当前位置:文档之家› 钢结构_戴国欣_第三版

钢结构_戴国欣_第三版

钢结构_戴国欣_第三版
钢结构_戴国欣_第三版

钢结构习题答案

钢结构(第三版)戴国欣主编__课后习题答案 第三章钢结构的连接 3.1 试设计双角钢与节点板的角焊缝连接(图3.80)。钢材为Q235B,焊条为E43型,手工焊,轴心力N=1000KN(设计值),分别采用三面围焊和两面侧焊进行设计。 解:(1)三面围焊 确定焊脚尺寸: ,, 内力分配: 焊缝长度计算:

, 则实际焊缝长度为,取310mm。 , 则实际焊缝长度为,取 120mm。 (2)两面侧焊 确定焊脚尺寸:同上,取, 内力分配:, 焊缝长度计算: , 则实际焊缝长度为: ,取390mm。 , 则实际焊缝长度为: ,取260mm。 3.2 试求图3.81所示连接的最大设计荷载。钢材为Q235B,焊条为E43型,手工焊,角焊缝焊脚尺寸,。

焊脚尺寸: 焊缝截面的形心: 则 (1)内力分析:V=F,(2)焊缝截面参数计算: (3)应力计算 T引起的应力:

V引起的应力: (4) 3.3 试设计如图3.82所示牛腿与柱的连接角焊缝①、②、③。钢材为Q235B,焊条为E43型,手工焊。 (1)内力分析:V=F=98KN, (2)焊缝截面参数计算:取 焊缝截面的形心:

(3)应力计算 M引起的应力: V引起的应力: (4) 3.4 习题3.3的连接中,如将焊缝②及焊缝③改为对接焊缝(按三级质量标准检验),试求该连接的最大荷载。 (1)内力分析:V=F, (2)焊缝截面参数计算:

(3)应力计算 M引起的应力: V引起的应力: (4) 3.5 焊接工字形梁在腹板上设一道拼接的对接焊缝(图3.83),拼接处作用有弯矩,剪力V=374KN,钢材为Q235B钢,焊条用E43型,半自动焊,三级检验标准,试验算该焊缝的强度。 (1)内力分析:V=374KN, (2)焊缝截面参数计算:

钢结构(第三版)戴国欣主编 课后习题答案

第三章 钢结构的连接 3.1 试设计双角钢与节点板的角焊缝连接(图3.80)。钢材为Q235B ,焊条为E43型,手工焊,轴心力N=1000KN (设计值),分别采用三面围焊和两面侧焊进行设计。 解:(1)三面围焊 2160/w f f N mm = 123α= 21 3 α= 确定焊脚尺寸: ,max min 1.2 1.21012f h t mm ≤=?=, ,min 5.2f h mm ≥==, 8f h mm = 内力分配: 30.7 1.2220.78125160273280273.28w f f f N h b f N KN β=???=?????==∑ 3221273.28 1000196.69232N N N KN α=- =?-= 3112273.28 1000530.03232N N N KN α=-=?-= 焊缝长度计算: 11530.03 2960.720.78160w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为 1296830460608480w f l mm h mm '=+=≤=?=,取310mm 。 22196.69 1100.720.78160 w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为 2110811860608480w f l mm h mm '=+=≤=?=,取120mm 。 (2)两面侧焊 确定焊脚尺寸:同上,取18f h mm =, 26f h m m = 内力分配:22110003333N N KN α==?=, 112 10006673 N N KN α==?= 焊缝长度计算: 116673720.720.78160 w w f f N l mm h f ≥ ==????∑,

钢结构基础习题参考答案剖析

《钢结构基础》习题参考答案 3.1题: 答:(1)按制作方法的不同分为型钢截面和组合截面两大类。型钢截面又可分为热轧型钢和冷弯薄壁型钢两种。组合截面按连接方法和使用材料的不同,可分为焊接组合截面(焊接截面)、铆接组合截面、钢和混凝土组合截面等。(2)型钢和组合截面应优先选用型钢截面,它具有加工方便和成本较低的优点。 3.7题: 解:由附录1中附表1可得I20a 的截面积为3550mm 2,扣除孔洞后的净面积为3249275.213550A n =??-=mm 2。工字钢较厚板件的厚度为11.4mm ,故由附录4可得Q235钢材的强度设计值为215f =N/mm 2,构件的压应力为2155.1383249 10450A N 3n <≈?==σN/mm 2,即该柱的强度满足要求。 新版教材工字钢为竖放,故应计入工字钢的自重。 工字钢I20a 的重度为27.9kg/m ,故 19712.19.8169.27N g =???=N ; 构件的拉应力为215139.113249 197110450A N N 3n g <≈+?=+=σN/mm 2,即该柱的强度满足要求。 3.8题: 解:1、初选截面

