当前位置:文档之家› 比例放大器原理图

比例放大器原理图

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

阿托斯比例阀的输出方法

阿托斯比例阀的输出方法 不同的比例阀的控制形式是不同的,首先所有的比例阀都需要配套的放大器,其次你确认,你所使用的比例阀放大器是电压信号还是电流型号控制的,大多数为电压信号控制的。这个时候需要看放大器的电路图,那个点接电磁铁、那个点接电源、电源是多少伏的、那个点是模拟量输入信号的、那个点是上升和下降斜坡控制的、那个点是接手动电位器的等等。不同的厂家生产的放大器是不同的,有的同一种放大器还有欧洲板式的和国际板式的不一样。其实比例阀并没多少东西,控制来说主要是放大器。要想正常的使用比例阀必须懂得放大器如何控制,仔细的阅读放大器的说明书。尤其是里面不起眼的地方的小字分类方法、种类、详细分类 按机能分类 压力控制阀:溢流阀、顺序阀、卸荷阀、平衡阀、减压阀、比例压力控制阀、缓冲阀、仪表截止阀、限压切断阀、压力继电器 流量控制阀:节流阀、单向节流阀、调速阀、分流阀、集流阀、比例流量控制阀 按结构分类 滑阀:圆柱滑阀、旋转阀、平板滑阀 座阀:锥阀、球阀、喷嘴挡板阀 射流管阀:射流阀 按操作方法分类 手动阀:手把及手轮、踏板、杠杆 机动阀:挡块及碰块、弹簧、液压、气动 电动阀:电磁铁控制、伺服电动机和步进电动机控制 DHZO-A-051-S5/18 DHZO-A-051-S5/18比例换向阀DHZO-A-051-S5/18比例阀 DHZO-A-053-L3 20 DHZO-A-053-L3 20比例换向阀DHZO-A-053-L3 20比例阀 DHZO-A-053-L3/18 DHZO-A-053-L3/18比例换向阀DHZO-A-053-L3/18比例阀 DHZO-A-053-L5 DHZO-A-053-L5比例换向阀DHZO-A-053-L5比例阀 DHZO-A-053-L5/18 DHZO-A-053-L5/18比例换向阀DHZO-A-053-L5/18比例阀 DHZO-A-060-S3 DHZO-A-060-S3比例换向阀DHZO-A-060-S3比例阀 DHZO-A-071-L1 20 DHZO-A-071-L1 20比例换向阀DHZO-A-071-L1 20比例阀 DHZO-A-071-L1/18 DHZO-A-071-L1/18比例换向阀DHZO-A-071-L1/18比例阀 DHZO-A-071-L5 DHZO-A-071-L5比例换向阀DHZO-A-071-L5比例阀 DHZO-A-071-L5/18 20 DHZO-A-071-L5/18 20比例换向阀DHZO-A-071-L5/18 20比例阀DHZO-A-071-S3 20 DHZO-A-071-S3 20比例换向阀DHZO-A-071-S3 20比例阀 DHZO-A-071-S5 DHZO-A-071-S5比例换向阀DHZO-A-071-S5比例阀 DHZO-A-073-D5 DHZO-A-073-D5比例换向阀DHZO-A-073-D5比例阀 阿托斯比例阀的输出方法

华中科技大学-IC课程设计实验报告(比例放大器设计)

华中科技大学-IC课程设计实验报告(比例放大器设计)

华中科技大学 题目:比例放大器设计 院系: 专业班: 姓名: 学号: 指导教师: 20XX年XX 月 I

摘要 在模拟电路中对放大器进行设计时,差分放大器由于能够实现两倍放大和能够很好的抑制共模噪声的优良性能而被广为应用。本文利用放大器的“虚短”“虚断”的特性对比例放大器的结构及放大器的构成和基本参数进行了设计,其中放大器采用差分放大结构。 关键词:比例放大器差分放大器一级结构二级结构 I

