,用力模拟薄结构; 广义平面应变单元包括附加的推广:离面应变可以随着模型平面内的位置线性变化。这种数学描述特别适合于厚截面的热应力分析。 可以扭曲的轴对称单元:用来模拟初始时为轴对称的几何形状,且能沿对称轴发生扭曲。这些单元对于模拟圆柱形结构,例如轴对称橡胶套管的扭转很有用。 反对称单元的轴对称单元:用来模拟初始为轴对称几何形状的反对称变形。适合于模拟像承受剪切载荷作用的轴对称橡胶支座一类的问题。 如果不需要模拟非常大的应变或进行一个复杂的,改变接触条件的问题,则应采用二次减缩积分单元(CAX8R,CPE8R,CPS8R,C3D20R) 如果存在应力集中,则应在局部采用二次完全积分单元(CAX8,CPE8,CPS8,C3D20等)。 对含有非常大的网格扭曲模拟(大应变分析),采用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等) 对接触问题采用线性减缩积分单元或非协调元(CAX4I,CPE4I,CPS4I, C3D8I)的细网格划分。 如果在模型中采用非协调元应使网格扭曲减至最小。 三维情况应尽可能采用块状单元(六面体)。当几何形状复杂时,完全采用块体单元构造网格会很困难,因此可能有必要采用稧形和四面体单元,但尽量少用,并远离需要精确求解的区域。 一些前处理程序包括网格划分方法,它们可用四面体单元构造任意形状的网格。只要采用二次四面体单元(C3D10),其结果对小位移问题应该是合理的。 小结: 在实体单元中所用的数学公式和积分阶数对分析的精度和花费有显著的影响; 使用完全积分单元,尤其是一阶(线性)单元,容易形成自锁现象,正常情况不用; 一阶减缩积分单元容易出现沙漏现象;充分的单元细化可减小这种问题; 在分析中如有弯曲位移,且采用一阶减缩积分单元时,应在厚度方向至少用4个单元; 沙漏现象在二阶减缩积分单元中较少见,一般问题应考虑应用这些单元; 非协调单元的精度依赖于单元扭曲的量值; 结果的数值精度依赖于所用的网格,应进行网格细化研究以确保该网格对问题提供了唯一的解答。但是应记住使用一个收敛网格不能保证计算结果与问题的实际行为相匹配:它还依赖于模型其他方面的近似化和理想化程度; 通常只在想要得到精确结果的区域细划网格; ABAQUS具有一些先进特点如子模型,它可以帮助对复杂模拟得到有用的结果。 2.壳单元 可以模拟有一维尺寸(厚度)远小于另外两维尺寸,且垂直于厚度方向的应力可以忽略结构。一般壳单元:S4R,S3R,SAX1,SAX2,SAX2T。对于薄壳和厚壳问题的应用均有效,且考虑了有限薄膜应变; 薄壳单元:STRI3,STRI35,STRI65,S4R5,S8R5,S9R5,SAXA。强化了基尔霍夫条件,即:垂直于壳中截面的平面保持垂直于中截面;

相关主题
文本预览
相关文档 最新文档