当前位置:文档之家› 选频滤波放大电路设计报告

选频滤波放大电路设计报告

选频滤波放大电路设计报告
选频滤波放大电路设计报告

电子技术综合设计

摘要

本设计主要包括四个模块,即可调直流稳压电源、低频信号发生器、二阶低频带通滤波器以及放大器,论述了各模块的方案设计及选择、各元器件的选择、调试过程、测试结果、问题的发现与改善。最后达到用直流稳压电源给各个电路供电,信号发生器可以产生矩形波、三角波、正弦波等波形,然后通过带通滤波器输出的波通过放大电路可放大1000倍以上。

关键词:电源、信号发生器、带通滤波器、放大器

目录

1.可调直流稳压电源设计 (1)

1.1设计任务 (1)

1.2方案选择 (1)

1.3电路参数设计 (2)

1.4电路仿真 (7)

1.5电路指标测试 (7)

2.低频信号发生器设计 (8)

2.1设计任务 (8)

2.2方案选择 (8)

2.3电路参数设计 (9)

2.4电路仿真 (11)

2.5电路指标测试 (11)

3.低频带通滤波器设计 (15)

3.1设计任务 (15)

3.2方案选择 (15)

3.3电路参数设计 (15)

3.4电路仿真 (16)

3.5电路指标测试 (16)

4.低频选频放大器及其测试电路设计 (17)

4.1设计任务 (17)

4.2方案选择 (18)

4.3元件参数 (18)

4.4电路仿真 (18)

4.5电路指标测试 (19)

5.结语 (21)

1.可调直流稳压电源设计

1.1设计任务

设计一个正负可调直流稳压电源,要求:

1、输出电压:±3v~±10v

2、最大输出电流500mA

3、当交流电网电压在220v上下波动10%,环境温度在10o C~40o C范围内时,

均能正常工作。

1.2方案选择

直流稳压电源有以下几种方案

1、由晶体管、变压器等组成的可调直流电源

特点:设计调整灵活,元器件多,故障率高。

2、由三端稳压器、变压器等组成

(C1起滤波作用,但高频特性不是很好,所以接C2使其更加稳定;)

特点:设计调整容易,故障率低,有内部保护,效率低。

3、开关式稳压电源:

220v/50Hz 整流滤波开关稳压用改变脉冲宽度的方法调整输出电压。

特点:体积小,重量轻,效率高,但开关信号易造成电磁干扰,电源噪声大。

比较上述三种方案,考虑到主要用于模拟放大器、信号发生器、滤波器等模拟信号处理电路,要求电源纹波小,噪声小。室内使用,对效率、体积、重量没有严格要求,故选择方案2。

1.3电路参数设计

1、首先选择关键元器件——三端稳压器

根据负载电压(±3v~±10v)与负载电流(0.5A)的要求,

选择LM337和LM317(±1.2v~±37 v ,1.5A ) 以下设计按照输出最大电压10v 进行设计

2、计算V 2和C 1:(V 2`和C 1`与V 2和C 1对称,取相同值)

依稳压电源的工作原理可知,如果V 2太大,则V I 太大,317两端电压大,317功耗大,芯片温升高,容易损坏芯片且浪费电能。反之,如果V 2太小,则317内部调整管管压降太小,不在放大区,失去调整作用。这个值应使317在最不利的条件下能正常工作。而且在能正常稳压的前提下,压降尽可能小,以减小功耗。这里说的最不利条件是指交流电网电压V 1最低和输出电流I o 最大。

由317资料可知,它的正常工作条件是V I -V o >3v (见P.2),所以V I

>13v

由于C 1的充放电作用,波形如图所示。T 1是充电时间,T 2是放电时间,通常

T 2>>T 1, T 2≈T 1 +T 2=10ms

∴dt I C dt I C ms

o ms I ??==?10011001I 11V

为了设计C 1,应计算ΔV I

122Im -?-=I in V V V

其中 1v 是桥式整流电路中1个二极管的压降(粗略计算)

112100

12Im --

=∴?dt I C V V ms

o in

由上述,V Imin =13v

10201

10201

1020

11010

211321

11421

214

1

214

ms

o ms

o ms

o ms o V I dt C V I dt C I dt V C C I dt V ∴=--=-=-=-????

考虑最不利条件:

V 2取V 2min =0.9V 2(电网向下波动10%), I o 取I omax =0.6A (按设计要求0.5A 留10%裕量) 则 C 1=C 1max

311max 22110.6

0.61010100

0.92140.9214C C V V -∴==

??=?--

由dt I C dt I C ms o ms I ??==

?1001

1001I 11V 可知,C 1越大,ΔV I 越小,V 2也越小,纹波小,变压器匝数少,这是我们所希望的。但是,C 1太大,整流元件瞬时电流

太大,对整流桥与变压器的电流提出了高要求。而且电容容量大体积大,价格贵。所以,C 1 不能太大,也不能太小。

我们设计I Im 113

V 2.6()55in V V ?≤==

11

0.6

0.6

2.6,2308100260

C F C μ∴≥

=,我们选用 C 1=2200F μ/25V

61210.6

220010100

0.9214C V -=

?=?-代入

得,V 2=13.1v 留有裕量,设计V 2=14v.