Abstract When designing an amplifier, differential amplifiers,with its twice higher gain and its restrain to Common-mode disturbance,is more widely used than other kinds of amplifiers.In this report,we make use of the properties of “virtual short cicuit” a nd “virtual disconnection” and design the structure and parameters of the whole circuit as well as the structure of the amplifier. Key Words:Proportion amplifier Differential amplifiers Level 1 Level 2 II

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

运算放大器设计

运算放大器设计 电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301 实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3) 的加法电路 一.实验要求 用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。设计步骤: (1)根据已知条件,确定电路方案,计算并选取各电路元件参数; (2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求 二.实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。 (2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。 三.实验分析设计 题目要求设计能实现 V0=-(4Vi1+3Vi2+2Vi3) U0Ui .. 的加法电路,分析得: (1)输出与输入反相,则采用反相加法运算电路。(2)由基本反相比例放大器的增益公式Auf= =- RfR1

可进一步推出反相加法 运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计 0i1i2i3 R1R2R3R1R2R3 Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ (3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。反相加法运算电路如下图所示: 四、仿真结果 理论计算(峰值): u0=-(4*100+3*200+2*300)=1600mV 实验测得(峰值): ' u0=1.590V ' u0≈u0 所以该设计较合理。 实验二 RC文氏桥振荡器输出正弦波 一、实验要求 根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。设计任务: (1) 输出正弦波的振荡频率为1KHZ; (2) 振荡频率的测量值与理论值的相对误差 二、实验原理 文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。 从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。但是,这样两部分构

OCL功率放大器的设计报告

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生:郭二珍 学生学号:1008220107 系别:电气学院 专业:自动化 届别:2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。(3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。

因此,本设计可采用甲乙类互补电路。 2、容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P o≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。

反比例放大电路

反比例放大电路 一、 实验目的: 1、 了解常用电子仪器:示波器、函数信号发生器、直流稳压 电源等的主要特性指标、性能及正确的使用方法。 2、 学会自己设计正向反向比例放大电路 3、 掌握示波器的基本调整方法和工作模式。 4、 了解Multism 软件的使用,学会绘制简单的电路图。 5、 了解运算放大器的工作原理 二、 实验环境 仪器:双踪示波器、函数信号发生器、数字万用表、电路实验 箱; 电子元件:电环电阻、集成运算放大器ua741; 软件:Multisim 软件; 三、 实验原理 集成运算放大器ua741构造图如下: 1、5脚:失调调零端 2:反向输入端(V-) 3:同相输入端(V+) 4:负电源端(-Vee ) 6:输出(OUT ) 7:正电源端(+Vcc ) 8:空 4 3 2 1 5 6 7 - + 8

注意事项:在连接时8号端口不连,输入输出端(2、3端)需先接电阻再进行输入输出(并且接入的电阻阻值应该相等),正负电源接反就会爆炸!!! 设计电路图如下: 对照本图,运算放大器放大倍数为-Rf/R1(反比例)。 通常将运放视为理想运放,即将运放的各项技术指标理想化,理想运放在线性应用时的两个重要特性:

虚短:因为理想运放的电压放大倍数很大,而运放工作在线性区,是一个线性放大电路,输出电压不超出线性范围(即有限值),所以,运算放大器同相输入端与反相输入端的电位十分接近相等。在运放供电电压为±15V时,输出的最大值一般在10~13V。所以运放两输入端的电压差,在1mV以下,近似两输入端短路。这一特性称为虚短,显然这不是真正的短路,只是分析电路时在允许误差范围之内的合理近似。 虚断:由于运放的输入电阻一般都在几百千欧以上,流入运放同相输入端和反相输入端中的电流十分微小,比外电路中的电流小几个数量级,流入运放的电流往往可以忽略,这相当运放的输入端开路,这一特性称为虚断。显然,运放的输入端不能真正开路。 运用“虚短”、“虚断”这两个概念,在分析运放线性应用电路时,可以简化应用电路的分析过程。运算放大器构成的运算电路均要求输入与输出之间满足一定的函数关系,因此均可应用这两条结论。如果运放不在线性区工作,也就没有“虚短”、“虚断”的特性。如果测量运放两输入端的电位,达到几毫伏以上,往往该运放不在线性区工作,或者已经损坏。

