当前位置:文档之家› 单电源变换成双电源的几种方法

单电源变换成双电源的几种方法

单电源变换成双电源的几种方法
单电源变换成双电源的几种方法

单电源供电回路中获得正负电源的特殊方图1所示极性变换电路的核心器件为普通的非门。由于输入端与输出端被短接在一起,故非门的输出电压与输入电压相等(Vi=VO);这样,非门被强制工作在转移特性曲线的中心点处,因此输出电压被限定为门电路的阈值电平,其大小等于电源电压的一半,如果我们将非门的输出端作为直流接地端,就可以把电源电压VCC转换为±VCC/2的双电源电压;此时的非门起到了一个存储电流的稳压器的作用,电路的输出阻抗较低、因而输出电压也比较稳定。

图中的非门可以选用74HC00或CD4069等普通门电路,考虑到CMOS非门驱动负载的能力有限,因此最好将几个非门并联使用以提高其有效输出电流,图中的电容C1、C2起退耦作用,容量可适当地取大一些。

图2所示电路中的运放同相输入端接有对称的串联电阻分压器,而运放本身接为电压跟随器的形式;根据运放线性工作的特点不难看出:运放输出端与分压点间的电位严格相等。由于运放的输出端作接地处理,因此运放的供电电源VCC就被相应地分隔成了两组对称的正、负电源±VCC/2。

当运放的输出电流无法满足实际需求时,不能象门电路那样简单地并联使用;这时可以将通用型小功率运放换为输出电流较大的功放类运放器件,例如常见的TDA2030A。与图1类似,C1、C2同为退耦电容、加载运放同相输出端的电容C3起到了抑制干扰及滤波的作用对于大多数的OTL功放类器件而言,其内部一般都设置了对称的偏置电路结构,这就使其输出端的直流电位近似为电源电压的一半;根据上述原理,我们完全可以利用集成功放将单电源转换成为大小相等的双极性正、负电源,具体电路如图3所示。

事实上,由于内容参数的离散性以及自举电路结构的影响,集成功放输出端的电压并不是绝对的VCC/2,从而造成正、负输出电压不平衡的现象。对此我们需要将一只10-100k Ω的电位器串联在正负电源之间,并把LM386第③脚输入端接到电位器的中间抽头,而第②脚保持悬空。对电路进行上述改进后,通过调节功放的直流输入电平,就可以在芯片的输出端得到大小非常紧接的正负电压值了。

浅谈电源及电源变换技术的发展

龙源期刊网 https://www.doczj.com/doc/596988048.html, 浅谈电源及电源变换技术的发展 作者:刘洁 来源:《科学与财富》2016年第10期 摘要:随着现代仪器设备及微电子技术的迅速发展,相继出现了相控型稳压电源、集成 化线性稳压电源、新型智能开关电源、UPS电源、太阳能电源和程控电源等,人们对电源的要求越来越高。同时,全球的节能需求和电子设备必须遵守的强制性能效规范要求,以及便携装置小型化功能趋势推动着电源朝着高电源效率、低待机功耗、高功率密度、高可靠性、高集成度和低成本的方向发展[1]。因此,从经济角度和科学研究角度上看,研究电源变换技术和控 制技术都是很有价值的。本文作者结合多年来的工作经验,对电源及电源变换技术的发展进行了研究,具有重要的参考意义。 关键词:电源;电源变换;发展 1电源与电源变换的类型 供电电源总体上分为交流电源和直流电源两大类。蓄电池属于直流电源,既可作为直流电源系统备用电源,又可作为启动动力电源,还可作为交流配电设备操作电源。由于供电电源不总是能直接满足用电设备的需求,这样就需要一个中间环节将供电电源转变成用电设备需要的电源,这个环节就是电源变换。目前发达国家的电源80%以上是通过变换后才应用的[2]。 电源变换有以下四种类型: (1)DC-DC变换,它将一种直流电能变换成另一种直流电能;(2)DC-AC变换,它将直流电能变换为交流电能,这种变流装置称为逆变器;(3)AC-DC变换,它将交流电能变换为直流电能;(4)AC-AC变换,它将一种交流电能变换为另一种交流电能。 2 电源与电源技术的现状 2.1 国内外电源的发展 国外电源的发展大致经历了4代:第一代为直流电机电源,耗能大、效率低;第二代为"自藕+硅整流"式直流电源,使用自藕变压器调节输入电压,再由大功率硅整流管整流,效率较低、精度、纹波等技术指标差;第三代为可控硅电源,效率较高、功率范围宽,是目前广泛使用的电源;第四代为开关型直流电源,体积小,精度、纹波系数高、可靠性高,是未来直流电机驱动和电镀电解行业的主体电源[3]。 我国的电源产业起步于1949年,历经几个发展阶段,已经发展到各行各业,如机械、邮电、铁路、电子、军工系统等都有电源开发与生产,还有大量国外产品公司进入我国,竞争逐步加剧[4]。