假定截面钢板厚度小于16mm ,强度设计值取215f =,125f v =。 可变荷载控制组合:24kN .47251.410.22.1q =?+?=, 永久荷载控制组合:38.27kN 250.71.410.235.1q =??+?= 简支梁的支座反力(未计梁的自重)129.91kN ql/2R ==,跨中的最大弯矩为m 63kN .1785.547.248 1ql 81M 22max ?≈??==,梁所需净截面抵抗矩为 36x max nx 791274mm 215 1.051063.178f M W ≈??==γ, 梁的高度在净空方面无限值条件;依刚度要求,简支梁的容许扰度为l/250,参照表3-2可知其容许最小高度为 229mm 24 550024l h min ≈==, 按经验公式可得梁的经济高度为 347mm 3007912747300W 7h 33x e ≈-=-=, 由净截面抵抗矩、最小高度和经济高度,按附录1中附表1取工字钢 I36a ,相应的截面抵抗矩3nx 791274mm 875000W >=,截面高度 229mm 360h >=且和经济高度接近。按附录1中附表5取窄翼缘H 型钢 HN400×150×8×13,截面抵抗矩3nx 791274mm 942000W >=, 截面高度229mm 400h >=。 普通工字钢梁翼缘的外伸宽度为 63mm 2/)10136(b 1=-=,13f /2351399.315.8 63t b y 1=<≈=,故翼缘板的局部稳定可以保证,且截面可考虑部分塑性发展。

钢结构设计 学习指南

学习指南 1、课程的重要性和学习目标 本课程是土木工程专业的一门重要的专业课,是一门理论和实际结合较强的课程。通过本课程的学习,在钢结构基本原理的基础上掌握常用钢结构的设计计算方法,为今后从事钢结构设计、施工与安装等奠定坚实的基础,养成基本的工程设计能力。 2、前导课程 材料力学、结构力学、房屋建筑学、土力学与地基基础、建筑结构与选型、荷载与结构设计方法、建筑施工、建筑结构CAD、工程抗震、钢结构基本原理。 3、后续课程 后续课程为钢结构课程设计、钢结构毕业设计实践教学环节,通过课程学习掌握钢结构构件及整体结构的内力计算及组合、杆件验算、节点计算、钢结构图纸绘制及表达,具备从事钢结构设计的基本素质和能力。 4、必要学习工具 绘图工具:AutoCAD; 计算分析工具:Ansys、Sap、Abaqus; 设计工具:PKPM、MTS、天正等建筑、结构分析软件。 5、课程能力点 在学习“钢结构基本原理”的基础上,走向应用阶段,即通过本课程的学习,系统地掌握钢结构的基本计算方法和应用技能,具备进行轻型门式刚架结构、重型单层工业厂房钢结构、多层房屋钢结构及高层房屋钢结构等设计计算的能力,了解相关的设计依据、成果及施工验收等知识,同时也为从事建筑钢结构制造、安装及施工管理打下必要的基础。 6、学习方法 以规范为依据,以教材为基础,借助课堂和网络资源,结合理论课、案例实训课及已完成的实习实践环节,认真做好预习、复习、作业、阅读等课外学习,积极参与课堂或课下讨论、科技创新活动、结构设计大赛等活动,提高综合应用能力。

7、与课程相关的国家标准及图集 [1] 钢结构设计规范GB 50017-2003.北京:中国计划出版社,2003 [2] 建筑结构荷载规范GB 50009-2012.北京:中国建筑工业出版社,2012 [3] 建筑抗震设计规范GB 50011-2010. 北京:中国建筑工业出版社,2010 [4] 冷弯薄壁型钢结构技术规范GB 50018-2002. 北京:中国计划出版社,2002 [5] 门式刚架轻型房屋钢结构技术规程CECS 102:2002. 北京:中国计划出版社,2003 [6] 高层民用建筑钢结构技术规程 JGJ 99-98. 北京:中国建筑工业出版社,1998 [7] 钢结构工程施工质量验收规范GB50205_2001.北京:中国建筑工业出版社,2002 [8] 建筑钢结构焊接技术规程JGJ 81-2002. 北京:中国建筑工业出版社,2002 [9] 12m实腹式钢吊车梁-轻级工作制05G514-1 [10] 12m实腹式钢吊车梁-中级工作制05G514-2 [11] 12m实腹式钢吊车梁-中级工作制05G514-3 [12] 12m实腹式钢吊车梁-重级工作制05G514-4 [13] 单层房屋钢结构节点构造详图(工字型截面钢柱柱脚连接)06SG529-1 [14] 吊车轨道联结及车挡05G525 [15] 多高层民用建筑钢结构节点构造详图01(04)SG519 [16] 钢吊车梁(H型钢_工作级别A1-A5)08SG520-3 [17] 钢结构建筑构造图集CDI02J [18] 钢抗风柱10SG533 [19] 钢梯02J401 [20] 轻型屋面梯形钢屋架(圆钢管、方钢管)06SG515-1 [21] 轻型屋面梯形钢屋架(剖分T型钢)06SG515-2 [22] 轻型屋面梯形钢屋架01SG515 [23] 梯形钢屋架05G511 [24] 柱间支撑05G-336 [25] 压型钢板、夹芯板屋面及墙体建筑构造01J925-1 [26] 《钢结构设计手册》编辑委员会.钢结构设计手册(上册).北京:北京:中国建筑工业出版社,2004 [27] 《钢结构设计手册》编辑委员会.钢结构设计手册(下册).北京:北京:中国建筑工业出版社,2004