大功率功率放大器电路的设计

大功率功率放大器电路设计 大功率功率放大器电路设计 一. 设计理念及实现方式 (1)能推4Ω、2Ω等双低音的“大食”音箱以及专业类大粗音圈的各类专业箱。 (2)要省电、噪声小,发热量小。 (3)音质要好,能适合家居使用和专业使用。 第一点的实现就是要有大的推动功率。由于目前居室客厅面积有不断扩大的趋势,100W ×2以下功放已显得有些“力不从心”,所以本功放设计为4ΩQ 时360W ×2,2Ω时720W ×2。 第二点的实现就是电路工作在静态时的乙类小电流,靠大水塘级电容和电阻进行滤波降噪,使功放级噪声极小。而电路的工作状态又决定了电路元件的发热量很小,与一般乙类电路相当。配备的大型散热系统是为了应付连续大功率、低阻抗输出时的安全、可靠。 第三点的实现是本功放板的主要目标。目前公认的是:甲类、MOS、电子管音质好,所以本功放要达到甲类、MOS、电子管的音质。 二.大功率输出的实现 要实现大功率,首先是电源容量要大。本功放配置的电源是在截面积为35mm ×60mm的环形铁心上绕制的环牛。一次侧为1.0mm线绕484圈,二次侧为1.5mm双线并绕100圈。 整流为两只40A全桥做双桥整流,滤波为4只47000 uF电容 2只2.7kΩ电阻并接在正负电源上,使电压稳定在±62V。如电压过高可减小电阻到2.2kΩ,过低可加大电阻到3kΩ,功率用3W以上的。 除电源外,要实现大功率输出,特别是驱动“大食”音箱,要求功放输出电流能力要强,本功放每声道选用6对2SD1037管做准互补输出,可驱动直流电阻低达0.5Ω的“大食”音箱。所以4Ω时360W×2、2Ω时720W×2是有保障的。 三. 甲类、MOS、电子管音质的实现 目前人们公认的甲类、MOS、电子管的音质最好,所以本功放电路设计动态时工作于甲类的最佳状态,偏流随信号大小而同步增减,所以音质是有技术保障的。而在此工作状态下,即使更换几只一般的MOS管,对音质的提高也不明显。下面给出其原理图,如图1所示。从图1上可见到本原理图相当简洁,比一般乙类或甲乙类准互补电路还节省元件。而通过在电路板上改变一只电阻的接法就可方便地在本电路与准互补乙类或甲乙类之间变换。 四.绿色环保概念的实现 对本功放来说,实现低耗电、低噪声污染、低热辐射污染是通过以下措施实现的: (1)本功放空载时只有小电流级工作,而功率管基极电压只有0.45V,基本上是截止的,所以比一般乙类耗电少,属节电型功放。

某科技大学_IC课程设计实验报告(比例放大器设计)

华中科技大学 题目:比例放大器设计 院系: 专业班: 姓名: 学号: 指导教师: 20XX年XX 月

摘要 在模拟电路中对放大器进行设计时,差分放大器由于能够实现两倍放大和能够很好的抑制共模噪声的优良性能而被广为应用。本文利用放大器的“虚短”“虚断”的特性对比例放大器的结构及放大器的构成和基本参数进行了设计,其中放大器采用差分放大结构。 关键词:比例放大器差分放大器一级结构二级结构