3、设计整流元件 (1)、整流二极管反向耐压

由整流桥工作原理知,每个整流二极管承受的最大反向峰值电压 )

考虑电网向上波动%10(561.1182222max 2v

V V RM ≈??== 为了安全,选整流二极管时反向耐压比上述值至少高50%

选V RM ≥90v, 击穿电压180v 以上

(2)二极管最大整流电流I F

桥式整流电路中,四个二极管两两轮流导通。所以每个整流二极管的最大整流电流平均值是输出电流的一半。

A I i o DAV 25.021

)(max max ==

由于整流管的电流不是正弦波,它的正向电流比平均值大很多。而且在接通瞬间有相当大的冲击电流通过整流二极管,电容越大这个电流越大。因此,二极管最大整流电流I F 应比上述值大0.5~2倍。按0.8倍计算, I F =1.8(i DAV )max =1.8 ×0.25=0.45A 据此,可选用1A/200v 的桥堆 4、变压器副边绕组电流

同样由于流过变压器副边的电流不是正弦波,故选变压器副边绕组电流有效值I ac 比输出电流I o 大。一般取1.1~3倍 这里取 I ac =1.8I omax =1.8×0.6=1.08A , 取2A 5、估算三端稳压器的功耗和散热器参数 三端稳压器的功耗

Im Im Im 210Im 201

102201

10201

10201

22max 1[()]1

()()2

21

12111()(2121)

212121[21]214 1.115.4

(10%2200I AV o o I AV ax in ax

ms

in o ms

I AV o ms

o ms

o o o

P V V I V V V V V V V I dt C V V V I dt C V I dt C P V I dt V I C V V C F μ=-=+=-=--=

-+--=

--

=--

-==?==????当由电网上浮)

,max min 3

max 6

0.6,

30.61010[215.413]0.62220010

(17.78 1.36)0.6

9.852o o o I A V V v P w

--===??=?---???=-?=时

三端稳压器正常工作温度是0o C~70o C 。留有裕量,按三端稳压器温度不超过60o C 计算,并考虑最不利的条件(环境温度40o C),则散热器热阻

1max 604020 2.03(/)

(9.852o o o

o T R C w P w

-≤==每瓦引起的温度变化)

由此选择散热片。SRZ203叉指型散热片热阻为2.5o C/w(64×100×35mm)

6、其它 (1)、根据317芯片使用建议,C adj 用10μF/25v 。C 2为C 1的高频补偿电容,用以补偿铝电解电容C 1在高频时电容性能的下降。一般C 2选0.1μF 的瓷片电容。为了在输出端进一步滤波,C 3,C 4选取与C 1,C 2相同。 (2)、根据317芯片使用建议,R 1取240Ω/0.125w

2

21

2

1

2min

min 2max max 21

2min 2max 21.25(1)1.25(1)1.25(1)240

1.25(1)

240

(1)1.25

333610 1.682.2OUT adj O O OUT O O R V I R R R R R V R

V V

R R V v R V v R k R k =+

+≈+

=+

=+=-==Ω

==ΩΩ当时,当时,选取为电位器

应该用一个300Ω电阻与R 2电位器串联

电阻和电位器即可

均选用和所以,w R R w

R I mw R I mA I mA I R adj R 125.0055.0,6,1.0,5240

2.1212212

11=====

由317说明书(P.7),R 1应紧靠在317管脚处焊接,R 2接地端应靠近输出端。 (3)、D 1和D 2是保护二极管。当由于某种原因使输入端短路时,给C 3,C adj 提供放电通路,避免它们通过317放电,损坏317。 (4)、在电源输出端可加发光二极管作为指示灯。 7、电源设计应注意的几个问题 (1)、各元器件的工作电流、电压、频率和功耗应在允许的范围内,并留有适当的裕量,以保证电路在规定的条件下能正常工作,达到所要求的性能指标,并留有一定的裕量; (2)、对于环境温度、交流电网电压等工作条件,计算时应按照最不利的情况考虑; (3)、涉及元器件的极限参数(例如整流桥的耐压)时必须留有足够的裕量。一般按1.5倍左右考虑。例如:如果实际电路中三极管V CE 的最大值为20v ,挑选三极管时应按V (BR )CEO ≥30v 考虑; (4)、电阻值尽可能选在1M Ω范围内,最大一般不应超过10M Ω。其数值应

在常用电阻标称系列之内,并根据具体情况正确选用电阻器的品种;