电源的等效变换练习题

电源的等效变换 一. 填空题 1.电源可分 和 . 2.实际电压源的电路模型由 与 二者联而成,我们把内阻R 0=0的电压源叫做 或 . 3.实际电流源的电路模型由 与 二者联而成。我们把内阻R 0=0的电压源叫做, 或 . 4.恒压源与恒流源 等效变换.只有 电压源与 电流源之间才能等效变换,条件是 ,公式是 和 .这里的所谓“等效”,是对 电路 而言的,对于 电路并不等效。 5.恒压源是输出 不随负载改变;恒流源的输出 不随负载改变。 6.理想电压源不允许 ,理想电流源不允许 ,否则可能引发事故。 二.选择题 1.理想电压源是内阻为( ) A .零 B.无穷大 C.任意值 2.实际电流源是恒流源与内阻( ) 的方式 A.串联 B.并联 C.混联 3.若一电压源U S =5V,r S =1Ω,则I S ,r S 为( ) A. 5A,1Ω B.1/5A,1 Ω C.1Ω, 5A. 4.电压源与电流源等效变换时应保证( ) A.电压源的正极端与电流源的电流流出端一致 B.电压源的正极端与电流源的电流流入端一致 C.电压源与电流源等效变换时不用考虑极性 5.多个电压源的串联可简化为( ) A.一个电压源 B.一个电流源 C.任何电源即可 三.判断题 1.电压源是恒压源与内阻串联的电路( ) 2.恒流源是没有内阻的理想电路模型( ) 3.电压源与电流源等效变换时不需要重要重要条件( ) 4.理想电压源与理想电流源可等效 变换( ) 5.电压源与电流源等效变换是对外电路等效( ) 四.计算题 1.如图电源U S =6V ,r 0=0.4Ω,当接上R=5.6Ω的负载电阻时,用电压源与电流源两种方法,计算负载电阻上流过电流的大小. 2.如图,E 1=17V,R 1=1Ω,E 2=34V .R 2=2Ω,R 3=5Ω.试用电压源与电流源等效变换的方法求流过R 的电流 R1 R2 E2E1

电能变换技术

实验六电能变换技术 电能变换技术是现代电力电子技术的核心。它是利用现代电力电子技术和手段把某种电能(如电力网的交流电、蓄电池可输出的直流电等)变换成另外一种用途和特性的电能。例如,开关电源可把电力网的交流电变换成供电子电路使用的低压直流电、逆变器可把蓄电池的直流电变换成普通交流电器使用的交流电、变频器可把50Hz的交流电变换成供三相异步电机调速使用的电压和频率可调的交流电、DC-DC变换器可以把低压直流电变换成高压直流电,也可以把高压直流电变换成低压直流电等等。 一、实验目的 1.了解电能变换技术的基本原理。 2.理解、熟悉一种直流电能变换的指导思想、技术核心和过程 的相关特性。 3.掌握一种现代实用技术。 4.拓宽实验者的思维模式与空间。 二、仪器及用具 专用直流电能变换实验台1个,数字示波器1台,低压直流稳压电源1台,直流电压表1块,直流电流表1块,滑线电阻器1只。三色导线若干根。 三、原理 现代电力电子的核心技术之一是采用高频开关方法。它通过高频开关可把低频交流电或直流电变换成高频交流电,通过变压器得到所希望的电压,然后再通过电感、电容、二极管等器件获得具有一定特性的电能。如光伏电力系统中的正弦波逆变器。这种逆变器可有两种

变换方案。一种方案是先利用高频开关、采用正弦脉宽调制逆变技术得到正弦脉宽调制的脉动工频交流电,再经电感、电容滤波得到纯正的工频交流电,最后通过工频变压器调整电压得到最终需要的符合供电要求的工频交流电,其原理如图6.1所示。 图6.1 电能变换方案之一 第二种方案是先采用高频开关逆变产生高频交流电,下一步由变压器达到希望的电压值,再使用高频变压器获得所需电压的高频交流电,然后经高频整流、滤波得到高压直流电。最后,高压直流再经正弦脉宽调制、逆变、滤波得到纯正弦波工频交流电。其工作过程示意由图6.2所示。 图6.2电能变换方案之二

高频变换器和开关电源控制器.

开关稳压电源简称开关电源( Switching PowerSuppiy ),因电源中起调整稳压控制功能的器件始 终以开关方式工作而得名。它是利用现代电力电子技术, 通过控制开关管通断的时间比率来维持 电子游戏机等电子设备上。 随着电力电子技术的发展, 特别是大功率器件技术的迅速发展, 将开 关电源的工作频率提高到 150?200 kHz ,使开关电源具有较好的稳定性和较高的性价比,因此, 开关电源将日益取代使用工频变压器的线性调整稳压电源。 在开关电源电路中,最关键的部分是高频变换器和开关电源控制器。 制器已普遍应用, 其对开关元件的控制方式取决于高频变换器的电路结构, 核心就是高频变换器,即 DC 辕DC 转换器。在输入输岀隔离的开关电源中, 形式有5种院单端正激式尧单端反激式、半桥式、推挽式和全桥式。下面分别介绍、分析这些高 频变换电路的结构和工作原理。 1、正激式变换电路 正激式变换电路的结构如图 1(a)所示。由于其储能元件与负载电阻 RL 串联又称串联型变换 电路。 该电路直流电压 Ui 是由工频交流电源通过电源滤波器、整流滤波器后转换获得;功率开关 管S1为绝缘栅双极型晶体管(IGBT )或MOSFETT 为高频变压器;L 和C1组成LC 滤波器;二极 管D1为半波整流元件,D2为续流二极管;RL 为负载电阻; 动信号vgs1为PWM 控制电路输岀的方波。各环节电压波形如图 11111 m V. j Hr I) ⑻原理图 n nil (b)波形 图1正激变换电路 当vgs1为高电平使S1导通时,变压器获得输入电压为 vT1=ui ,二极管D1导通袁D2截 但由于集成开关电源控 因此开关电源电路的 高频变 换器的基本 Uo 为输岀稳定的直流电压。 S1的驱 1(b)所示。

电源的等效变换

第二章电阻电路的等效变换2 讲授板书 1、掌握电压源、电流源的串联和并联; 2、掌握实际电源的两种模型及其等效变换; 3、掌握输入电阻的概念及计算。 1、电压源、电流源的串联和并联 2、输入电阻的概念及计算 实际电源的两种模型及其等效变换 1.组织教学5分钟 3.讲授新课70分钟1)电源的串并联20 2)实际电源的等效变换25 3)输入电阻的计算352.复习旧课5分钟电阻的等效 4.巩固新课5分钟 5.布置作业5分钟