Abstract When designing an amplifier, differential amplifiers,with its twice higher gain and its restrain to Common-mode disturbance,is more widely used than other kinds of amplifiers.In this report,we make use of the properties of “virtual short cicuit” and “virtual disconnection” a nd design the structure and parameters of the whole circuit as well as the structure of the amplifier. Key Words:Proportion amplifier Differential amplifiers Level 1 Level 2

目录 摘要 ................................................................................................ I ABSTRACT ....................................................................................... ⅠI 1 题目要求 (1) 2 设计过程 (2) 2.1 基本结构及分析 (2) 2.1.1 外围电路分析 (2) 2.1.2 运算放大器选择 (3) 2.2 工艺参数提取 (3) 2.3 理论推导与计算 (5) 2.4 仿真 (6) 2.5 二级密勒补偿运算放大器 (10) 2.6 仿真结果 (13) 2.7 综合仿真 (17) 3 结果分析与结论 (22) 4 心得体会 (23)

功率放大器的设计

功率放大器的仿真设计 0 引言 各种无线通信系统的发展,大大加速了半导体器件和射频功率放大器的研究进程。射频功率放大器在无线通信系统中起着至关重要的作用,它的设计好坏影响着整个系统的性能。因此,无线系统需要设计性能良好的放大器。而且,为了适应无线系统的快速发展,产品开发的周期也是一个重要因素。另外,在各种无线系统中由于不同调制类型和多载波通信的采用,射频工程师为减小功率放大器的非线性失真,尤其是设计无线基站应用的高功率放大器时面临着巨大的挑战。采用EDA工具软件进行电路设计可以掌握设计电路的性能,进一步有环设计参数,同时达到加速产品开发进程的目的。 功率放大器(PA)在整个无线通信系统中是非常重要的一环,因为它的输出功率决定了通信距离的长短,其效率决定了电池的消耗程度及使用时间。 1 功率放大器基础 1.1 功率放大器的种类 根据输入与输出信号间的大小比例关系,功率放大器可分为线性放大器与非线性放大器两种。属于线性放大器的有A类、B类及AB类放大器;属于非线性的则有C类、D类、E类、F类等类型的放大器。 (1) A类放大器是所有类型功率放大器中线性最高的,其功率元件在输入信号的全部周期内均导通,即导通角为360°,但其效率却非常低,在理想状 态下效率仅达到50%,而在实际电路中,则仍限制在30%以下。 (2) B类功率放大器的功率元件只在输入正弦波之半周期内导通,即导通角仅为180°,其效率在理想状态下可达到78%,但在实际电路中所达到的效 率不会超过60%。 (3) AB类功率放大器的特性介于A类和B类放大器之间,其功率元件偏压在远比正弦波信号峰值小的非零直流电流,因此导通角大于180°但远小于360°。一般情况下,其效率介于30%~60%之间。 (4) C类功率放大器的功率元件的导通时段比半周期短,即导通角小于180°。 其输出波形为周期性脉冲,必须并联LC滤波电路后,才可得到所需要的正弦波。在理论上,C类放大器的效率可达到100%,但在实际电路中仅能

LM3886功率放大器原理图及PCB

LM3886原理图: LM3886 _PCB: LM3886 3D效果图:

元器件清单: 说明封装序号0.1U R AD0.2 C14 0.1U R AD0.2 C13 0.1U R AD0.2 C12 0.1U R AD0.2 C11 0.47U RAD0.2 C4 0.47U RAD0.2 C2 0.47U RAD0.2 C3 0.47U RAD0.2 C1 0.7UH AXIAL0.6 L2 0.7UH AXIAL0.6 L1 10 AXIAL0.6 R12 10 AXIAL0.6 R11 100U RB.2/.4 C18 100U RB.2/.4 C17 10A BRIDGE-H1 DBR1 10K AXIAL0.4 R8 10K AXIAL0.4 R7 1K AXIAL0.4 R4 1K AXIAL0.4 R2 1K AXIAL0.4 R3 1K AXIAL0.4 R1 2.7 AXIAL0.5 R10 2.7 AXIAL0.5 R9 20K AXIAL0.4 R16