(5)、非电解电容,应尽可能在100pF~0.1μF范围内选择。其数值应在常用电容器标称值系列之内,并应根据具体情况正确选用电容器的品种;

(6)、在保证电路性能的前提下,应尽可能设法降低成本,减少元器件品种,减小元器件的功耗和体积,并为安装调试创造有利条件;

(7)、在满足性能指标和上述各项要求的前提下,应优先选用现有的或容易买到的元器件,以节省时间和精力;

(8)、应把根据计算所确定的各参数值标在电路图中恰当的位置;

(9)、安装焊接时注意板面布局,可靠紧凑,干净美观。

1.4电路仿真

1.5电路指标测试

1.5.1 测试方案

1.通过万用表的直流电压档测量直流稳压电源的输出电压;

2.使用大功率电阻测在最大输出电压最大输出电流时的纹波电压峰峰值。

1.5.2 测试结果

1.正电源:

2.96V—1

3.15V;负电源:-3.00V—-13.83V。

2.文波测试:在电源电压输出10v时,最大电流500mA时,正电源文波峰峰值为

21.4mV,负电源的纹波电压为16.4mV.

3.电流测试:在电源电压输出10v时,电流值大于0.5A。

1.5.3 结果分析

电源输出值变化由电位器阻值变化决定,阻值过小将使电压输出达不到10V要求,与电位器串联的保护电阻也不能过大,否则电压降不到3V;电源带上负载后会有10%左右的压降,主要是由于所设计的电源带载能力不强所造成;正负电源输出有纹波,因为带负载后,如果稳压电路的输入端电压降低,小于稳压电路所需要的压差,输入端电压的波纹将出现在输出电压中。

电压未能达到所需标准,主要是选用的电阻和理论计算的电阻有差别。

电源文波的产生:输出的直流电压是由交流电压经整流、滤波、稳压后得到的,而滤波过程中不能将交流部分完全滤除,因此产生纹波。

电流大于0.5A是由于电阻阻值不能达到所需的阻值且电源大于10v。

2.低频信号发生器设计

2.1设计任务

设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波;

频率1kHz~3 kHz;幅度30mv~1v;矩形波占空比可调;锯齿波上升、下降时间可调。

2.2方案选择

1、RC文氏电桥振荡器产生正弦波、经比较器产生方波和锯齿波、经积分器

产生三角波和锯齿波。

优点:廉价,缺点:元器件多,振荡频率不易调整,故障率高

2、用比较器和积分器形成矩形波、三角波,用三角波—正弦波转换器形成

正弦波。

优点:廉价,缺点:元器件多,故障率高

3、用石英晶体构成正弦波发生器,用比较器、积分器等产生其它波形。

优点:频率稳定度高。缺点:频率不易调整

4、用集成函数发生器专用芯片8038构成上述各种信号发生器

优点:故障率低,易调整。缺点:成本高

方案确定:虽然用8038成本高,但考虑集成电路是发展方向,故尽可能选用方案4。

2.3电路参数设计

1、 电路选择

由8038芯片原文说明书建议设计电路。

2、 工作原理 (1)R-S 触发器简介

S 称为置位输入端 R 称为复位输入端 Q 称为输出端

(2)工作原理: 给电,电容电压V C =0,R=1,S=0,Q=0,Pin9=0

Q=0使T 1截止,I A 给C 充电,V C ↑;当V A V B 时,R=0,S=1,Q=1,Pin9提供出一个上升沿;

Q=1使T 1导通,T 2、T 3、T 4均导通,Ie 2=Ic 2=I B ,由于T 2、T 3、T 4基极相连、射极相连,∴Ic 3= Ic 4=I B ,Ie 1= Ic 1=2 I B ,电容C 由电流(2 I B -I A )放电,V C ↓;当V A

如此周而复始。Pin9输出矩形波, V C 经缓冲器在Pin3输出三角波或锯齿波,再经三角波—正弦波转换器在Pin2输出正弦波。当Pin8接V R 时

,则输出矩形波和锯齿,则出方波和三角波;,则输

,则若设计B A B A A

R

B A B A B R

B A

R

A I I R R R V V I I R R R V V I R V V I ≠≠-===-=-=+++,

,

(3)、V +、V -

设计:

由8038说明书,双电源时,V +、V -=±5v~±15v 。由我们已经设计的电源,当V +、V

=±10v 时电源效率较高,纹波小,8038输出信号幅度较大。所以设计V +、V -

=±10v

(4)、R A 、R B 选取: 由8038说明书,1μA

R

S

Q

1 0 0 0 1 1 0 0 保持

1 1 不定

Ω

=∴

<<-<<-->>--<-<-<-<<-<<-<∴

---------+-+K R V N o t e P R V R R V R R V R R V R R V V R m A

R V V A A R A

R A A R A A R A A

R A A R A A R

1.5v

10v 5,34.80381010101010101010101010101010101010116336363636取下说明书由μ

(5)、C 选取

R A

A

R A

A B A A

B A A B A A

C A

B C A C t C C B A C A B V V R R V V I I I I I I I C t t T I I C t t I C t V V t I C V I I I I I d I C V V V V V V V V -=-==-+=-+=