第三版钢结构课后题答案第六章

6.1 有一两端铰接长度为4m 的偏心受压柱,用Q235的HN400×200×8×13做成,压力设计值为490kN ,两端偏心距相同,皆为20cm 。试验算其承载力。 解(1)截面的几何特征:查附表7.2 (2)强度验算: (3)验算弯矩作用平面内的稳定: b /h =200/400=0.5<0.8,查表4.3得: 对x 轴为a 类,y 轴为b 类。 查附表4.1得:x 0.9736?= 构件为两端支撑,有端弯矩且端弯矩相等而无横向荷载,故 mx 1.0β= (4)验算弯矩作用平面外的稳定: 查附表4.2得:y 0.6368?= 对y 轴,支撑与荷载条件等与对x 轴相同故: 由以上计算知,此压弯构件是由弯矩作用平面外的稳定控制设计的。 轧制型钢可不验算局部稳定。 6.2 图6.25所示悬臂柱,承受偏心距为25cm 的设计压力1600kN 。在弯矩作用平面外有支撑体系对柱上端形成支点[图6.25(b)],要求选定热轧H 型钢或焊接工字型截面,材料为Q235(注:当选用焊接工字型截面时,可试用翼缘2—400×20,焰切边,腹板—460×12)。 解:设采用焊接工字型截面,翼缘 204002?-焰切边,腹板—460×12, (1)截面的几何特征, (2)验算强度: 因为:20069.720b t -==<,故可以考虑截面塑性发展。 (3)验算弯矩作用平面内的稳定: 查表4.3得:对x 、y 轴均为b 类。 查附表4.2得:784.0x =? () 222 EX 22x 206000215.2101.1 1.164.39611kN EA N ππλ???'==?=

对x 轴为悬臂构件,故0.1mx =β; (4)弯矩作用平面外的稳定验算: 查附表4.2,749.0y =? ()958 .0440003.7007.1235.4400007.12 y 2 y b =-=-=f λ?构件对y 轴为两端支撑,有端弯矩且端弯矩相等而无横向荷载,故取0.1,0.1tx ==ηβ tx x y b 1x 362322160010 1.0 1.0400100.749215.2100.958407810 N 201.5N mm 205mm N M A W f βη??+????=+????=<=∴此压弯构件是由弯矩作用平面内的稳定控制设计的。 (5)局部稳定验算 (负号表示拉应力) 由表6.3得: 腹板: 翼缘:13235137.9206200y =≤=-=f t b ∴ 满足。 6.3 习题6.2中,如果弯矩作用平面外的支撑改为如图6.26所示,所选用截面需要如何调整才能适应?调整后柱截面面积可以减少多少? 解:弯矩作用平面外的支撑间距减小一倍,因此可将原翼缘变窄,可选用翼缘

(完整版)钢结构戴国欣主编第四版__课后习题答案

钢结构计算题精品答案 第三章 钢结构的连接 3.1 试设计双角钢与节点板的角焊缝连接(图3.80)。钢材为Q235B ,焊条为E43型,手工焊,轴心力N=1000KN (设计值),分别采用三面围焊和两面侧焊进行设计。 解:(1)三面围焊 2 160/w f f N mm = 123α= 21 3 α= 确定焊脚尺寸: ,max min 1.2 1.21012f h t mm ≤=?=, ,min 5.2f h mm ≥==, 8f h mm = 内力分配: 30.7 1.2220.78125160273280273.28w f f f N h b f N KN β=???=?????==∑ 3221273.28 1000196.69232N N N KN α=- =?-= 3112273.28 1000530.03232 N N N KN α=-=?-= 焊缝长度计算: 11530.03 2960.720.78160w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为 1296830460608480w f l mm h mm '=+=≤=?=,取310mm 。 22196.69 1100.720.78160w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为 2110811860608480w f l mm h mm '=+=≤=?=,取120mm 。 (2)两面侧焊 确定焊脚尺寸:同上,取18f h mm =, 26f h mm = 内力分配:22110003333N N KN α==?=, 112 10006673 N N KN α==?= 焊缝长度计算:

钢结构设计要点

钢结构设计要点

1. 钢柱、钢梁的平面外计算长度怎么取? 答:a. 平面外计算长度程序默认值为杆件实际长度,平面外的计算长度应该取平面外有效支撑之间的间距,通常需要根据平面外支撑布置情况修改。(见《STS 用户手册》) b. 见《钢结构设计手册》(第三版)460页9.8.3节 c. 见《钢结构设计手册》(第三版)435页,437页相关内容 2. 是否可以改变钢架工字型截面翼缘的厚度? 答:可以。见《门式钢架规范》4.1.3条 3. 关于STS中的错误信息:“梁高厚比超限”的解决方法? 答:网友认为该错误信息出现是因为钢架的楔率>60mm/m造成的,本人却无法验证该说法。但是增加腹板厚度确实可以解决该问题。见《门式钢架规范》6.1.1-6条,《钢结构规范》4.3节 4. 高强螺栓可以涂油漆吗? 答:不可以。油漆会使接触面的摩擦系数降低。 5. 如何确定钢架梁的分段比例? 答:可根据弯矩包络图确定。一般单跨取0.3:0.7或0.4:0.6,多跨可取0.3:0.45:0.25 6. 如何估算钢架梁柱截面? 答:根据荷载与支座情况,钢梁的截面高度通常在跨度的1/20~1/50之间选择。翼缘宽度根据梁间侧向支撑的间距按l/b限值确定时,可回避钢梁的整体稳定的复杂计算。确定了截面高度和翼缘宽度后,其板件厚度可按规范中局部稳定的构造规定预估。 柱截面按长细比预估,通常50<λ<150,简单选择值在100附近。根据轴心受压、双向受弯或单向受弯的不同,可选择钢管或H型钢截面等。 7. 关于门式钢架的恒载? 答:压型钢板及保温层 0.25kN/m2 檩条 0.05kN/m2 悬挂设备 0.2kN/m2