一、学时:2 二、班级:06电气工程(本)/06数控技术(本) 三、教学内容: [讲授新课]: 第二章电阻电路的等效变换 (电压源、电流源等效变换) §2-5电压源、电流源的串联和并联 电压源、电流源的串联和并联问题的分析是以电压源和电流源的定义及外特性为基础,结合电路等效的概念进行的。 1.理想电压源的串联和并联 (1)串联 图示为n个电压源的串联,根据KVL得总电压为: 注意:式中u sk的参考方向与u s的参考方向一致时, u sk在式中取“+”号,不一致时取“-”号。 根据电路等效的概念,可以用图(b)所示电压为Us的单个电压源等效替代图(a)中的n个串联的电压源。通过电压源的串联可以得到一个高的输出电压。 (2)并联 (a)(b) 图示为2个电压源的并联,根据KVL得: 上式说明只有电压相等且极性一致的电压源才能并联,此时并联电压源的对外 特性与单个电压源一样,根据电路等效概念,可以用(b)图的单个电压源替代(a)图的电压源并联电路。 注意: (1)不同值或不同极性的电压源是不允许串联的,否则违反KVL。 (2)电压源并联时,每个电压源中的电流是不确定的。 2.电压源与支路的串、并联等效 (1)串联 图(a)为2个电压源和电阻支路的串联,根据KVL得端口电压、电流关系为:

电源技术作业

1、判断一个电源质量好坏主要从调整率、调整率和纹波等指标来考核。 2、场效应管的大小控制漏极电流的大小。 3、稳压二极管又称二极管。 4、滤波电路的主要任务是将后的单向脉动直流电压中的纹波成分尽可能滤除,使其变成平滑的。 5、PWM的中文名称是:。 6、达林顿晶体管的电流放大系数近似为两管电流放大系数的。 7、开关导通期间,电感电流线性上升,其上升斜率为。 8、拓扑电路中,电感的一端与电源输入端相连。 9、若V on×ton=V off×toff,说明变换器达到了状态。 10、在buck电路中,Voff≈。 11、在设计斩波式DC/DC转换器时,电流纹波率r一般取值为。 12、在计算电感时,若r=0.6,则电感峰值电流是电感平均电流的倍。 13、开关电源的输出电流越大,占空比。 14、变换器在CCM状态达到稳定状态后,电感电流的波形形状为波。 15、电容接在电路中的线与地之间;电容接在电路中的火线与零线之间。 16、forward电路是拓扑的衍生电路。 17、通过磁珠的信号频率越高,磁珠对信号的阻抗越。 1、稳压电源的电压调整率是指在发生变化时,输出电压的稳定程度。 2、直流稳压电源通常由电源变压器、整流电路、和,四部分组成。 3、“APFC电路”的中文名词为:。 4、电感器饱和,是指其达到最大,饱和后其电感量会。 5、开关关闭期间,电感电流线性下降,其下降斜率大小为。 6、拓扑电路中,电感平均电流等于负载电流。 7、在boost电路中,Von≈。 8、在计算电感时,若r=0.2,则电感峰值电流是电感平均电流的倍。 9、变换器在BCM状态达到稳定状态后,电感电流的波形形状为波。 10、开关稳压电源,当输入电压变高时,为达到输出电压稳定,其占空比将。 11、开关器件的损耗与频率成正比。 12、PCB布线时,方法可以有效减小单元电路间由于共用地线阻抗引起的信号干扰。 13、开关电源中使用高频变压器的主要作用一是提供隔离,二是调节。 14、反激式变换器中,若变压器匝比为n,则Ior= 。 15、Flyback电路是拓扑的衍生电路。 16、干扰信号的传输途径一般有和两种途径。 17、电源输入滤波器中的CM扼流环用于滤除噪声。 1、一般肖特基二极管的正向压降为()。 A、0.1V B、0.5V C、0.7V D、2.5V 2、TL431作为基准电源,它属于()方式。 A、并联线性稳压 B、串联线性稳压 C、开关稳压 D、电荷泵 3、TO-220封装的LM7805,其标称最大输出电流为()。 A、0.1A B、0.5A C、1.0A D、1.5A 4、若输入电压为10V至13V之间,以下输出幅度为12V的稳压电路为()。 A、buck电路 B、boost电路 C、buck-boost 电路 D、LM7812 5、关于漏感,以下论述错误的是()。 A、漏感是产生干扰的原因之一 B、变压器中漏感可以消除 C、漏感大的变压器不易饱和 D、一定大小的漏感有好处 6、以下稳压电路中,输出电流大于输入电流的是()。 A、buck电路 B、boost电路 C、LDO D、稳压二极管电路 7、以下电路中可以将负电压转成正电压的电路是()。 A、buck电路 B、boost电路 C、buck-boost 电路 D、LM7905 8、对于开关电源中的电感,以下论述错误的是:() A、电感量越大,输出电压纹波越小 B、电感体积与频率成反比 C、电感量越大,电感电流纹波越小 D、电感额定电流与频率成正比

