当前位置:文档之家› CB-30成分及力学性能(根据美标ASTM A743标准)

CB-30成分及力学性能(根据美标ASTM A743标准)

CB-30成分及力学性能(根据美标ASTM A743标准)
CB-30成分及力学性能(根据美标ASTM A743标准)

25 Commerce Road, Orillia, Ontario, Canada L3V 6L6

Phone (705) 325-2781 Fax (705) 325-5887

ALLOY DATA SHEET CORROSION RESISTANT ALLOY CB-30REVISION: 09/95

DESCRIPTION

CB-30 is a non-hardenable, ferritic Fe-Cr-Ni alloy with good resistance to nitric acid, alkaline solutions and organic chemicals and food products. The alloy also has good oxidation and sulphidation resistance at temperatures up to 1400o F and is consequently used in the mineral processing industry.

COMPOSITION

C Mn Si Cr Ni P S

Min %18.0

Max % 0.30 1.0 1.5021.0 2.00.040.04

APPLICATIONS

Valve bodies and parts, shredders, furnace brackets and hangers, rabble arms and tube supports.

PRODUCT FORMS

Horizontal and vertical centrifugal castings; static castings.

PHYSICAL PROPERTIES

Density (lbs/in3)0.272

Melting Point(o F)2725

Thermal Conductivity12.8 @ 212o F

(Btu/h/ft2/ft/o F)14.5@ 1000o F

Thermal Expansion 5.7@ 70-212o F

(10-6in/in o F) 6.5@ 70-1000o F

6.7@ 70-1300o F

Magnetic Permeability Ferromagnetic

MECHANICAL PROPERTIES (Typical Values at Room Temperature)

Annealed @1450o F, F.C. to1000o F, then A.C ASTM Spec.A743 U.T.S. K.S.I.9565 Min.

Y.S. K.S.I.6030 Min

Elong.% 15

Brinell H B 195

Key ft-lbs 2

C0RR0SION RESISTANT ALLOY CB 30 Page 2 WELDABILITY

CB-30 may be welded by the GMAW SMAW and GTAW processes, but is considered difficult to weld.

Electrodes442

Preheat600-800o F

Post weld heat treatment1450o F min, Air Cool.

Procedures for welding CB-30 alloy are available from Kubota Metal Corporation.

RELATED SPECIFICATIONS

ASTM: A743(CB-30), J91803

Nearest wrought grade: AISI 442 or, AISI 431if cast with chromium at the low end of the range and nickel at high end.

HEAD OFFICE, FOUNDRY & INTERNATIONAL SALES

Kubota Metal Corporation, Fahramet Division

25 Commerce Road, P.O. Box 1700,

Orillia, Ontario, Canada, L3V 6L6.

Phone (705) 325-2781

Fax (705) 325 5887

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

数学的基础理论

一、炼钢的基础理论 钢的密度:指单位体积钢液所具有的质量影响因素:温度和钢液的化学成分 钢的熔点:指钢完全转变成液体状态时或是冷凝时开始析出固体的温度 影响钢液黏度的因素:温度和成分温度高黏度低 钢液的表面张力:使钢液表面产生缩小倾向的力 钢的导热能力:当体系内维持单位温度梯度时,在单位时间内流经单位面积的热量 影响钢导热系数因素:钢液的成分组织温度非金属夹杂物的含量以及钢中晶粒的细化程度 炉渣的作用 1、控制钢液的氧化还原反应 2、脱出杂质(s、p),吸收夹杂物 3、防止钢液的吸气 4、防止钢液的散热,以保证钢的冶炼温度 5、稳定电弧燃烧 6、炉渣是电阻发热体 7、防止钢液的二次氧化 炉渣碱度:炉渣中碱性氧化物浓度的总和和与酸性氧化物的总和之比 二元碱度 四元碱度 碱性炼钢渣碱度(p11) 炉渣的氧化性:指在一定的温度下,单位时间内炉渣向钢液供氧的数量 将Fe2O3折合的方法:全氧折合法、全铁折合法 炉渣氧化性在炼钢过程中的影响: 1、影响化渣速度和炉渣黏度 2、影响炉渣向熔池传氧和钢水氧含量 3、影响钢水脱磷 4、影响铁合金收得率 炉渣的融化温度:指固态渣完全转化为均匀液态时的温度 凝固温度:指液态炉渣开始析出固体成分时的温度即熔点 影响炉渣表面张力的因素:温度和成分 影响炉渣起泡姓的因素: 1、渣中表面活性物质最能促进泡沫渣的生成 2、机器碳氧反应生成CO 3、不均质炉渣的适当生成有利于炉渣泡沫化 脱杂物质:硅锰硅锰铝硅钙钡 渣量大小是控制钢中杂质的重要参数之一 硅锰的氧化还原反应:p25