+=-=

===-==

-===-=-++-+-+?21212211I I 21

132023************,,1

31

B A 0,

当输出方波时,)(锯齿波周期

(,)(放电电流

充电电流由之间变化,

,在即),(放充放充τ

可以满足设计要求

可见,时

时当取)()()(振荡频率)

(F C KHz

f V f V F C C

V C R V C R V V T f V V C

R V V R C T R R R A R A R R A R A μμ022.0342.310221004.215

v 50v 10)223(1022022.01004.210340103403134023209

595==???=

===?==?-=

-=-==-=

-=

∴--+++

(6)、V R 电位器设计 按照要求,5v

(7)、R L设计

方波输出端是(OC)集电极开路输出,有利于和

下一级电平匹配。太大,上升沿和下降沿变缓,

太小,正弦波失真变大。由说明书P.5,Note5,R L min=50kΩ故选100kΩ。

(8)、输出衰减器:

为了不使R L变小,选用100KΩ电位器。

为了下一级不影响本级,用741构成跟随器,实现隔离。

(9)、占空比调节电位器:选用5.1K,接于4、5

脚之间,中间接6脚

2.4电路仿真

2.5电路指标测试

2.5.1 测试方案

通过数字存储示波器观察波形及其各指标的测量值。

2.5.2 测试结果 :

1.方波:示波器截图

高电平值:9.40;低电平值:—9.20;周期:500.8us;占空比:50.02%;频率:1.95kHz;上升时间:1.74us;下降时间:306.ns。

2.矩形波:示波器截图

3.三角波:示波器截图

最大值:3.52v;最小值:—2.96v;峰峰值:6.48v;频率调节范围:104.2Hz —6.098kHz。

4.锯齿波:示波器截图

5.正弦波:示波器截图

幅度调节范围:1.52v—4.16v。

2.5.3 结果分析

测试结果基本满足设计要求。

3.低频带通滤波器设计

3.1设计任务

设计一个二阶低频带通滤波器,要求: 1.中心频率2KHZ; 2.带宽100HZ; 3.通带增益10;

4.测试记录频率特性曲线,观察V0与Vi 相位差随频率的变化。 3.2方案选择

1、LC 并联谐振回路

特点;适合高频电路,不适合于低频电路。 2、压控电压源型

特点;电路简单,不易调整。 3、无限增益多路反馈

特点:电路简单,不易调整。 4、双二次型 特点:适合于低频工作,调电路时器件相互影响小,容易调整,但电路相对复杂。 综上所述,选择双二次型带通滤波电路。 3.3电路参数设计

311

00001132

i O O O V V V V R R R SC

----=++ 10045O O

V V R R --= 3

0014

O O V V R SC

--= 联立上式可得

22

1111234O VO i S

V R C A V S S R C R R C ==

++

与通式22

(S)n

VP

n n W A S Q

K W

S S W Q

=

++比较可得

12101n VP W f

A R C Q Q π==?

122Wn f

R C Q Q

π== ()2

22

1234n

W f R R C π== 令R3=R4,通过查找资料知道C 取

0.01uF

R3=R4=8K Ω,R2=160K Ω,R1=16K Ω.

由此,我们取电容值为0.01uF,R3,R4取8K Ω,R2取160K Ω,R1取16K Ω,使达到要求。由于缺少160K Ω的电阻和16K Ω的电阻,因此,选用两个100K Ω和两个10K Ω的电阻串联。 3.4电路仿真

3

2

6

7

4

15U1

UA741

3

26

7

415

U2

UA741

3

2

6

7

415

U3

UA741

R2

160k

R4

8k

R4

8k

R4

8k

C

0.01uf

C

0.01uf

R3

8k

R1

16k

3.5电路指标测试 3.5.1 测试方案

通过调节信号发生器的频率来观察滤波后的波形,找出中心频率,输出电压。

3.5.2 测试结果:

中心频率:1.949kHz;通频带宽度:243Hz;中心频率处电压放大倍数:3.85倍。

带通滤波器频率特性测试表

f(Hz) 1100 1200 1300 1400 1600 1700 1800 1850 1900 Av 0.3 0.33 0.38 0.45 0.68 0.96 1.3 1.84 2.975 f(Hz) 1910 1920 1930 1940 1950 1960 1970 1980 1990 Av 3.2 3.275 3.55 3.675 3.85 3.725 3.7 3.7 3.625 f(Hz) 2k 2.01k 2.02k 2.03k 2.04k 2.05k 2.06k 2.07k 2.08k Av 3.55 3.53 3.525 3.5 3.45 3.4 3.41 3.025 3 f(Hz) 2.09k 2.10k 2.11k 2.5k 3k 3.5k 4k 4.5k 5k Av 2.9 2.75 2.7 1.02 0.54 0.36