第1章电源变换技术基础

第1章 电源变换技术基础 在现代电源应用中,电力电子技术起到承上启下的作用。发电厂生产出来的电能通常是高压传输的,经过变电所将其变换成标准的交流电压。由于不同负载对电源的要求不同,很多负载要求的电源都需要加以变换才能应用,因此电力变换技术在实际电力应用中起到重要作用。在实际电力转换过程中,需要用电力电子器件构成电源变换电路,来实现不同电源之间的转换。 基本的电源转换类型有直流-直流(DC-DC )变换、直流-交流(DC-AC )变换、交流-直流变换(AC-DC )变换和交流-交流(AC-AC )变换。 1.1 常用电源变换电路 1.1.1 AC-DC 变换电路 将交流电变换成直流的过程称为AC-DC 变换,也叫作整流。整流电路就是利用二极管或晶闸管的单向导电性将交流电源转换成直流电源的电路。 1、 二极管整流电路 二极管整流电路的电路形式见表1-1。二极管整流电路将输入的交流电源变换成不可控的直流电源,主要用于要求固定电压的负载。根据负载的要求不同,整流输出端采用的滤波电路也不同。要求电流稳定的负载一般只加电感滤波,要求电压稳定的负载,一般只加电容滤波,既要稳定电压又要稳定电流的负载需要加电感、电容组成LC 滤波电路。加电感滤波可提高输入交流电源的功率因数,减小谐波。 在以下电路参数计算与器件选择中,假定滤波电感L f 很大。 (1) 单相半波二极管整流电路参数计算与器件选择 二极管VD 1、VD 2in ,流过VD 1、VD 2的电流平均值为 12 d O I I = (1-1) 流过VD 1、VD 2的电流有效值为 2O I I = (1-2) 选择二极管VD 1、VD 2的电压定额并留有裕量 (2~D in U = (1-3) 选择二极管VD 1、VD 2的通态平均电流定额并留有裕量 1(1.5~2)2 D O I I = (1-4) 其中I O 为输出负载电流。

开关电源的控制技术两个重要概念

开关电源的控制技术两个重要概念 做电源设计的应该都知道PWM 和PFM 这两个概念PWM:(pulse width modulation)脉冲宽度调制脉宽调制PWM是开关型PFM:(Pulse frequency modulation) 脉冲频率调制一种脉冲调制技术,调制信号的频率随输入信号幅值而变化,其占空比不变。与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。此功能是在重负荷时由PWM控制,低负荷时自动切换到PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。就DC-DC 变换器而言目前业界PFM只有Single Phase,且以Ripple Mode的模式来实现,故需求输出端的Ripple较大。没有负向电感电流,故可提高轻载效率。由于是看输出Ripple,所以Transient很好,在做Dynamic的时候没有under-shoot。PWM有Single Phase S RTP系列高性能示波器以创新科技为用户提供卓尔不凡的价值Type-C线缆和适配器,具有备用模式的Type-C适配器推动人工智能(AI) SoC 提出新的技术要求计算机科学家砸了1千美元存款订购Model 3究竟哪些技术因素会导致ADAS功能的差异?-->

AC-DC(开关型)电源变换器的设计

AC/DC(开关型)电源变换器的设计 i 问题的提出 随着生产的发展和技术的进步,特别是各种具有整流入端的电力电子负载的广泛应用,即各种非线性的时变的负载和设备的大量涌现,电力系统中产生大量谐波并对电力系统的安全运行产生威胁。电力系统的谐波问题和低功率因数问题,主要由各种中小负载和设备的电子电源电源和电力电子装置造成的,它们是最严重的污染源。 因此应采用有效的措施,降低电子电源和电力电子装置的谐波,提高功率因数。目前绝大部分电子电源都采用的非控二极管整流、滤波大电容和开关稳压电路结构,把AC电源变换成DC电源。这种AC/DC变换电路的输入电压虽为正弦波,但输入电流却发生了畸变,,造成电网侧输入电流严重的非正弦化输入电流非正弦化必然导致电流总谐波失真(THD)高和功率因数(PF)低(这种AC/DC变换器线路功率因数一般只有0.5~0.7,造成的谐波含量很高,仅3次谐波就达6O 以上),影响整个电力系统的电气环境及用电设备的安全经济运行。 2 有源功率因数校正功率因数校正(APFc)原理 提高电子电源的功率因数,抑制其电流谐波畸变,目前有无源校正和有源校正两种方案。无源校正是在电路中串联(或并联)无源LC谐振回路,使电路入端电流接近正弦波;有源校正是在电路中加入有源控制电路,使入端电流在一定程度上可控,从而校正电流波形,实现低谐波,高功率因数;有源校正电路比无源校正电路在效率、重量和成本等方面均有优势。因此对中小功率应用,最有效的措施是采用有源功率因数校正技术。有源校正方案在实现过程中,有降压变换型、升压变换型和反激变换型。其中降压变换型功率因数校正电路的输出电压难于控制}而反激变换型功率因数校正电路的峰值电流比较高,所以功率容量差;升压型功率因数校正电路的输入电压范围宽,一般认为是最合适的电子电源功率因数校正电路。升压型有源功率因数校正技术主要是控制已整流后的电流,使之在对滤波大电容充电之前,能与整流后的电压波形同相,从而避免了电流脉冲的形成,达到改善功率因数的目的。电路原理,在工作过程中,输入电感L。中的电流受到连续监控和调节,使之能跟随并与整流后单相正弦电压成比例。通过乘法器实现由输入误差信号V 和输入电压来调控正弦基准电流I 的幅度,从而达到调整输出电压的目的。有源功率因数校正电路尽管作用明显,但控制电路比较复杂,随着电子技术的发展,专用于APFC的Ic电路已对设计高功率因数、低谐波失真的各类电子电路提供了技术支持。 3 MC34261的电路结构与特点MC34261单片Ic主要采用双列直播式8脚塑封,其引脚定义。其中脚1( VFB )为反馈电压输入端}脚2(COMP)为误差放大器输入端,与脚1接有补偿元件;脚3(MULT IN)为乘法器输入端;脚4(c.S+)为电流传感输入;脚5(I一)为零电流检测输入;脚6(GND)为接地脚;脚7(V。)为PWM 驱动输出端,直接驱动MOSFET;脚8(V )提供正电源电压。MC34261由内部电源、欠压锁定、误差放大器、一象限乘法器、电流传感比较器、零电流检测器、电流检测逻辑及驱动输出等单元电路组成。内部功能框图。 MC34261 的启动阀值电压为10土0+8V,启动电流是0.3mA,工作电流典型值是7.1mA,峰值驱动输出电流为0.5A,动耗不大于0.8W。除欠压锁定之外,MC34261的保护功能还包括输出箝位、峰值电流限制等。MC34261属于可变频率不连续电流型功率因数控制Ic。与固定频率不连续电流型控制 Ic比较,MC34261可提供更高的APFC 能力和更低的liD。MC34261的引脚排列和引脚功能与SILICINGENERAl 公司的SG3561A 和三星公司的KA7524相同,性能等效于西门子公司的TDA4817,但引脚排列不同。