钢结构设计任务书2016

钢结构原理与设计课程设计任务书 一、题目:普通梯形钢屋架设计 二、设计资料(由老师分组确定) 某厂房总长度90M,跨度根据不同班级及学号从附表1中取,纵向柱距6m。 1.结构形式:梯形钢屋架。屋面坡度i=L/10;L为屋架跨度。地区计算温度高于-200C,无侵蚀性介质,地震设防烈度为7度,设计基本地震加速度为0.1g,二类场地。屋架下弦标高为18m;厂房内桥式吊车为2台150/30t(中级工作制),锻锤为2台5t。 2. 屋架形式及荷载:屋架形式、几何尺寸及内力系数(节点荷载P=1.0作用下杆件的内力)如附图所示。 3.屋盖结构及荷载 无檩体系:采用1.5×6.0m预应力混凝土屋板(考虑屋面板起系杆作用)荷载: ①屋架及支撑自重:按经验公式q=0.12+0.011L,L为屋架跨度,以m为单位,q为屋架及支撑自重,以KN/m2为单位; ②屋面活荷载:施工活荷载标准值为0.7KN/m2,雪荷载的基本雪压标准值值根据不同学号按附表取。施工活荷载与雪荷载不同时考虑,而是取两者的较大值;积灰荷载取0.6 KN/m2。 ③屋面各构造层的荷载标准值: 三毡四油(上铺绿豆砂)防水层0.4KN/m2 水泥砂浆找平层0.4KN/m2 保温层(根据学号按附表取) 一毡二油隔气层0.05KN/m2 水泥砂浆找平层0.3KN/m2 预应力混凝土屋面板1.45KN/m2 三、设计内容 1.课程设计计算书 包括如下内容的全部设计和计算过程:

①屋盖支撑、檩条布置的示意图 ②设计荷载统计 ③檩条设计及验算过程 ④屋架杆件几何尺寸、内力的计算过程及结果 ⑤屋架杆件截面计算过程及结果,屋架节点计算过程及结果 2.钢屋架施工详图 绘制2#施工图,屋架轴线比例1:20或1:30,相应构件比例为1:10或1:15,内容包括: ①屋架简图,左半跨标明杆件长度,右半跨注明杆件最不利内力,以及超拱度。 ②屋架正面图,上、下弦平面图(有二个比例)。 ③侧面图,剖面图及零件详图。 ④注明全部零件的编号,规格及尺寸(包括加工尺寸和定位尺寸)孔洞位置,孔洞及螺栓直径,焊缝尺寸以及对工厂加工和工地施工的要求。 ⑤材料表。 ⑥说明 四、设计要求 1.计算书须按规范要求完成,插图应用按一定比例绘制,做到眉目清晰,文图配合,表明表、图号;要求计算书内容要有系统地编排,字体要端正,表示要清楚,计算步骤明确,计算公式和数据来源应有依据,并应附有与设计有关的插图和说明。 2.图纸应符合《房屋建筑制图统一标准(GB/T 50001—2001)》和《建筑结构制图标准(GB/T 50105—2001)》的要求;绘制钢屋架施工图,其中包括屋架简图、屋架结构图、上下弦平面图、必要的剖面图和零件大样图、材料表和设计说明等。施工图1~2张(2号)。 要求图面清楚整洁,线条粗细分明,尺寸及标注齐全,符号及比例正确,构造合理,能表达设计意图,符合国家制图标准并与计算书一致。 3.屋架跨度、保温层及积灰荷载取值见附表所示。请学生按附表2将自己的取值填入设计任务书中。

钢结构-戴国欣主编第四版--课后习题答案

) 钢结构计算题精品答案 第三章 钢结构的连接 试设计双角钢与节点板的角焊缝连接(图)。钢材为Q235B ,焊条为E43型,手工焊,轴心力N=1000KN (设计值),分别采用三面围焊和两面侧焊进行设计。 解:(1)三面围焊 2 160/w f f N mm = 123α= 21 3 α= 确定焊脚尺寸: ,max min 1.2 1.21012f h t mm ≤=?=, ,min 5.2f h mm ≥==, 8f h mm = 内力分配: ; 30.7 1.2220.78125160273280273.28w f f f N h b f N KN β=???=?????==∑ 3221273.281000196.69232N N N KN α=- =?-= 3112273.28 1000530.03232 N N N KN α=-=?-= 焊缝长度计算: 11530.03 2960.720.78160 w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为 1296830460608480w f l mm h mm '=+=≤=?=,取310mm 。 22196.691100.720.78160w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为 2110811860608480w f l mm h mm '=+=≤=?=,取120mm 。 。 (2)两面侧焊 确定焊脚尺寸:同上,取18f h mm =, 26f h mm =