脱碳反应的作用: 1、促进熔池成分和温度均匀 2、加大钢--渣界面,提高了化学反应速度 3、有利于非金属夹杂物的上浮和有害气体的排出,降低了钢中气体含量和夹杂物数量 4、脱碳反应与炼钢中其他反应有着密切的关系 5、造成喷溅和溢出 6、有利于熔渣的形成 7、放热升温 磷易使钢发生“冷脆” 影响炉渣脱磷的因素:炉渣的碱度氧化性温度金属液的成分渣量 脱磷的条件:高碱度、高氧化铁含量、良好流动性熔渣、充分的熔池搅动、适当的温度和大渣量 回磷:指进入炉渣中的磷又重新回到钢中,使钢水中磷含量增加的现象 避免钢水回磷的措施有:挡渣出钢,尽量避免下渣;适当提高脱氧前的炉渣碱度;出钢后向钢包渣面加一定量石灰,增加炉渣碱度;尽可能采取钢包脱氧;加入钢包改质剂 影响钢渣间脱硫的因素:熔渣成分钢液成分熔池温度

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

表面活性成分

表面活性剂的分类方法很多,根据疏水基结构进行分类,分直链、支链、芳表面活性剂 香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。人们一般都认为按照它的化学结构来分比较合适。即当表面活性剂溶解于水后,根据是否生成离子及其电性,分为离子型表面活性剂和非离子型表面活性剂。按极性基团的解离性质分类 1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠 2、阳离子表面活性剂:季铵化物 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型 4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 阴离子表面活性剂 月桂醇聚醚硫酸酯钠 1、肥皂类系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳表面活性剂肥皂 的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。碱金属皂:O/W 碱土金属皂:W/O 有机胺皂:三乙醇胺皂 2、硫酸化物RO-SO3-M 主要是硫酸化油和高级脂肪醇硫酸酯类。脂肪烃链R在12~18个碳之间。硫酸化油的代表是硫酸化蓖麻油,俗称土耳其红油。高级脂肪醇硫酸酯类有十二烷基硫酸钠(SDS、月桂醇硫酸钠)乳化性很强,且较稳定,较耐酸和钙、镁盐。在药剂学上可与一些高分子阳离子药物产生沉淀,对粘膜有一定刺激性,用作外用软膏的乳化剂,也用于片剂等固体制剂的润湿或增溶。 3、磺酸化物R-SO3 - M 属于这类的有脂肪族磺酸化物、烷基芳基磺酸化物和烷基萘磺酸化物。它们的水溶性和耐酸耐钙、镁盐性比硫酸化物稍差,但在酸性溶液中不易水解。常用品种有:二辛基琥珀酸磺酸钠(阿洛索-OT),十二烷基苯磺酸钠,甘胆酸钠 阳离子表面活性剂 该类表面活性剂起作用的部分是阳离子,因此称为阳性皂。其分子结构主要部分是一个五价氮原子,所以也称为季铵化合物。其特点是水溶性大,在酸性与碱性溶液中较稳定,具有良好的表面活性作用和杀菌作用。常用品种有苯扎氯铵(洁尔灭)和苯扎溴铵(新洁尔灭)等。 两性离子表面活性剂 这类表面活性剂的分子结构中同时具有正、负电荷基团,在不同pH值介质中可表现出阳离子或阴离子表面活性剂的性质。 1、卵磷脂:是制备注射用乳剂及脂质微粒制剂的主要辅料 2、氨基酸型和甜菜碱型:氨基酸型:R-NH+2-CH2CH2COO-甜菜碱型:R-N+(CH3)2-COO—。在碱性水溶液中呈阴离子表面活性剂的性质,具有很好的起泡、去污作用;在酸性溶液中则呈阳离子表面活性剂的性质,具有很强的杀菌能力。 非离子表面活性剂 1.脂肪酸甘油酯:单硬脂酸甘油酯;HLB为3~4,主要用作W/O型乳剂辅助乳化剂。 2.多元醇蔗糖酯:HLB(5~13)O/W乳化剂、分散剂脂肪酸山梨坦(Span):W/O 乳化剂聚山梨酯(Tween): O/W乳化剂 3.聚氧乙烯型:Myrij(卖泽类,长链脂肪酸酯);Brij (脂肪醇酯)