解析PRT自激励振方式VRC软开关变换电源技术.

解析PRT自激励振方式VRC软开关变换 电源技术 解析PRT自激励振方式VRC软开关变换电源技术 类别:电源技术 在开关变换电源电路中,将谐振型变换开关元件的励振、驱动方法定义为两类,即把设置有专用的励振和驱动电路方式叫作它激励振、驱动;把利用变压器反馈电路实现的励振、驱动方式叫作自激励振、驱动。这里阐述利用正交型变压器PRT反馈电路构成的自激励振方式电压谐振型软开关变换电源技术。 1 正交型变压器的控制技术对于自激励振方式谐振型变换器的控制技术,尤其重要的是采用各种铁氧体磁心的正交型变压器PRT。图1是PRT构造和电感特性及电路图形符号。其中,图1(a)为旧单口型铁氧体磁心PRT;图1(b)为新双口型铁氧体磁心PRT;图1 (c)为PRT电路符号。比较它们的形状和电感特性后得知,新双口型PRT的磁路长度比旧单口型的磁路长度延长,磁阻增加。由于主线圈N的电感量Ln和控制线圈Nc的直流控制电流Ic的变化,使新双口型的Ln变化幅度和线性范畴都扩大了。在图2中设控制线圈Nc流过直流Ic时产生的磁通为φc、主线圈N1或N2上流过交流电流I1时产生的磁通为φ1。若图2(a)中箭头方向为正,则在磁路 A和D上的磁通 φc和φ1方向相反,磁通为φ1-φc;而在磁路B和C上的磁通φc和φ1方向相同,磁通为φ1+φc。图2(b)中主线圈N1加载到磁路 B和D上的B-H曲线,相当于被Lc的变化而调制的磁滞曲线。由于加载到线圈Nc磁路A,B上的φ1感生电压互相抵消,在Nc上不产生交流电压,所以 PRT的电流Ic信号就可以作为控制磁路B和D上的磁通量,把它作为可控电感元件,实现谐振型变换器的控制技术。图2(c)为这种PRT的电路符号。 2 自激励振方式电压谐振型变换器开关元件在断开时,加在开关元件上的电压波形是LC谐振时产生的正弦波电压,也称之为电压谐振。利用电压谐振型变换器VRC电路和PRT的组合,可以构成各式软开关变换电源。常用的自激励振方式VRC的控制方式有如下几种:2.1 并联谐振频率控制方式图3为单管自激励振方式VRC的并联谐振频率f0控制方式的开关变换电源电路。图3(a)为电路图,图3(b)为控制特性图,图3(c)为工作波形图。图3(a)中PRT的结构如图2所示,线圈N1与脉冲电流转换器PCC的电感Ls串联后,再与并联电路(包括VCBO>1 200 V的耐高压BJT管Q1、续流二极管D1、并联谐振电容Cr)串联。另外,有中心抽头的全波整流线圈N2与谐振电容Cs并联。图中自激励振电路由下述元件和小电路构成,如启振电阻Rs,串联谐振电路(包括绕有1匝线圈的脉冲电流转换器PCC、限流电阻RB、定时电感LB、定时电容CB),并联电路(包括箝位二极管DB,Q1的基极一发射极)。由此可知,这个自激励振、驱动电路的工作波形是低噪声、正弦波波形。另外,在RB较小时.开关变换频率fS由LB和CB的串联谐振值决定,见式(1):为了表示VRC电路的谐振频率fo和输出直流电压Eo,在Eo端接上负载电阻RL后,分别设N1,

电源等效变换教案

授课班级计算机专业计算机授课教师 授课时间编号课时课时使用教具多媒体 授课目标能力目标 知识目标 1、熟知两种电源 1、掌握两种电源的等效变换 2、能灵活运用两种电源的等效变换求解复杂电路情感目标 教学重点知识目标1、2、3 教学难点运用两种电源的等效变换求解复杂电路学情分析 课外作业 教学后记

授课过程 教学内容 教师活动学生活动 时间 分配 复习提问 1、戴维宁定理的内容 2、利用戴维宁定理解题的步骤 新授课 两种电源模型的等效变换 一、电压源 通常所说的电压源一般是指理想电压源,其基本特性是其电动势(或两端电压)保持固定不变E或是一定的时间函数e(t),但电压源输出的电流却与外电路有关。 实际电压源是含有一定内阻r0的电压源。 二、电流源 通常所说的电流源一般是指理想电流源,其基本特性是所发出的电流固定不变(I s)或是一定的时间函数i s(t),但电流源的两端电压却与外电路有关。 实际电流源是含有一定内阻r S的电流源。 三、两种实 际电源模型 之间的等效 变换 实际电 源可用一个 理想电压源 E和一个电 阻r0串联的电路模型表示,其输出电压U与输出电流I之间关系为 U= E r0I 实际电源也可用一个理想电流源I S和一个电阻r S并联的电路模型表示,其输出电压U与输出电流I之间关系为提问回答 图3-18电压源模型 图3-19电流源模型