内力分配:22110003333N N KN α==?=, 112 10006673 N N KN α==?= 焊缝长度计算: 116673720.720.78160 w w f f N l mm h f ≥ ==????∑, 则实际焊缝长度为: mm h mm l f w 48086060388283721=?=<=?+=',取390mm 。 22333 2480.720.76160 w w f f N l mm h f ≥ ==????∑, : 则实际焊缝长度为: mm h mm l f w 48086060260262481=?=<=?+=',取260mm 。 试求图所示连接的最大设计荷载。钢材为Q235B ,焊条为E43型,手工焊,角焊缝焊脚尺寸8f h mm =,130e cm =。 焊脚尺寸:8f h mm = 焊缝截面的形心:0205 205 5.62245.6511.2 5.62205 5.6 x mm ?? ?==?+?? 则2 5.6 20545.6162.22 e mm =+-= (1)内力分析:V=F , 12()(300162.2)462.2T F e e F F =?+=?+= ] (2)焊缝截面参数计算: 32841 5.6511.22205 5.6(250 2.8) 2.091012 X I mm = ??+???+=? 22 742055.6511.245.62205 5.6(162.2) 1.41102 y I mm =??+???-=?

钢结构基本原理课后习题与答案完全版

如图2-34所示钢材在单向拉伸状态下的应力-应变曲线,请写出弹性阶段和非弹性阶段的σε-关系式。 tgα'=E' f y 0f y 0tgα=E 图2-34 σε-图 (a )理想弹性-塑性 (b )理想弹性强化 解: (1)弹性阶段:tan E σεαε==? 非弹性阶段:y f σ=(应力不随应变的增大而变化) (2)弹性阶段:tan E σεαε==? 非弹性阶段:'()tan '()tan y y y y f f f E f E σεαεα=+- =+- 如图2-35所示的钢材在单向拉伸状态下的σε-曲线,试验时分别在A 、B 、C 卸载至零,则在三种情况下,卸载前应变ε、卸载后残余应变c ε及可恢复的弹性应变y ε各是多少 2235/y f N mm = 2270/c N mm σ= 0.025F ε= 522.0610/E N mm =?2'1000/E N mm = f y 0σF 图2-35 理想化的σε-图 解: (1)A 点: 卸载前应变:5235 0.001142.0610y f E ε===? 卸载后残余应变:0c ε=

可恢复弹性应变:0.00114y c εεε=-= (2)B 点: 卸载前应变:0.025F εε== 卸载后残余应变:0.02386y c f E εε=-= 可恢复弹性应变:0.00114y c εεε=-= (3)C 点: 卸载前应变:0.0250.0350.06'c y F f E σεε-=-=+= 卸载后残余应变:0.05869c c E σεε=-= 可恢复弹性应变:0.00131y c εεε=-= 试述钢材在单轴反复应力作用下,钢材的σε-曲线、钢材疲劳强度与反复应力大小和作用时间之间的关系。 答:钢材σε-曲线与反复应力大小和作用时间关系:当构件反复力y f σ≤时,即材料处于弹性阶段时,反复应力作用下钢材材性无变化,不存在残余变形,钢材σε-曲线基本无变化;当y f σ>时,即材料处于弹塑性阶段,反复应力会引起残余变形,但若加载-卸载连续进行,钢材σε-曲线也基本无变化;若加载-卸载具有一定时间间隔,会使钢材屈服点、极限强度提高,而塑性韧性降低(时效现象)。钢材σε-曲线会相对更高而更短。另外,载一定作用力下,作用时间越快,钢材强度会提高、而变形能力减弱,钢材σε-曲线也会更高而更短。 钢材疲劳强度与反复力大小和作用时间关系:反复应力大小对钢材疲劳强度的影响以应力比或应力幅(焊接结构)来量度。一般来说,应力比或应力幅越大,疲劳强度越低;而作用时间越长(指次数多),疲劳强度也越低。 试述导致钢材发生脆性破坏的各种原因。 答:(1)钢材的化学成分,如碳、硫、磷等有害元素成分过多;(2)钢材生成过程中造成的缺陷,如夹层、偏析等; (3)钢材在加工、使用过程中的各种影响,如时效、冷作硬化以及焊接应力等影响;(4)钢材工作温度影响,可能会引起蓝脆或冷脆;(5)不合理的结构细部设计影响,如应力集中等;(6)结构或构件受力性质,如双向或三向同号应力场;(7)结构或构件所受荷载性质,如受反复动力荷载作用。 解释下列名词: (1)延性破坏 延性破坏,也叫塑性破坏,破坏前有明显变形,并有较长持续时间,应力超过屈服点fy 、并达到抗拉极限强度

钢结构柱脚设计(优.选)

第八章基础设计 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面: ⒈基础形式 基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的内力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般情况下不采用片筏基础和箱形基础。

轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除

发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规范规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规范也规定了锚栓埋入长度。 ⒋基础设计内容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度确定的情况下计算基础配筋,这里须注意伸缩缝双柱基础处理,双柱为基础提供了两个支点,在地基反力作用下,有可能出现负弯矩,即基础上部受拉的情况,