20K AXIAL0.4 R15 20K AXIAL0.4 R13 20K AXIAL0.4 R14 220P RAD0.2 C16 220P RAD0.2 C15 22K AXIAL0.4 R6 22K AXIAL0.4 R5 22U RAD0.2 C20 22U RAD0.2 C19 4.7U R AD0.2 C10 4.7U R AD0.2 C9 470U RB.2/.4 C8 470U RB.2/.4 C6 470U RB.2/.4 C7 470U RB.2/.4 C5 50P RAD0.2 C22 50P RAD0.2 C21 6800U RB.3/.6 C26 6800U RB.3/.6 C25 6800U RB.3/.6 C24 6800U RB.3/.6 C23 LM3886 ZIP-11V U2 LM3886 ZIP-11V U1 Output PORT2 J1 POWER FLY3 J3 SIG_INPUT PHONE J2

功率放大器设计(DOC)

电子电路设计实践 设计题目:直流稳压电源设计 系别:电气工程学院专业:电子信息工程 班级:2011级1 班姓名:腾伟峰 学号:201151746 指导教师:张全禹 时间:2013年3月17日 绥化学院电气工程学院

高频功率放大器 1设计要求 1.1 已知条件 +VCC=+12V,晶体管3DG130的主要参数为PCM=700mW,ICM=300mA,VCES≤0.6V,hfe≥30,fT≥150MHz,放大器功率增益AP≥6dB。晶体管3DA1的主要参数为PCM=1W,ICM=750mA,VCES≥1.5V,hfe≥10,fT=70MHz,AP≥13dB。 1.2 主要技术参数 输出功率P0≥500mW,工作中心频率f0≈5MHz,效率η>50%,负载RL=50Ω。 1.3 具体要求 分析高频功率放大器原理,通过给定的技术指标要求确定甲类功率放大器和丙类谐振功率放大器设计的工作状态和计算出电路中各器件参数,利用电子设计工具软件multisim对电路进行仿真测试,分析电路的特性。

2原理分析 高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器。 利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。电流导通角θ愈小,放大器的效率η愈高。如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90o,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。图 1为丙类谐振功率放大器。 图 1 丙类谐振功率放大器

功率放大器原理图

电路图中的放大电路 发布:2011-8-30|作者:——|来源:caihuiliu|查看:482次|用户关注: 电路图中的放大电路能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。放大电路的用途和组成放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。读放大电路图时也还是按照“ 电路图中的放大电路 能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。 放大电路的用途和组成 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器 低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 (1)共发射极放大电路

音频功率放大器的设计毕业论文

音频功率放大器的设计毕业论文

单刀音频功率放大器的设计 摘要 本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。 设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。 对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。对功率放大电路进行了输入和输出功率分析。对直流电源进行了输出电压验证。最后对总电路进行了输入、输出

分析、频率响应分析、噪声分析。 关键词: OP07 音频功率放大器

目录 摘要................................................................ I Abstract.......................... 错误!未定义书签。第一章音频放大器的概述.. (1) 1.1音频放大电路的回顾 (1) 1.2音频功率放大器的介绍 (2) 1.2.1 A类(甲类)功率放大器 (3) 1.2.2 B类(乙类)功率放大器 (3) 1.2.3 AB类(甲乙类)功率放大器 (4) 1.2.4 C类(丙类)功率放大器 (4) 1.2.5 D类(丁类)功率放大器 (5) 1.3放大器的技术指标 (5) 第二章音频功率放大器的设计 (11) 2.1设计方案分析 (11) 2.2前置放大电路设计 (11) 2.3二级放大电路设计 (15) 2.2.1 低通滤波器设计 (15) 2.2.2 高通滤波器设计 (17) 2.2.3 二级放大电路电路设计 (20) 2.4功率放大器设计 (21) 2.5 直流稳压电源设计 (23)