U = r S I S - r S I 对外电路来说,实际电压源和实际电流源是相互等效的,等效变换条件是 r 0 = r S , E = r S I S 或 I S = E /r 0 例题 【例3-7】如图3-18所示的电路,已知电源电动势E = 6 V ,内阻r 0 = 0.2 Ω,当接上R = 5.8 Ω 负载时,分别用电压源模型和电流源模型计算负载消耗的功率和内阻消耗的功率。 解:(1) 用电压源模型计算: A 10=+=R r E I ,负载消耗的功率P L = I 2R = 5.8 W ,内 阻的功率P r = I 2r 0 = 0.2 W (2) 用电流源模型计算: 电流源的电流I S = E /r 0 = 30 A ,内阻r S = r 0 = 0.2 Ω 负载中的电流 A 1S S S =+= I R r r I ,负载消耗的功率 P L = I 2R = 5.8 W , 内阻中的电流 A 29S S =+= I R r R I r ,内阻 的功 率 P r = I r 2r 0 = 168.2 W 两种计算方法对负载是等效的,对电源内部是不等效的。 【例3-8】如图3-19所示的电路,已知:E 1 = 12 V ,E 2 = 6 V ,R 1 = 3 Ω,R 2 = 6 Ω,R 3 = 10 Ω,试应用电源等效变换法求电阻R 3中的电流。

电路实验:实验三电源的等效变换

实验三项目名称:电源的等效变换 一、实验目的 1、验证电压源与电流源等效变换的条件。 2、掌握电源外特性的测试方法。 二、实验原理 一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可看成是一个电流源。若视为电压源,则可用一个理想的电压源E S与一个电阻R0相串联的组合来表示;若视为电流源,则可用一个理想电流源I S与一电导G0相并联来表示。若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有同样的外特性。 四、实验内容 (A)(B) 图3-1 实验线路图 1、按照图3-1(A)接线,其中E S=6V,R0 = 1KΩ,改变电阻器R L的阻值将I和U记录于 2、按照图3-1(B)接线,其中I S = E S / R0=6V/1KΩ= 6mA,R0 = 1KΩ,改变电阻器R L的 阻值将I和U记录于表(2)中。 )

3、按照图3-1(A)接线,其中E S=6V,R0 = 200Ω,改变电阻器R L的阻值将I和U记录于 4、按照图3-1(B)接线,其中I S = E S / R0=6V/200Ω= 30mA,R0 = 200Ω,改变电阻器R L 的阻值将I和U记录于表(4)中。 五、实验注意事项 1.在测试电压源外特性时,不要忘记测空载时的电压值:在改变负载时,不容许负载 短路。测试电流源外特性时,不要忘记测短路时的电流值:在改变负载时,不容许负载开路。 2. 换接线路时,必须关闭电源开关。。 3. 直流仪表的接入应注意极性与量程。 六、实验总结及数据分析(留一面) 1.根据表(1)、表(2)、表(3)、表(4)的实验数据,绘出其电源的外特性。 2. 并且通过绘制其电源的外特性曲线相互重合,从而验证电源等效变换条件I S = E S / R0的正确性。 如有侵权请联系告知删除,感谢你们的配合!

DCDC变换器的PWM控制技术

DC/DC变换器的PWM控制技术 DC/DC变换器广泛应用于便携装置(如笔记本计算机、蜂窝电话、寻呼机、PDA等)中。它有两种类型,即线性变换器和开关变换器。开关变换器因具有效率高、灵活的正负极性和升降压方式的特点,而备受人们的青睐。 开关稳压器利用无源磁性元件和电容电路元件的能量存储特性,从输入电压源获取分离的能量,暂时地把能量以磁场形式存储在电感器中,或以电场形式存储在电容器中,然后将能量转换到负载,实现DC/DC变换。开关稳压器的框图示于图1。 实现能量从源到负载的变换需要复杂的控制技术。现在,大多数采用PWM(脉冲宽度调制)技术。从输入电源提取的能量随脉宽变化,在一固定周期内保持平均能量转换。PWM的占空因数(δ)是“on”时间(ton,从电源提取能量的时间)与总开关周期(T)之比。 对于开关稳压器,其稳定的输出电压正比于PWM占空因数,而且控制环路利用“大信号”占空因数做为对电源开关的控制信号。 开关频率和储能元件 DC/DC 功率是:随着频率的提高,为保持恒定的功率所要求的电感相应地减小。由于电感与磁性材料的面积和线匝数有关,所以可以减小电感器的物理尺寸。 件尺寸的减小对于电源设计人员和系统设计人员来说都是非常重要的,可使得开关电源占用较小的体积和印刷电路板面积。 开关变换器拓扑结构 开关变换器的拓扑结构系指能用于转换、控制和调节输入电压的功率开关元件和储能元件的不同配置。很多不同的开关稳压器拓扑结构可分为两种基本类型:非隔离型(在工作期间输入源和输出负载共用一个共同的电流通路)和隔离型(能量转换是用一个相互耦合磁性元件(变压器)来实现的,而且从源到负载的耦合是借助于磁通而不是共同的电器)。变换器拓扑结构是根据系统造价、性能指标和输入线/输出负载特性诸因素选定的。 非隔离开关变换器 有四种基本非隔离开关稳压器拓扑结构用于DC/DC变换器。 1. 降压变换器 降压变换器将一输入电压变换成一较低的稳定输出电压。输出电压(Vout)和输入电压(Vin)的关系为:

Droop法均流开关电源变换技术(图) - 电源网

Droop法均流开关电源变换技术(图) 作者:航天科技集团五院五一○所刘克承王卫国郭祖佑日期:2006-1-1 对Droop法均流变换技术做了理论分析,建立了并联供电的热备份开关变换器的电路模型,进行了电路分析并给出了验证结果 引言 航天用电源系统的发展方向之一是用分布式电源系统代替集中式电源系统,其好处是使供配电系统设计简化,提高系统的整体可靠性。在分布式供配电系统中应用的DC/DC变换器为了进一步提高自身可靠性,一般采用并联备份方式,形成可靠性并联系统。 国内目前星上应用的DC/DC变换器常用的并联备份方式为冷备份方式(主份承担全部输出功率,主份出现故障,需遥控指令进行主备份切换)、温备份方式(主份承担全部输出功率,主份出现故障,备份自动输出工作)。 国外有资料表明,电子元器件在工作温度超过50℃时的寿命是常温25℃时的 1/6,或者说电子元器件的失效率随温度升高大大增加。为了更进一步提高 DC/DC 变换器工作寿命和可靠性,主要影响DC/DC变换器寿命的功率器件要合理设计使用工作应力,在并联供电系统中实现热备份方式(主备份同时工作,各承担部分输出功率)。 本文主要通过对Droop法DC/DC变换器并联均流技术的研究,设计了一种基于反激式电路拓扑的两个DC/DC变换器并联输出的均流变换器。 单端反激电路的电路拓扑及工作原理 电路拓扑 图1 反激式变换器 反激式变换器是在基本Buck-Boost变换器中插入变压器形成的,线路组成见图1

所示。变压器原边绕组其实是充当一个储能电感的作用,后文将叙述到初级电感量的设计将影响到反激式变换器的工作模式。 电路工作的第一阶段是能量存储阶段,此时开关管Tr导通,原边绕组电流Ip的线性变化遵循式(1)。 (1) 电路工作的第二阶段是能量传送阶段,此时开关管Tr关断,原边电流为零,副边整流二极管D导通,出现感生电流。并且按照功率恒定原则,副边绕组安匝值与原边安匝值相等。副边绕组电流Is遵循式(2)。 (2) 其中为副边绕组电压,为变压器副边的等效电感。 电路工作模式 (1)工作模式改变的条件 如图1所示的变换器,设开关管导通占空比为D1,二极管导通占空比为D2,工作周期为Ts,按稳态电感电流增量相等原则有: (3) 连续模式时,D1期间(开关管导通,二极管截止)存储在L上的能量在D2期间(开关管截止,二极管导通)没有完全放完,故有: (4) 不连续模式时,D1期间(开关管导通,二极管截止)存储在L上的能量在小于D2期间(开关管截止,二极管导通)已完全放完,故有: (5) 从而可以推导临界连续的条件是: D1+D2=1且每周期开始时的IP=0 故有: (6)

电源的等效变换练习题

电源的等效变换 一. 填空题 1.电源可分 和 . 2.实际电压源的电路模型由 与 二者联而成,我们把内阻R 0=0的电压源叫做 或 . 3.实际电流源的电路模型由 与 二者联而成。我们把内阻R 0=0的电压源叫做, 或 . 4.恒压源与恒流源 等效变换.只有 电压源与 电流源之间才能等效变换,条件是 ,公式是 和 .这里的所谓“等效”,是对 电路 而言的,对于 电路并不等效。 5.恒压源是输出 不随负载改变;恒流源的输出 不随负载改变。 6.理想电压源不允许 ,理想电流源不允许 ,否则可能引发事故。 二.选择题 1.理想电压源是内阻为( ) A .零 B.无穷大 C.任意值 2.实际电流源是恒流源与内阻( ) 的方式 A.串联 B.并联 C.混联 3.若一电压源U S =5V,r S =1Ω,则I S ,r S 为( ) A. 5A,1Ω B.1/5A,1 Ω C.1Ω, 5A. 4.电压源与电流源等效变换时应保证( ) A.电压源的正极端与电流源的电流流出端一致 B.电压源的正极端与电流源的电流流入端一致 C.电压源与电流源等效变换时不用考虑极性 5.多个电压源的串联可简化为( ) A.一个电压源 B.一个电流源 C.任何电源即可 三.判断题 1.电压源是恒压源与内阻串联的电路( ) 2.恒流源是没有内阻的理想电路模型( ) 3.电压源与电流源等效变换时不需要重要重要条件( ) 4.理想电压源与理想电流源可等效 变换( ) 5.电压源与电流源等效变换是对外电路等效( ) 四.计算题 1.如图电源U S =6V ,r 0=0.4Ω,当接上R=5.6Ω的负载电阻时,用电压源与电流源两种方法,计算负载电阻上流过电流的大小. 2.如图,E 1=17V,R 1=1Ω,E 2=34V .R 2=2Ω,R 3=5Ω.试用电压源与电流源等效变换的方法求流过R 的电流 R1R2 R3 E2 E1

2-2电源的等效变换

精心整理 精心整理 第二章 电阻电路的等效变换2 讲授板书 1、掌握电压源、电流源的串联和并联; 2、掌握实际电源的两种模型及其等效变换; 3、掌握输入电阻的概念及计算。 1、电压源、电流源的串联和并联 2、输入电阻的概念及计算 实际电源的两种模型及其等效变换

1.组织教学5分钟 3.讲授新课70分钟 1)电源的串并联20 2)实际电源的等效变换25 3)输入电阻的计算35 2.复习旧课5分钟 电阻的等效 4.巩固新课5分钟 5.布置作业5分钟 精心整理