钢结构完整版

★钢结构的主要特点和合理应用范围:⒈特点:①钢材强度高,结构重量轻②材料均匀,且塑性韧性好③良好的加工性能和焊接性能④密封性好⑤钢材的可重复使用性⑥钢材耐热但不耐火⑦耐腐蚀性差⑧钢结构的低温冷脆倾向。⒉①大跨结构②工业厂房③受动力荷载影响的结构④多层和高层建筑⑤高耸结构⑥可拆卸的结构⑦容器和其他构筑物⑧轻型钢结构⑨钢和砼的组合结构 ★极限状态设计法:两种极限状态及其内容:设计表达式中各分项系数的意义和取值(填):⒈极限状态:①承载能力极限状态包括:构件和连接的强度破坏,疲劳破坏和因过度变形而不适于继续承载,结构和构件失稳定,结构转变为机动体系和结构倾覆。②正常使用极限状态包括:影响结构、构件和非结构构件正常使用或外观的变形,影响正常使用的振动,影响正常使用或耐久性能的局部破坏(包括组合结构中砼裂缝)⒉γ0--结构重要性系数,安全等级为1级或设计使用年限为100年以及以上的结构构件,不应小于1.1;对于安全等级为2级或设计使用年限为50年的结构构件,不应小于1.0;对于安全等级为三级或设计使用年限为5年的结构构件,不应小于0.9;对使用年限为25年的结构构件,不应小于0.95. σGK--永久荷载标准值在结构构件截面或连接中产生的应力;γG--永久荷载分项系数,当永久荷载效应对结构承载力不利时去1.2,控制时取1.35,有利时取1,验算结构倾覆、滑移或漂浮时取0.9;σQ1K,σQik—为第一个或第i个可变荷载标准值在结构构件截面或连接中产生的应力;γQ1,Qi—为第一个和其他第i个可变荷载分项系数,当可变荷载对结构构件不利时取1.4(当楼面活荷载大于4KN/m2时,取1.3),有利取0.Ψci—为第i个可变荷载的组合值系数,一般为0.9,只有一个可变荷载时取1。 ★钢材的两种破坏形式及其主要特点;钢材的单向静力拉伸试验:曲线四个阶段及其特征值。⒈破坏形式:①塑性破坏(破坏前有较大的塑性变形,表面出现明显的相互垂直交错的锈迹剥落线,破坏后断口成纤维状,色泽发暗)②脆性破坏(破坏前无明显的变形,而突然迅速断裂,破坏后的断口平直,呈有光泽的晶粒状或有人字纹)⒉四个阶段:弹性阶段(比例极限σp)、弹塑性阶段(屈服强度fy)、塑性阶段(抗拉强度fu),自强阶段(伸长率δ)★钢材的主要机械(力学)性能及其性能指标:⒈主要性能:强度、塑性、冷弯性能、冲击韧性⒉指标:fu、δ5(δ10)、fy、冷弯实验、常温Akv,负温Akv ★影响钢材力学性能的主要因素:化学成分、硬化、温度、应力集中、复杂应力状态:①化学成分:基本有害元素:硫,氧含量越高,塑韧性越低,热脆;磷,氮含量越高,塑韧性越低,冷脆,故因严格控制。基本有益元素:碳,含量越高,强度越高,塑韧性越低;锰、硅、矾、铝、铜含量越高,强度越高。当适宜时不降低塑韧性②硬化:时效硬化(强度提高,塑韧性越低);冷作硬化(应变硬化,屈服点提高,塑韧性越低)都变脆③温度:在高温下,温度越高,强度越低,塑韧性越高(250度左右蓝脆现象);在低温下,温度越低,强度越高,塑韧性越低,脆)④应力集中:在构件截面的整体性受到破坏,会是力线出现密集、弯折,而出现高峰应力现象,出现同号应力场变脆,截面改变越剧烈,应力集中现象越严重,越易产生脆性破坏⑤复杂应力状态:三个主应力同号且差值很小时,即使各自都远超过fu 都很难进入塑性状态,甚至到破坏也没有明显的变形,呈脆性破坏。但是当有一个为异号应力时,且同号两个应力相差较大时,材料比较容易进入塑性状态,破坏呈塑性。 ★钢材疲劳破坏的特征,影响疲劳强度的主要因素;容许应力幅设计法:⒈特征:①属于脆性断裂②断口可分为三个区域:裂纹源,裂纹扩展区,断裂区③对缺陷十分敏感⒉因素:应力集中程度、应力循环次数、应力幅、应力比⒊①表达式②常幅疲劳计算:焊接部分应力幅,非焊接③变幅疲劳计算: ★选择钢材应考虑的因素;钢材的保证项;承重结构钢材的一般选用方法;钢材的规格:⒈考虑因素:结构的重要性;荷载的特征;结构的形式;应力状态;钢材的厚度;工作环境