3.5.3 结果分析

测试结果基本满足设计要求。

4.低频选频放大器及其测试电路设计

4.1设计任务

1、运用反相比例放大器

2、放大倍数不小于1000

滤波器的设计与实现

滤波器的设计与实现 一、设计简介 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或PSPICE或PROTEL或其他软件仿真。 二、设计要求 完成电路设计;学习用计算机画电路图;学会利用Matlab或PSPICE或其他软件仿真。 三、设计路线 滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率次(通常是某个频率范围)的信号通过,而其他频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC元件或RC元件构成的无缘滤波器,也可以由RC元件和有源器件构成的有源滤波器。 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF),高通滤波器(HPF),带通滤波器(BPF),和带阻滤波器(BEF)四种。从实现方法上可分为FIR,IIR滤波器。从设计方法上可分为切比雪夫滤波器,巴特沃思滤波器。从处理信号方面可分为经典滤波器和现代滤波器。 在这里介绍两种具体的滤波器设计方法: (1)切比雪夫滤波器:是在通带或阻带上频率响应幅度等波纹

波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。这种滤波器来自切比雪夫多项式,因此得名,用以记念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(Пафнутий Львович Чебышёв)。 (2)巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 巴特沃斯滤波器的特性 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 无源滤波器与有源滤波器的比较 无源滤波器:这种电路主要有无源元件R、L和C组成有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。

CMOS二级运算放大器设计

CMOS二级运算放大器设计 (东南大学集成电路学院) 一.运算放大器概述 运算放大器是一个能将两个输入电压之差放大并输出的集成电路。运算放大器是模拟电子技术中最常见的电路,在某种程度上,可以把它看成一个类似于BJT 或FET 的电子器件。它是许多模拟系统和混合信号系统中的重要组成部分。 它的主要参数包括:开环增益、单位增益带宽、相位阈度、输入阻抗、输入偏流、失调电压、漂移、噪声、输入共模与差模范围、输出驱动能力、建立时间与压摆率、CMRR、PSRR以及功耗等。 二.设计目标 1.电路结构 最基本的COMS二级密勒补偿运算跨导放大器的结构如图所示。主要包括四部分:第一级输入级放大电路、第二级放大电路、偏置电路和相位补偿电路。 图两级运放电路图 2.电路描述 电路由两级放大器组成,M1~M4构成有源负载的差分放大器,M5提供该放大器的工作电流。M6、M7管构成共源放大电路,作为运放的输出级。M6 提供给M7 的工作电流。M8~M13组成的偏置电路,提供整个放大器的工作电流。相位补偿电路由M14和Cc构成。M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。 3.设计指标 两级运放的相关设计指标如表1。

表1 两级运放设计指标 三.电路设计 第一级的电压增益: )||(422111o o m m r r g R G A == 第二级电压增益: )||(766222o o m m r r g R G A =-= 所以直流开环电压增益: )||)(||(76426221o o o o m m o r r r r g g A A A -== 单位增益带宽: c m O C g A GBW π2f 1 d == 偏置电流: 2 13 122121)/()/()/(2??? ? ??-=L W L W R L W KP I B n B 根据系统失调电压: 7 5 6463)/()/(21)/()/()/()/(L W L W L W L W L W L W == 转换速率: ? ?? ???-=L DS DS C DS C I I C I SR 575,min 相位补偿: 12.1)/()/()/()/(1 61311 146 6+== m m m C g g L W L W L W L W g R

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

EMC滤波电路的原理与设计---整理【WENDA】

第一章开关电源电路—EMI滤波电路原理 滤波原理:阻抗失配;作为电感器就是低通(更低的频率甚至直流能通过)高阻(超过一定频率后就隔断住难于通过)(或者是损耗成热消散掉),因此电感器滤波靠的是阻抗 Z=(R^2+(2ΠfL)^2)^1/2。也就是分成两个部分,一个是R涡流损耗,频率越高越大,直接把杂波转换成热消耗掉,这种滤波最干净彻底;一个是2ΠfL 这部分是通过电感量产生的阻挡作用,把其阻挡住。实际都是两者的结合。但是要看你要滤除的杂波的频率,选择合适的阻抗曲线。因为电感器是有截止频率的,超过这个频率就变成容性,也就失去电感器的基本特性了,而这个截止频率和磁性材料的特性和分布电容关系最大,因此要滤波更高的频率的干扰,就需要更低的磁导率,更低的分布电容。因此一般我们滤除几百K以下的共模干扰,一般使用非晶做共模电感器,或者10KHZ以上的高导铁氧体来做,这样主要使用阻抗的WL这一方面的特性,主要发挥阻挡作用。电感器滤波器是通过串联在电路里实现。撒旦谁打死多少次顺风车安顺场。 因此:共模滤波电感器不是电感量越大越好主要看你要滤除的共模干扰的频率范围。先说一下共模电感器滤波原理共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了,然后靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果。当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感 器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用。这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000\15000 的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号。因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 电容的阻抗是Z=-1/2ΠfL那么也就是频率越高阻抗绝对值越小,那么就是高通低阻,就是频率越高越能通过,所以电容滤波是旁路,也就是采用并联方式,把高频的干扰通过电容旁路给疏导回去。