一、学时:2 二、班级:06电气工程(本)/06数控技术(本) 三、教学内容: [讲授新课]: 第二章电阻电路的等效变换 精心整理

图(a)为2个电压源和电阻支路的串联,根据KVL得端口电压、电流关系为: 根据电路等效的概念,图(a)电路可以用图(b)所示电压为u s的单个电压源和电阻为R的单个电阻的串联组合等效替代图(a),其中 (2)并联 串联电路。 注意:(1)不同值或不同流向的电流源是不允许串联的,否则违反KCL。 (2)电流源串联时,每个电流源上的电压是不确定的。 4.电流源与支路的串、并联等效 1)并联 图(a)为2个电流源和电阻支路的并联,根据KCL得端口电压、电流关系为: 精心整理

精心整理 上式说明图(a)电路的对外特性与图(b)所示电流为i s 的单个电流源和电阻为R 的单个电阻的并联组合一样,因此,图(a)可以用图(b)等效替代,其中 (2)串联 图(a)为电流源和任意元件的串联,设外电路接电阻R , 和欧姆定律得端口电压、电流为: 电流源变换为电压源: 其中 需要注意的是:

电源的等效变换实验报告数据

篇一:实验一电压源与电流源的等效变换 电子信息测量基础实验报告 实验一电压源与电流源的等效变换 学号:132021520 姓名:XXX 班级:13通信X班 指导老师:X老师实验组号:5 实验地点:1实203 实验日期:20xx年5月18日 一、实验目的和要求: 1.掌握电源外特性的测试方法; 2.验证电压源与电流源等效变换的条件。 二、实验仪器: 一、可调直流稳压电源1台 二、直流恒流源1台 三、直流数字电压表1只 四、直流数字毫安表1只 五、电阻器1个 三、实验原理: 1、一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个理想的电压源,即其输出电压不随负载电流而变,其外特性,即其伏安特性U=f(I)是一条平行于I轴的直线。一个恒流源在使用中,在一定的电压范围内,可视为一个理想的电流源,即其输出电流不随负载的改变而改变。 2.一个实际的电压源(或电流源),其端电压(或输出电压)不可

能不随负载而变,因它具有一定的内组值。故在实验中,用一个小阻值的电阻(或大电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个电压源(或电流源)的情况。 3.一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。若视为电压源,则可用一个理想的电压源ES与一个电导gO相并联的组合来表示,若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。 一个电压源与一个电流源等效变换条件为 电子信息测量基础实验报告 Is? 或 Es1 gO= RoRo Es? 如下图6-1所示: Is1 RO=

电源等效变换

西南石油大学实验报告 课程电路原理实验项目电源的等效变换成绩 专业年级计科11级学号1105010241 指导老师唐老师 姓名张念康同组人姓名实验日期2012.3.21 一、实验目的 1.通过实验了解什么是电流源及外特性。 2.掌握电流源和电压源进行等效变换的条件。 二、实验原理及说明 电流源是除电压源以外的另一种形式的电源。它可以产生一个电流提供给外电路。理想电流源可以向外电路提供一个恒值电流,而不论外电路电阻的大小如何。理想电流源具有两个基本性质:第一,它的电流是恒值的,或是一定的时间函数i(t),而与其端电压的大小无关;第二,理想电流源的端电压并不能由它 的本身决定,而是由与之相联接的外电路确定的。其伏安特性曲线如图2-1所示: 图2-1 图2-2 实际电流源当其端电压增加时,通过外电路的电流并非恒定值而是要减小。 端电压越高,电流下降得越多;反之,端电压越低通过外电路的电流越大,当端电压为零时,流过外电路的电流最大,为I s。实际电流源可以用一个理想电流源I 和一个内阻R s相并联的电路模型表示。实际电流源的电路模型及伏安特性如图 s 2-2所示。 某些器件的伏安特性具有近似理想电流源的性质,如硅光电池,晶体三极管输出特性等。本实验中的电流源是用晶体管来实现的。晶体三极管在共基极联接时,集电极电流I c和集电极与基极间的电压U CB的关系如图2-3所示。由图可见I = f(U CB) 关系曲线的平坦部分具有恒流特性,当U CB在一定范围变化时。集电 c 极电流I c近乎恒定值,可以近似地将其视为理想电流源。 图2-3 图2-4

电源的等效变换: 一个实际的电源,就其外部特性而言,既可以看成是一个电压源,也可以看成是一个电流源。原理证明如下:设有一个电压源和一个电流源分别与相同阻值的外电阻R 相接,如图2-4所示。对于电压源来说,电阻R 两端的电压U 和流过R 的电流I 间的关系可表示为: s s IR U U -= 以及s s R U U I -= (2--1、2) 对于电流源电路来说,电阻R 两端的电压U 和流过它的电流I 间的关系可表 示为: 以及 (2--3、4) 如果两种电源的参数满足以下关系: 以及 (2--5、6) 则电压源电路的两个表达式可以写成: 以及 可见表达式与电流源电路的表达式是完全相同的,也就是说在满足(2—5)式和(2—6)式的条件下,两种电源对外电路电阻R 是完全等效的。两种电源互相替换对外电路将不发生任何影响。 (2—5)式和(2—6)式为电源等效互换的条件。利用它可以很方便地把一个参数为Us 和Rs 的电压源变换为一个参数为I s = U s / Rs 和Rs 的等效电流源;反之,也可以很容易地把一个电流源转化成一个等效的电压源。如图2-5所示。 图2--5 三、实验内容及步骤 1.测试理想电流源的伏安特性 参考电路如图2-6(a )、2-6(b )所示。图中电源由双路直流稳压电源提供,调节电位器使I c =10mA,其中R s = 200Ω。按表(一)中的数值从小到大依次调节 I RL R0 + – E U + – 电压源 RL R0 U R0 U IS I + – 电流源

相关主题
文本预览
相关文档 最新文档