数学技能的分类有哪几类

数学技能的分类有哪几类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成圆圆的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E ·S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=KHB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种

数学素养

《课标》所确定的中学生数学素养 ———从十个核心概念说开去 张号(兴国中学) 1.引言 时代的迅速发展,特别是现代信息技术的飞速发展,使得数学与人类社会之间的紧密关系愈显突出。数学已经深入地渗透到社会生活和日常工作中的方方面面,人们无时无刻都在与数学打着交道。稍加留意,便可发现网页、杂志、报纸、电视及广播等媒体所传递的信息或数据,都或多或少地涉及到相关领域的数学知识或是数学问题。数学已俨然成为了人类文化的重要组成部分,这就要求人们具有更高水平的数学素养。作为现代社会每一个公民应该具备的基本素养,数学素养已成为工作、学习和人际交流的一种实际需要[1]。鉴于此,作为学校教育的数学,要将培养学生的数学素养作为自己的根本任务,要将提升学生的数学素养作为数学教育的最终目标,这已成为当前国际数学教育研究的重点课题。 2.数学素养的已有研究 从已有的文献来看,国内外关于数学素养的研究主要集中在数学素养内涵的界定、数学素养的构成要素以及水平的划分上。学者们从不同的角度与视野对数学素养进行了深入的分析:刘喆等人在分析了西方数学教育中数学素养概念的基础上,归纳出了“特定区域和背景”说、“数学内容”说、“数学过程”说、“综合性”诠释等四种定义观念类型[2];王子兴在分析了数学素养的形成条件以及数学素养与数学知识、数学能力的关系后,并以此为逻辑基础,提出了数学素养涵盖创新意识、数学思维、数学意识、用数学的意识、理解和欣赏数学的美学价值等五个要素[3]。此外,关于数学素养的文献还很多,这里就不再赘述。对诸多的观点,我们很难轻易的判断哪个说法正确哪个错误。不同的观点不仅反映了研究者的个人观点及时代特征,也表明数学素养涵盖范围之广。纵观这些表述,我们发现关于数学素养的这些研究要么是通过学习活动解释数学素养,要么是通过素养或素质的概念演绎数学素养,或是从社会经济活动的角度解读数学素养[1],都强调数学意识、问题解决、逻辑推理、信息交流等。 数学素养属于认识论和方法论的综合性思维形式,它具有概念化、抽象化、模式化的认识特征。要对其下一个确切的定义并非易事,已有的努力让我们倍感欣慰的同时,也总让人觉得有点遗憾或是少了些什么。数学素养似乎成了一个说不清、道不明的东西。我们学数学的人,思维要灵活些,不要一个方向看问题,不要一味地纠缠于某一概念的内涵。内涵说不清,我们可以从反面、侧面去讲。我个人非常赞同顾沛先生对数学素养的回答。在被学生问到“什么是数学素养?”时,顾沛先生说,“很多年的数学学习后,那些数学公式、定理、解题方法也许都会被忘记,但是形成数学素养却终身受用。数学素养就是把所学的数学知识都排出或忘掉后剩下的东西”。并从通俗与专业两个角度对其表现出来的能力进行了分析。 无论从哪个角度来研究数学素养,都少不了数学知识、数学能力、数学素养以及情感态度之间的相互关系。扎实的数学基础知识是数学素养形成的必要条件,良好的数学能力是数学素养的外在表现和重要标志,情感态度又是形成数学素养的动力和催化剂。杨叔子院士对《论语·宪问》中“有德者必有言,有言者不必有德;仁者必有勇,勇者不必有仁”的巧妙解释,为我们很好的道明了数学知识、数学能力及数学素养间的关系,即:有数学素养一定