基于微处理器和CANopen现场总线技术的电液比例阀放大器设计

基于微处理器和CANopen现场总线技术的电液比例阀放大器设计 Design of a novel Electrohydraulic Proportional Valve Amplifier for Construction Machinery 摘要:适应现代工程机械向数字化、分布式控制方向发展的需求,提出一种基于微处理器和CANopen现场总线技术的电液比例阀放大器设计方案。该放大器采用高频PWM驱动方式,使线圈平均电流和颤振信号独立可调;以微处理器为核心,软硬件协同完成电流在线检测和闭环控制;并扩展CANopen接口,实现远程参数设置、程序下载和信息反馈。具有结构简单、调试方便、便于网络集成等优点。 关键词:电液比例控制;放大器;CANopen协议 Abstract: To m eet the requirements of digital and distributed control for construction m achinery, we present a design schem e for electrohydraulic proportional valve amplifier based on microcontroller and CANopen techniques. In the schem e, a high frequency PWM driver is chosen to m ake the dither signal and the average current through the solenoid coil tunable independently. the software and hardware can co-operate together to achieve online detection and close-loop control of coil current. Furthermore, a CANopen interface is implemented, which supports remote parameters configuration, program downloading and information feedback. Then, the am plifier m ay enjoy the m erits of sim ple structure, convenient debugging, and easy networking. Key words: Electro-hydraulic proportional control, Am plifier, CANopen protocol 伴随着微电子、计算机和液压传动技术的发展和成熟,数字化、网络化、分布式控制已成为现代工程机械控制领域的研究热点。电液比例阀作为电-液-机械转换的核心部件,具有推力大、结构简单、对油质要求不高、价格低廉等优点[1],在工程机械中得到广泛应用。由于控制器产生的低功率信号无法直接驱动阀心线圈,放大器成为电液比例控制系统中必不可少且非常重要的组成部分。传统的比例阀放大器一般以模拟电路为主,参数设置、控制算法调节和现场调试比较困难,无法满足当前工程机械在线调试、网络集成和分布控制的要求。 为适应这一需求,本文在分析影响比例阀控制特性因素的基础上,对现有的PWM比例放大技术进行改进。以微处理器为核心,研究数字化的功率控制方法。同时扩展CANopen总线接口,实现远程参数设置、程序下载和网络互联。 1.比例放大器原理及相关因素 应用于工程机械的电液比例阀,按功能划分有流量阀、方向阀和压力阀等类型。其内部大都采用一种具有固定行程的线性马达,称为螺旋管。在稳定条件下,流过线圈的电流与阀芯位移直接相关。比例放大器正是通过改变线圈平均电流来间接调节阀芯位移。然而,作为一个实际系统,比例阀放大器设计不仅要实现控制信号放大,还要考虑诸多复杂因素。 1.1 高频PWM与颤振 工程机械电液比例阀一般采用直流电源供电。假设线圈内阻恒定,通过PWM信号控制开关功率管的通断时间,能实现线圈平均电流调节。电流大小与PWM波占空比成正比。PWM波频率取值范围为100Hz~5kHz以上,一般将100~400Hz称为低频,5kHz以上称为高频。与PWM 波频率紧密相关的是颤振现象。它表现为阀芯相对理想位置的快速、小幅往复移动。颤振能有效消除摩擦阻力和回程误差,是实际系统中必须考虑的一种有利因素。颤振设计要 求幅值足够大、频率足够低,使阀芯能正确响应。通常,颤振幅值和频率应该针对不同类型、不同工作环境的比例阀进行调节。从电气角度分析,颤振本质上是线圈电流的纹波。 颤振信号的发生方式受PWM波频率的制约。对低频PWM波(典型值200~300Hz)而言,

相关主题
文本预览
相关文档 最新文档