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

两级放大电路的设计(参考版)

设计指标: A V >250,R i ≥10kΩ,R L =5.1kΩ, BW=50Hz~50kHz ,D<5% 。 设计条件: 输入信号(正弦信号):2mV≤V i ≤5mV ,信号源内阻:R s =50Ω,电源电压:V CC =12V ; 半导体三极管9013,参数:β=100,r bb ’=300Ω,C μ=5pF ,f T =150MHz ,3V≤V CC ≤20V , P CM =625mW ,I CM =500mA ,V (BR)CEO =40V 。 1.电路选型: 小信号放大电路选用如图1所示两级阻容耦合放大电路,偏置电路采用射极偏置方式,为了提高输入电阻及减小失真,满足失真度D<5%的要求,各级射极引入了交流串联负反馈电阻。 2.指标分配: 要求A V >250,设计计算取A V =300,其中T 1级A V1=12,A V2=25;R i ≥10kΩ要求较高,一般,T 1级需引入交流串联负反馈。 3.半导体器件的选定 指标中,对电路噪声没有特别要求,无需选低噪声管;电路为小信号放大,上限频率f H =50kHz ,要求不高,故可选一般的小功率管。现选取NPN 型管9013,取β=100。 4.各级静态工作点设定 动态范围估算:T 1级:im1imax V1252mV, 12,V V A === om1V1im1125284mV V A V ==?=。 T 2级:im2om1V284mV , 25V V A ===, om2V2im22584 2.1V V A V ==?=。

为避免饱和失真,应选:CEQ om CE(sat)C V V ≥+ ;可见 T 1级V CEQ1可选小些,T 2级V CEQ2可选大些。 CQ CQ CM CEQ CM T T I I I I I ≥+12取值考虑:设定主要根据,由于小信号电压放大电路较小; 另从减小噪声及降低直流功率损耗出发,、工作电流应选小些。 T 1级静态工作点确定: T CQ1 T CQ1T CQ1CQ1CQ1BQ1CEQ13k Ω, ',100'30026mV ' 10026 0.963mA 3000300 0.7mA 0.07mA , V 2V>0.12V V r r r I V I r V r r I I I I ββββ ≥=+= ===-?≤ =-====be1be1bb bb be1bb 取依可推得其中,,可求得选, T 2级静态工作点确定: 一般应取CQ2CQ1I I > ,CEQ2CEQ1V V > 选 :CQ2 CQ2BQ2CEQ21.2mA , 0.012mA , V 4V>3V I I I β == == 5.偏置电路设计计算(设BEQ 0.7V V =) T 1级偏置电路计算: Rb1BQ1BQ1CC 10100.0070.07mA 11 124V 33I I V V ==?===?=取 故:CC BQ1 b1b1 124 114.286k Ω0.07 V V R I --= = = 取标称值120 kΩ 22Rb1b1b110.071200.588mW

多级负反馈放大器实验报告

2.5 多级负反馈放大器的研究 一. 实验目的 (1)掌握用仿软件研究多级负反馈放大电路。 (2)学习集成运算放大器的应用,掌握多级集成运放电路的工作特点。 (3)研究负反馈对放大器性能的影响,掌握负反馈放大器性能指标的测试方法。1)测试开环和闭环的电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 2)比较电压放大倍数、输入电阻、输出电阻、反馈网络的电压反馈系数和通频带。 3)观察负反馈对非线性失真的改善。 二.实验原理 1.实验基本原理及电路 (1)基本概念。在电子电路中,将输出量(输出电压或输出电流)的一部分或全部通过一定的电路形式作用到输出回路,用来影响其输出量(放大电路的输入电压或输入电流)的措施成为反馈。 若反馈的结果使净输入量减小,则称之为负反馈;反之,称之为正反馈。若反馈存在于直流通路,则称为直流反馈;若反馈存在于交流通路,则称为交流反馈。 交流负反馈有四种组态:电压串联负反馈,电压并联负反馈,电流串联负反馈,电流并联负反馈。若反馈量取自输出电压,则称之为电压反馈;以电流形式相叠加,称为并联反馈。 在分析反馈放大电路市,“有无反馈”决定于输出回路和输入回路是否存在反馈支路。“直流反馈或交流反馈”决定于反馈支路存在于直流通路还是交流通路:“正负反馈”的判断可采用瞬时极性法,反馈的结果使净输入量减小的为负反馈,使净输入量增大的为正反馈;“电压反馈或电流反馈”的判断可以看反馈支路与输出支路是否有直接接点,如果反馈支路与输出支路有直接接点则为电压反馈,否则为电流反馈;“串联反馈或并联反馈”的判断可以看反馈支路与输入支路是否有直接直接接点,如果反馈支路与输入支路有直接接点则为并联反馈,