浅谈数学推理能力的构成

浅谈数学推理能力的构成 从苏联心理学家克鲁捷茨基的《中小学生数学能力心理学》中,可见数学推理能力是数学能力结构基本成分,在培养学生数学能力的过程中应注重培养数学推理能力. 从学生进行的学习活动的过程和特点,学习过程中学生有关心理特征的表现、变化各阶段的发展水平,影响教学活动顺利完成的其他因素等全面地进行考虑,我们对数学推理能力构成成分划分如下: 1.对数学材料迅速而正确的概括能力 在学生的学习活动中,概括起着重要的作用.学生接受的知识主要是已经概括的间接的数学知识,但这些知识必须经过自己的数学活动,进行理解、内化才能转为自己的知识.比方,接触了例题: 5.对推理结果反思能力 对推理结果反思能力指从推理结果分析出解题规律性的能力.学生的任务是检验自己的答案是否正确,但更重要的任务是进行“反思”,归纳思路,举一反三. 对推理结果反思能力中等学生在题后反思方面做的工作要少,因此对推理结果优化能力显得差点. 6.对推理过程中数学材料记忆能力

对推理过程中数学材料记忆能力与其他方面记忆有着 本质区别,主要指能有选择地、精练地、概括地记忆概念、法则、公式、定理以及推理和运算的典型模式和一般特点. 教学过程中,发现记忆能力强的学生重在对题目类型、解题的概括方法、推理的概要、证明的基本线索以及逻辑模式等都能立即记住,并且长久保持,多余的、不必要的数据,他们通常是不记忆的. 以上对中学生数学推理能力结构作了初步讨论,对于数学推理能力结构的合理的、科学的划分,以及各种成分对学生推理能力的影响等工作还有待于我们进一步研究,对数学推理能力结构的探讨将为科学培养中学生数学推理能力提 供理论依据.

玫瑰精油的化学成分及其抗菌活性

玫瑰精油的化学成分及其抗菌活性 摘要通过水蒸汽同步蒸馏法提取玫瑰精油,采用GC-MS方法分析了玫瑰精油的化学组成,共鉴定出其中14个化学成分并测定其相对含量,占总含量的95.25%。香茅醇为玫瑰精油的主要成分,相对含量为90.37%。体外抑菌实验表明,玫瑰精油除对黑曲霉没有抗菌活性外,对其它7种供试菌均具有不同程度的抑制作用,其中对表皮葡萄球菌、金黄色葡萄球菌和大肠杆菌的最小抑菌浓度(MIC)为0.063% (v/v),对枯草芽孢杆菌、变形杆菌和白色念珠菌的最小抑菌浓度(MIC)为0.125% (v/v),而对绿脓杆菌(Pseudomonasaeruginosa)的抗菌活性相对较弱, M I C 为0.5%(v/v)。抑菌直径结果也表明了玫瑰精油除对黑曲霉、绿脓杆菌的抗菌活性较弱外,对其它6种菌株的抑菌直径都大于8.5mm。考察了玫瑰精油对3种敏感菌株包括金黄色葡萄球菌(革兰氏阳性菌)、大肠杆菌(革兰氏阴性菌)和白色念珠菌(真菌)的杀菌动态过程,为玫瑰精油的应用提供了理论依据。 关键词玫瑰精油;成分;抗菌活性 1玫瑰精油的化学组成 天然玫瑰的精油组成十分复杂,主要成分是单萜类化合物,如香叶醇、香茅醇、芳樟醇等,玫瑰醚、倍半萜烯、倍半萜含氧化合物也占相当比例,其它的化合物有庚醛、乙醇、烷烃系列( C 1 7 ~ C 2 7 ) (玫瑰油石蜡烃的主要成分)等[ 1 ]。而这些化学成分含量的多少及化学成分上的差异,造成这些玫瑰油香气的微妙差异[ 2 ]。总的说来,香茅醇、香叶醇、B- 2苯乙醇和橙花醇与它们的酯类是构成玫瑰花香的基本成分,是玫瑰的主体香气成分。 2玫瑰精油的提取和分离 玫瑰油的生产工艺主要有水蒸气蒸馏法,有机溶剂浸提法、超临界二氧化碳萃取 法和分子蒸馏法等玫瑰油称为/液体黄金0,是玫瑰花的提取物。玫瑰精油在食品、化妆品、医药、保健品等领域具有重大的应用价值和经济价值,因此其提取被广泛地研究。 1玫瑰精油的化学组成 天然玫瑰的精油组成十分复杂,主要成分是单萜类化合物,如香叶醇、香茅醇、芳樟醇等,玫瑰醚、倍半萜烯、倍半萜含氧化合物也占相当比例,其它的化合物有庚醛、乙醇、烷烃系列( C 1 7 ~ C 2 7 ) (玫瑰油石蜡烃的主要成分)等[ 1 ]。而这些化学成分含量的多少及化学成分上的差异,造成这些玫瑰油香气的微妙差异[ 2 ]。总的说来,香茅醇、香叶醇、B- 2苯乙醇和橙花醇与它们的酯类是构成玫瑰花香的基本成分,是玫瑰的主体香气成分[ 1 ]。但玫瑰精油抗菌活性目前国内未见 文献报道,本研究通过玫瑰精油对8种菌株的抑菌直径、M I C、M B C的测定以及杀菌动态研究,揭示了玫瑰精油具有很好的抗菌活性,为玫瑰精油作为细菌感染性疾病的选择性用药,同时也为玫瑰精油的综合开发利用提供了科学依据。 1仪器和材料