钢结构基础第二章习题答案

第二章 1.钢结构和其他材料的结构相比具有哪些特点? 答(1)强度高,塑性和韧性好(2)钢结构的重量轻(3)材质均匀,和力学计算的假定比较符合(4)钢结构制作简便,施工工期短(5)钢结构密闭性较好(6)钢结构耐腐蚀性差(7)钢材耐热但不耐火(8)钢结构在低温和其他条件下,可能发生脆性断裂,还有厚板的层状撕裂,应引起设计者的特别注意。 2.《钢结构设计规范》(GB500l7—2003)(以下简称《规范》)采用什么设计方法? 答:《规范》除疲劳计算外,均采用以概率理论为基础的极限状态设计方法,用分项系数的设计表达式进行计算。 3.什么是极限状态?钢结构的极限状态可分为哪两种?各包括哪些内容? 答:当结构或其组成部分超过某一特定状态就不能满足设计规定的某一功能要求时,此特定状态就称为该功能的极限状态。 4.钢结构的极限状态可分为:承载能力极限状态与正常使用极限状态。 (1)承载能力极限状态:包括构件和连接的强度破坏、疲劳破坏和因过度变形而不适于继续承载,结构和构件丧失稳定,结构转变为机动体系和结构倾覆。 (2)正常使用极限状态:包括影响结构、构件和非结构构件正常使用或外观的变形,影响正常使用的振动,影响正常使用或耐久性能的局部损坏(包括混凝土裂缝)。 5.结构的可靠性与结构的安全性有何区别? 建筑结构的可靠性包括安全性、适用性和耐久性三项要求。结构可靠度是结构可靠性的概率度量,其定义是:结构在规定的时间内,在规定的条件下,完成预定功能的概率,称为结构可靠度 6.钢结构设计的基准期是多少?当结构使用超过基淮期后是否可继续使用? 规定时间:一般指结构设计基准期,一般结构的设计基准期为 50年,桥梁工程的设计基准期为100年。设计基准期(design reference period):为了确定可变作用及与时间有关的材料性能等取值而选用的时间参数。※设计使用期与设计使用寿命的关系:当结构的设计使用年限超过设计基准期时,表明它的失效概率可能会增大,但并不等于结构丧失所要求的功能甚至报废。规定条件:指正常设计、正常施工、正常使用条件,不考虑人为或过失因素 8.简述建筑钢结构对钢材的要求、指标,规范推荐使用的钢材有哪些? 1.较高的强度。 2.足够的变形能力。 3.良好的加工性能。 此外,根据结构的具体工作条件,在必须是还应该具有适合低温、有害介质侵蚀(包括大气锈蚀)以及重复荷载作用等的性能。《钢结构设计规范》(GB 50017-2003)推荐的普通碳素结构钢Q235钢和低合金高强度结构钢Q345、Q390及Q420是符合上述要求的。 9.衡量材料力学性能的好坏,常用那些指标?它们的作用如何? 1.强度性能: 2.塑性性能 3.冷弯性能 4.冲击韧性 10.哪些因素可使钢材变脆,从设计角度防止构件脆断的措施有哪些? 从理论角度来讲影响钢材脆性的主要因素是钢材中硫和磷的含量问题;如果你的工艺路线不经过热处理那么这个因素影响就小一些;如果工艺路线走热处理这一步(含锻打,铸造)那么这个影响就相当的明显;就必须采取必要的措施;1;设计选材上尽量避开对热影响区和淬火区敏感的材料;2不得已而用之的话那么就要在工艺上采取预防措施;建议你再仔细查阅一下金属材料学;3设计过程中采取防脆断措施如工艺圆角;加强筋;拔模等;有很多;建议你查阅机械设计手册中的工艺预防措施和手段; 11.碳、硫、磷对钢材的性能有哪些影响?、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变

钢结构设计入门,初学者看过来!

钢结构设计入门,初学者看过来! 一、钢结构适用范围及选型 1.钢结构适用的范围 钢结构通常用于高层、大跨度、体型复杂、荷载或吊车起重量大、有较大振动、高温车间、密封性要求高、要求能活动或经常装拆的结构。直观的说:超高层建筑、体育馆、歌剧院、大桥、电视塔、工业厂房和临时建筑等。这是和钢结构自身的特点相一致的。 2.钢结构的选型 在钢结构设计的整个过程中,都应该被强调的是"概念设计", 它在结构选型与布置阶段尤其重要。对一些难以作出精确理性分析或规范未规定的问题,可依据从整体结构体系与分体系之间的力学关系、破坏机理、震害、试验现象和工程经验所获得的设计思想,从全局的角度来确定控制结构的布置及细部措施。运用概念设计可以在早期迅速、有效地进行构思、比较与选择。所得结构方案往往易于手算、概念清晰、定性正确,并可避免结构分析阶段不必要的繁琐运算。同时,它也是判断计算机内力分析输出数据可靠与否的主要依据。 钢结构通常有框架、平面(木行)架、网架(壳)、索膜、轻钢、 塔桅等结构型式。其理论与技术大都成熟。亦有部分难题没有解决,或没有简单实用的设计方法,比如网壳的稳定等。

结构选型时,应考虑它们不同的特点。在轻钢工业厂房中,当有较大悬挂荷载或移动荷载,就可考虑放弃门式刚架而采用网架。基本雪压大的地区,屋面曲线应有利于积雪滑落(切线 50 度内需考虑雪载),如采用三心圆网壳。总雪载释放近一半。降雨量大的地区相似考虑。建筑允许时,在框架中布置支撑会比简单的节点刚接的框架有更好的经济性。而屋面覆盖跨度较大的建筑中,可选择构件受拉为主的悬索或索膜结构体系。高层钢结构设计中,常采用钢混凝土组合结构,在地震烈度高或很不规则的高层中,不应单纯为了经济去选择不利抗震的核心筒加外框的形式。宜选择周边巨型 SRC 柱,核心为支撑框架的结构体系。我国半数以上的此类高层为前者。对抗震不利。 结构的布置要根据体系特征,荷载分布情况及性质等综合考虑。一般的说要刚度均匀。力学模型清晰。尽可能限制大荷载或移动荷载的影响范围,使其以最直接的线路传递到基础。柱间抗侧支撑的分布应均匀。其形心要尽量靠近侧向力(风震)的作用线。否则应考虑结构的扭转。结构的抗侧应有多道防线。比如有支撑框架结构,柱子至少应能单独承受 1/4 的总水平力。 框架结构的楼层平面次梁的布置,有时可以调整其荷载传递方向以满足不同的要求。通常为了减小截面沿短向布置次梁,但是这会使主梁截面加大,减少了楼层净高,顶层边柱也有时会吃不消,此时把次梁支撑在较短的主梁上可以牺牲次梁保住主梁和柱子。 3.钢结构构件的截面选取 结构布置结束后,需对构件截面作初步估算。主要是梁柱和支撑