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

带通滤波器的设计与制作

滤波器电路设计实验报告 院系:物理科学与技术学院 专业班级: 学号: 学生姓名: 指导教师:杨鸣 2013年12月20日

目录 0、设计要求 (1) 1、电路基本模型的选择以及参数的计算。 (1) 2、电路元件参数的计算 (4) 3、Multisim仿真 (5) 4、器件的选择 (8) 5、Protel制板 (9) 6、体会 (9)

一、电路基本模型的选择以及参数的计算。 (1)选择有源滤波器 有源滤波器:由有源器件构成的滤波器。 一般由集成运放与RC 网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 (2)滤波电路传递函数 分为:低通(LPF )、高通(HPF )、带通(BPF )、带阻(BEF )、全通(APF ) 理想滤波电路的频响在通带内具有一定幅值和线性相移,而在阻带内其幅值为0。实际电路往往难以达到理想要求。 根据不同要求,常用低通有三种: 巴特沃斯滤波器通带最平坦,阻带下降慢。 切比雪夫滤波器通带有纹波,阻带下降较快。 贝塞尔滤波器通带有纹波,阻带下降慢,且群时延恒定,失真小。 我们选择通带平坦的巴特沃思滤波器 n 阶巴特沃思传递函数。 ()A j ω= n: 阶数 ωC :3dB 截止角频率 A0:通带电压增益 0|()|1()()10 n n c A j A ωωω≈= 026lg 220 A n A ?=-=≈ 因此本电路采用二阶巴特沃思低通滤波器与二阶巴特沃思高通滤波器级联而成。 基本框图如下

实验四 两级放大电路实验报告

实验四 两级放大电路 一、实验目的 l 、掌握如何合理设置静态工作点。 2、学会放大器频率特性测试方法。 3、了解放大器的失真及消除方法。 二、实验原理 1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管BG2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av 为: 2V 1V 1 i 1 O 2i 2O 1i 2O ,i 2O S 2O V A A V V V V V V V V V V A ?=?==== 式中电压均为有效值,且2i 1O V V =,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。 当忽略信号源内阻R S 和偏流电阻R b 的影响,放大器的中频电压增益为: 1be 2 be 1C 1be 1L 11i 1O S 1O 1V r r //R 1 r R V V V V A β-='β-=== 2 be L 2C 2 2be 2L 21O 2O 1i 2O 2V r R //R r R V V V V A β-='β-=== 2 be L 2C 2 1be 2be 1C 12V 1V V r R //R r r //R A A A β?β=?= 必须要注意的是A V1、A V2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。 2、在两极放大器中β和I E 的提高,必须全面考虑,是前后级相互影响的关系。 3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。 ) dB (A log 20G 式中G G G V u o 2u o 1u uo =+= 三、实验仪器 l 、双踪示波器。 2、数字万用表。 3、信号发生器。 4、毫伏表 5、分立元件放大电路模块 四、实验内容 1、实验电路见图4-1