金属材料机械性能检测

金属材料机械性能检测 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensile strength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yield strength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。

数学能力一般是指抽象思维能力

目前学生对数学的认识:难学,没用。教材也一再修改,迎合学生的实际状况,改变结构降低难度, 到底数学应该怎么定位?教学目的是什么?给了学生什么?对学生的将来会有什么影响? 个人观点:1.与其说运用数学知识,不如说更多地学会运用数学思想解决问题 2,在职研业教育阶段,数学能力的运用比知识更为重要。 数学能力一般是指抽象思维能力、逻辑推理与判断能力、空间想象能力、数学建模能力、数学运算能力、数据处理与数值计算能力、数学语言与符号表达能力等 2000年,美国数学教师协会发布《数学课程标准》,提到六项能力:第一,数的运算能力; 第二,问题解决的能力; 第三,逻辑推理能力; 第四,数学连接能力; 第五,数学交流能力; 第六,数学表示能力。 比如:可以用数字精确表示表示大小和位置,准确的额定位和描述大小。 在考虑问题时的逆向思维,发散性思维, 图形的表现。立体图形用三视图 逻辑推理和论证 这些能力。只有数学学科才能做到和完成。所以数学就是锻炼大脑思维的游戏。课堂教数学就是带领学生做游戏,而数学知识就是游戏规则。 1.函数与方程的思想

函数是反映客观事物及其运动变化的一种重要形式,是贯穿中学数学内容的一条主线,主要包括函数的概念、图象和性质以及几类典型的函数.而函数思想是指用函数的观点、方法去分析问题、转化问题和解决问愿函数思想是对函数内容在更高层次上的抽象、概括与提炼,它往往渗透到各章节中,与之发生联系,并发挥它作为数学理念的引领作用.如与方程、数列、不等式、平面解析几何等内容相关的非函数问题,都往往可利用函数思想,转化为函数问题,通过对函数的研究,使问题得以解决. 方程思想是从问题的数量关系人手,运用数学语言将问题中的条件转化为方程或方程组去分析问题和解决问题.如含参数的方程的讨论、方程与曲线的相互转化等都要利用到方程思想. 函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想. 1.分段函数在生活中的运用 近年来,由于用电紧张,用电成本增加,为使居民节约用电,山西省居民生活用电从2013年7月1日起试行阶梯电价。阶梯电价主要针对3类居民:使用预付费电能表的用户;两个月抄一次表的抄表到户居民;物业或小区内使用插卡式电表的用户。 阶梯电价方案规定:第一档电量为170千瓦时及以下,电价为每千瓦时0.477元。第二档电量为171至260千瓦时,电价为每千瓦时0.527元。第三档电量为261千瓦时及以上,电价为每千瓦时0.777元。使用预付费电能表(插卡式电表)的用户,需要提前购买电量。因此,这类用户按购电量以年为周期执行阶梯收费。具体来说,用户一年内累计用电量不高于2040千瓦时的部分,按每千瓦时0.477元计费;高于2040千瓦时不高于3120千瓦时的部分,按第二档电价标准执行;高于3120千瓦时的部分,按第三档电量电价标准执行。今年的电费按照半年时间来计