钢结构基本原理课后习题与答案完全版

2.1 如图2-34所示钢材在单向拉伸状态下的应力-应变曲线,请写出弹性阶段和非弹性阶段的-关系式。 tgα'=E' f 0f 0 tgα=E 图2-34 σε-图 (a )理想弹性-塑性 (b )理想弹性强化 解: (1)弹性阶段:tan E σεαε==? 非弹性阶段:y f σ=(应力不随应变的增大而变化) (2)弹性阶段:tan E σεαε==? 非弹性阶段:'()tan '()tan y y y y f f f E f E σεαεα =+-=+- 2.2如图2-35所示的钢材在单向拉伸状态下的σε-曲线,试验时分别在A 、B 、C 卸载至零,则在三种情况下,卸载前应变ε、卸载后残余应变c ε及可恢复的弹性应变y ε各是多少? 2235/y f N mm = 2270/c N mm σ= 0.025F ε= 522.0610/E N mm =?2'1000/E N mm = f 0 σF 图2-35 理想化的σε-图 解: (1)A 点: 卸载前应变:5 2350.001142.0610y f E ε= = =? 卸载后残余应变:0c ε= 可恢复弹性应变:0.00114y c εεε=-= (2)B 点: 卸载前应变:0.025F εε==

卸载后残余应变:0.02386y c f E εε=- = 可恢复弹性应变:0.00114y c εεε=-= (3)C 点: 卸载前应变:0.0250.0350.06' c y F f E σεε-=- =+= 卸载后残余应变:0.05869c c E σεε=- = 可恢复弹性应变:0.00131y c εεε=-= 2.3试述钢材在单轴反复应力作用下,钢材的σε-曲线、钢材疲劳强度与反复应力大小和作用时间之间的关系。 答:钢材σε-曲线与反复应力大小和作用时间关系:当构件反复力y f σ≤时,即材料处于弹性阶段时,反复应力作用下钢材材性无变化,不存在残余变形,钢材σε-曲线基本无变化;当y f σ>时,即材料处于弹塑性阶段,反复应力会引起残余变形,但若加载-卸载连续进行,钢材σε-曲线也基本无变化;若加载-卸载具有一定时间间隔,会使钢材屈服点、极限强度提高,而塑性韧性降低(时效现象)。钢材σε-曲线会相对更高而更短。另外,载一定作用力下,作用时间越快,钢材强度会提高、而变形能力减弱,钢材σε-曲线也会更高而更短。 钢材疲劳强度与反复力大小和作用时间关系:反复应力大小对钢材疲劳强度的影响以应力比或应力幅(焊接结构)来量度。一般来说,应力比或应力幅越大,疲劳强度越低;而作用时间越长(指次数多),疲劳强度也越低。 2.4试述导致钢材发生脆性破坏的各种原因。 答:(1)钢材的化学成分,如碳、硫、磷等有害元素成分过多;(2)钢材生成过程中造成的缺陷,如夹层、偏析等;(3)钢材在加工、使用过程中的各种影响,如时效、冷作硬化以及焊接应力等影响;(4)钢材工作温度影响,可能会引起蓝脆或冷脆;(5)不合理的结构细部设计影响,如应力集中等;(6)结构或构件受力性质,如双向或三向同号应力场;(7)结构或构件所受荷载性质,如受反复动力荷载作用。 2.5 解释下列名词: (1)延性破坏 延性破坏,也叫塑性破坏,破坏前有明显变形,并有较长持续时间,应力超过屈服点fy 、并达到抗拉极限强度fu 的破坏。 (2)损伤累积破坏 指随时间增长,由荷载与温度变化,化学和环境作用以及灾害因素等使结构或构件产生损伤并不断积累而导致的破坏。 (3)脆性破坏 脆性破坏,也叫脆性断裂,指破坏前无明显变形、无预兆,而平均应力较小(一般小于屈服点fy )的破坏。 (4)疲劳破坏 指钢材在连续反复荷载作用下,应力水平低于极限强度,甚至低于屈服点的突然破坏。 (5)应力腐蚀破坏 应力腐蚀破坏,也叫延迟断裂,在腐蚀性介质中,裂纹尖端应力低于正常脆性断裂应力临界值的情况下所造成的破坏。 (6)疲劳寿命 指结构或构件中在一定恢复荷载作用下所能承受的应力循环次数。 2.6 一两跨连续梁,在外荷载作用下,截面上A 点正应力为21120/N mm σ=,2280/N mm σ=-,B 点的正应力

相关主题
文本预览
相关文档 最新文档