FilterSolutions滤波器设计教程

F i l t e r S o l u t i o n s滤波器 设计教程 The latest revision on November 22, 2020

一、F i l t e r S o l u t i o n s滤波器设计软件中的英文注解 Lowpassnotchfilters:低通陷波滤波器 Order:阶 filtercircuits:滤波电路frequencyresponse:幅频响应Passband:通频带、传输带宽repeatedlycycle:重复周期maximumsignaltonoiseratio:最大信噪比 gainconstants:增益系数,放大常数 circuittopologies:电路拓扑结构gainshortfall:增益不足maximumoutput:最大输出功率laststage:末级precedingstage:前级 stagefilter:分级过滤器GainStage:增益级voltageamplitude:电压振幅Componentvalues:元件值maximumvalued:最大值minimumvalued:最小值standardvalue:标准值 resistors:电阻器 capacitors:电容器operationalamplifiers:运算放大器(OA) circuitboard:(实验用)电路板activefilters:有源滤波器supplycurrents:源电流powersupplies:电源bypassingcapacitors:旁路电容optimal:最佳的;最理想的GainBandwidth:带宽增益passivecomponent:无源元件activecomponent:有源元件overallspread:全局;总范围Componentcharacteristics:组件特性 Modification:修改;更改databook:数据手册 typicalvalues:标准值;典型值defaultvalues:省略补充programexecution:程序执行Resetbutton:复原按钮positivetemperaturecoefficient:正温度系数 variableresistors:可变电阻器cermetresistor:金属陶瓷电阻器outputresistance:输出电阻distortion:失真 singleamplifier:单级放大器voltagefollower:电压输出跟随器troubleshooting:发现并修理故障controlpanel,:控制面板 二、FilterSolutions滤波器设计的基本步骤 1、打开crack的软件后,根据滤波器的设计要求,在filtertype中选择滤波器的类型(Gaussian:高斯滤波器、Bessel:贝塞尔滤波器、butterworth:巴特沃斯;Chebyshev1切比雪夫1;Chebyshev2切比雪夫2;Hourglass:对三角滤波器、Elliptic:椭圆滤波器、Custom:自定义滤波器、RaisedCos:升余弦滤波器、Matche:匹配滤波器、Delay:延迟滤波器); 2、在filterclass中选择滤波器的种类(低通、高通、带通、带阻); 3、在filterAttributes中设置滤波器的阶数(Order)、通频带频率(Passband frequency); 4、在Implementation中选择有源滤波器(active)、无源滤波器(passive)和数字滤波器(Digital);

带通滤波设计

带通滤波电路设计 1.带通滤波电路如图所示,要求电路的中心频率f0=1000Hz,通带宽度BW=80Hz,试计算和选择该电路的电容和电阻值。 解:选择,则 考虑到BW= 和,有 和 再代入,得R f=1.92R1。 由于运放两输入端相连的外接电阻必须满足平衡条件,即R f//R1= R3=2R=31.83k ,这样和R f=1.92R1联合求解,可得R1=48.41k 和R f=92.95k 。考虑到滤波电路的性能对元件的误差相当灵敏,电路选用稳定而精密电阻器和电容器。

2.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 Hz f 5000= 通带中心频率处的电压放大倍数:10=uo A 带宽:Hz f 50=? 设计步骤: 该电路的传输函数:2 2 )(o o o uo u s Q s s Q A s A ωωω++ = 品质因数: f f Q ?= 01050 500== 通带的中心角频率:500211121 2 3?=???? ??+= πωR R C R o 通带中心角频率o ω处的电压放大倍数:1021 3-=- =R R A uo 3 02CR Q = ω 取F F F f C μμμ02.0)(500 10)(100 ===,则: Ω?=??-??- =- =-3 6 011092.15500 2)10(1002.010 πωuo CA Q R 32ωC Q R = Ω?=????= -3 6 105.318500 210 02.010 2π Ω=-?????= += -838) 1010 2(500210 02.010 ) 2(2 6 2 02πωuo A Q C Q R

电子课程设计--二级晶体管放大电路

电子课程设计--二级晶体管放大电路

五邑大学 电子技术课程设计报告题目:二级晶体管放大电路 院系机电工程学院 专业机械工程及其自动化 学号 AP100 学生姓名 指导教师黄东 完成日期 2 0 1 2 / 1 / 7

一、设计题目:晶体管放大电路 (1)设计一级晶体管放大电路,输入信号幅度≥20mv, 频率为1KHz,电源电压+5V,要求完成下面的技术指标: a. 电压增益A u ≥20 b. 输入电阻Ri ≥2KΩ c. 输出电阻Ro ≤50Ω (2)测量出输入电阻值,并说明该值于那些元件有关系。 (3)可选用的器件与元件 二、方案的论证和设计 1)工作原理: 输入信号加到前级的输入端,经过前级放大后加到后级的输入端,再经后级放大。在两级放大器中,放大器的输入端事实上就是前级的输入端,前级的输出也就是后级的输入,后级的输出也就是两级放大的输出;前级是后级的信号源,后级是前级的负载。因此,两极放大的线性电压放大倍数就等于前后两级放大倍数的乘积;放大器的输入电阻就是前级的输入电阻;放大器的输出电阻就是后级的输出电阻。 2)设计电路的主要功能 该电路具有实现输入信号放大的功能,能将较小的输入信号通过二级放大电路实现信号放大,从而获得必要的电压幅值或足够的功率,最终达到推动负载工作的使用要求。

3)设计原理图 4)参数的设定 1.计算后级电路电阻参数 节点B 电流方程为 1R I =2R I +B I 为了稳定静态工作点,令参数满足1R I >>B I 因此,B 点位为 CC B B B BE U R R R U 2 12 +≈ 取1E I =1.mA ,并选β=91,则 1 26) 1(200E be I r β++= =200+(1+91)*26/1=2.592k 第一级的放大倍数是 be L C r R R A //u1β -= 取1U A =120,取Ω=5101E R ,代入公式求出=C R 3.6k ?

相关主题
文本预览
相关文档 最新文档