力学性能试验(重点明确)

力学性能试验 第二章力学性能试验取样基本知识(P18) 第一节试样类型及取样原则(P18) 一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位 置及试验制备》 二、取样原则: 1、取样对力学性能试验结果的影响; 三要素: 取样部位: 1)加工过程中变形量各处不均匀 2)材料内部各种缺陷分布和金属组织不均匀 取样方向: 材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。 例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样

(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。 取样数量: 1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量; 2)试验结果的分散性及经济因素 2、样品的代表性; 一般性规定:GB/T 2975-1998 专门的规定: 产品材料标准和协议:①材料的平均性能;②取样方便; 一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致; 三、力学性能试验的试样类型: 1、从原材料上直接取样:

2、从产品(结构或零部件)的一定部位上取样; 3、把实物作为样品。 四、样坯切取方法:无论用什麽方法都应遵循以下原则: (1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验; (2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向; (3)取样的方向应按材料标准规定或双方协议执行; (4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。 如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。这一余量的规定为:一般应不

表面活性剂化学成分

表面活性剂化学成分 表面活性剂可将无法直接使用的农药原药制成可以使用的农药制剂。那它的化学成分究竟是什么呢?以下是本人要与大家分享的:表面活性剂化学成分,供大家参考! 表面活性剂化学成分一 专业分析机构--顶尖专家团队--精准分析技术--先进分析仪器--科学分析报告——微谱技术提供:阴离子表面活性剂、阳离子表面活性剂、阴-阳离子表面活性剂、非离子表面活性剂、新型表面活性剂、聚醚类物质等化学结构解析,成分化验。 表面活性剂就其理化组成机构来看,本身就是由很多细密的小分子,根据一定的排列方式组合在一起的。但无论何种表面活性剂,其分子结构都是由两部分构成的。其中一端为非极亲油的疏水基;分子的另一端为亲水基。两类结构与性能截然相反的分子碎片或基团分处于同一分子的两端并以化学键相连接,形成了一种不对称的、极性的结构。 由于表面活性剂的化学结构在应用过程中与其性能有着直接的关联,因此在做表面活性剂化学结构解析与成分化验时,需要着重考虑到这种因素。“HLB值”(Hydrophile-Lipophile Balance)是衡量亲疏平衡值与性能之间的关系的一个重要技术参数,它的数值说明了表面活性剂的亲水与疏水性能。而“HLB值”用来表示其亲水或疏水时,是在阴、阳两个极端的数据区间中来说明的,这个区间范围一般是在0~20之间。如石蜡的HLB值是0,完全不亲水;而聚乙二醇的HLB值是20,表示完全亲水。另外对阴离子型的表面活性剂而言,也可通过乳化标准油来确定它的HLB值。由此可见,HLB值是

一种作为选用表面活性剂的重要参考依据。它一般可用作增溶剂、洗涤剂、乳化剂、润湿剂、水/油乳化剂与消泡剂等。 微谱分析技术之所以能成功做表面活性剂化学结构解析,成分化验,是基于3大要素: 1.仪器平台 微谱技术自组建其国内的微观谱图分析实验室以来,先后引进了60多台大、中、小型分析仪器,如 FTIR,NMR,MS,XRF,XRD,GC-MS,LC-MS,TGA,DSC等综合使用,精 确定性、定量表面活性剂配方组分。 2.行业平台 微谱技术汇聚了数10位国内一流的经验丰富的表面 活性剂分析工程师,他们在基本性能、常见问题、前处理实验、仪器分析、图谱解析与判断方面,数国内水准! 3.分析方法与图库建设 微谱分析是基于庞大的图谱解析数据库之上的,本中心的工程师已经累计解析、编码过200多万条图谱资源,这可以侧面印证仪器分析数据的准确性与效率。 表面活性剂化学成分二 表面活性剂(surfactant),是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。表面活性剂的分子结构具有两亲性:一端为亲水基团,另一端为憎水基团;亲水基团常为极性的基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等;而 憎水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂和非离子型表面活性剂等(人们常用 按照化学结构分类)。 按极性基团的解离性质分类:

数学技能的含义及作用

数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不

金属材料的力学性能及其测试方法

目录 摘要 (1) 1引言 (1) 2金属材料的力学性能简介 (2) 2.1 强度 (2) 2.2 塑性 (2) 2.3 硬度 (2) 2.4 冲击韧性 (3) 2.5 疲劳强度 (3) 3金属材料力学性能测试方法 (3) 3.1拉伸试验 (3) 3.2压缩试验 (6) 3.3扭转试验 (8) 3.4硬度试验 (11) 3.5冲击韧度试验 (16) 3.6疲劳试验 (19) 4常用的仪器设备简介 (20) 4.1万能试验机 (20) 4.2扭转试验机 (23) 4.3摆锤式冲击试验机 (28) 5金属材料力学性能测试方法的发展趋势 (30) 参考文献 (30)

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend 1引言 材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。 在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且

金属力学性能

1、名词解释 (1)比例极限:比例极限σp是应力与应变成正比关系的最大应力,即在应力 -应变曲线上开始偏离直线时的应力;σp =Pp/Fo(MPa)Pp----比例极限的载荷,N;Fo ----试样的原截面积,m2或 mm2 (2)变动载荷:指载荷的大小、方向、波形、频率和应力幅,随时间发生周期性变化的一类载荷; (3)平面应力状态:如果在某种情况下,三个主应力中的一个为零。例如σ3=0那么这一点的应力状态,我们就称为平面应力状态。 (4)应力腐蚀断裂:由拉伸应力和腐蚀介质外加敏感的材料组织联合作用而引起的慢长而滞后的低应力脆性断裂称为应力腐蚀断裂(SCC)。 (5)弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 (6)冷脆:刚在低温冲击时其冲击功极低:这种现象称为钢的冷脆。 (7)循环硬化:指金属材料在应变保持一定的情况下,形变抗力在循环过程中不断增高的现象。 (8)循环软化:金属材料的应变保持在一定的情况下,材料的形变抗力在循环过程中下降,即产生该应变所需的应力逐渐减小,该现象称为“循环软化”。 (9)刚度:在弹性范围内,构件抵抗变形的能力:Q=P/ε=бA/ε=EA (10)固溶强化:把异类元素原子溶入基体金属得到固溶合金,可以有效地提高屈服强度,这样的强化方法称为固溶强化。 需掌握的知识要点: 冲击韧性:指材料在冲击载荷作用下吸收塑性变形功和断裂功的能力,冲击吸收功用符号Ak表示,单位为J。 2、洛氏硬度有几种,其各自的符号及适用范围。P25 布氏硬度:表示符号HB,适用范围:不适宜零件表面测量,薄壁件或表面硬化层 洛氏硬度:表示符号HR, 适用范围:适用于各种不同硬度材料的检验,不适用于具有粗大组成相火不均匀组织材料的硬度测定 维氏硬度:表示符号HN, 适用范围:常使用于测定表面硬化层仪表零件的硬度显微硬度:表示符号HK, 适用范围:适用于细,线材料的加工硬化程度。 3、断裂的基本过程的组成:裂纹形成,扩展 4、S-N曲线的测定方法,对于一般疲劳极限和有限寿命部分的测试方法分别是什么:分别是升降法和成组试验法 5、变形的种类及各自的特点。 弹性变形:a,有可逆性(外力作用下弹性变形产生,外力去除弹性变形消失)b,单值性(应力和应变保持线性)c,全程性(弹性变形在金属受力到断裂以前全程伴随)塑性变形:1,单晶金属塑变是位错运动的结果2,单晶体金属位错滑移的切应力极小3,单晶体金属切变强度由位错原开动四个阻力组成4,塑变中伴随有弹性变形和形变强化5,位错运动阻力对温度敏感 6、断裂韧度的测试方法分别是什么:三点弯曲法,紧凑拉伸法 7、静拉伸实验能够获得的强度性能指标有哪些?

相关主题
文本预览
相关文档 最新文档