当前位置:文档之家› 初中生如何做好几何证明题(含答案)上课讲义

初中生如何做好几何证明题(含答案)上课讲义

初中生如何做好几何证明题(含答案)

14、如何做几何证明题

【知识精读】

1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】

1、证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。

求证:DE =DF

分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD

AC BC A B

ACB AD DB

CD BD AD DCB B A AE CF A DCB AD CD

=∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,,

∴?∴=??ADE CDF

DE DF

说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。

例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F

证明:连结AC 在?ABC 和?CDA 中,

AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF

===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中,

BE DF

B D B

C DA BCE DAF SAS E F

=∠=∠=???

?

?∴?∴∠=∠??() 说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意:

(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。

2、证明直线平行或垂直

在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

例3. 如图3所示,设BP、CQ是?ABC的内角平分线,AH、AK分别为A到BP、CQ的垂线。

求证:KH∥BC

分析:由已知,BH平分∠ABC,又BH⊥AH,延长AH交BC于N,则BA=BN,AH=HN。同理,延长AK交BC于M,则CA=CM,AK=KM。从而由三角形的中位线定理,知KH∥BC。

证明:延长AH交BC于N,延长AK交BC于M

∵BH平分∠ABC

∠∠

ABH NBH

∴=

又BH⊥AH

AHB NHB90

∴==?

∠∠

BH=BH

∴?∴==??ABH NBH ASA BA BN AH HN

(),

同理,CA =CM ,AK =KM ∴KH 是?AMN 的中位线 ∴KH MN // 即KH//BC

说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。

例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =?==90。 求证:FD ⊥ED

证明一:连结AD

AB AC BD DC

DAE DAB BAC BD DC

BD AD

B DAB DAE ==∴+=?==?=∴=∴==,∠∠,∠∠∠,∠∠∠129090

在?ADE 和?BDF 中,

AE BF B DAE AD BD ADE BDF

FD ED

===∴?∴∠=∠∴∠+∠=?∴⊥,∠∠,??31

3290

说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。

证明二:如图5所示,延长ED 到M ,使DM =ED ,连结FE ,FM ,BM

BD DC

BDM CDE DM DE BDM CDE CE BM C CBM BM AC A ABM A AB AC BF AE AF CE BM

=∠=∠=∴?∴=∠=∠∴∠=?

∴∠=?=∠==∴==,,,??//9090

∴?∴==∴⊥??AEF BFM FE FM DM DE FD ED

说明:证明两直线垂直的方法如下:

(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。

(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。

(3)证明二直线的夹角等于90°。

3、证明一线段和的问题

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)

例5. 已知:如图6所示在?ABC中,∠=?

B60,∠BAC、∠BCA的角平分线AD、CE相交于O。

求证:AC=AE+CD

分析:在AC上截取AF=AE。易知??

AEO AFO

B60,知

12。由∠=?

?,∴∠=∠

566016023120

,,。∴∠=∠=∠=∠=?

∠+∠=?∠=?∠+∠=?

123460,得:?∴=

FOC DOC FC DC

??

证明:在AC上截取AF=AE

()

∠=∠=∴?∴∠=∠BAD CAD AO AO AEO AFO SAS ,??42

又∠=?B 60

∴∠+∠=?∴∠=?

∴∠+∠=?

∴∠=∠=∠=∠=?∴?∴=566016023120123460??FOC DOC AAS FC DC

()

即AC AE CD =+

(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=?EAF 45。 求证:EF =BE +DF

分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。不妨延长CB 至G ,使BG =DF 。

证明:延长CB 至G ,使BG =DF

在正方形ABCD 中,∠=∠=?=ABG D AB AD 90,

初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

初一几何证明题练习

初一下学期几何证明题练习1、如图,∠B=∠C,AB∥EF,试说明:∠BGF=∠C。(6 解:∵∠B=∠C ∴ AB∥CD( ) 又∵ AB∥EF() ∴ ∥() ∴∠BGF=∠C() 2、如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED//BC,试说明 ∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD⊥AB,FG⊥AB ∴∠CDB=∠=90°( 垂直定义) ∴_____//_____ ( ∴∠2=∠3 ( 又∵DE//BC ∴∠=∠3 ( ∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°, 试判断AB、CD有何位置关系?并说明理由。(8分) 4、如图,AD是∠EAC的平分线,AD∥BC,∠B = 30°,你能算出∠EAD、∠ DAC、∠C的度数吗?(7分) D C B A E D

5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。 解:∵EF∥AD(已知) ∴∠2= () 又∵∠1=∠2(已知) ∴∠1=∠3(等量替换) ∴AB∥() ∴∠BAC+ =180 o () ∵∠BAC=70 o(已知)∴∠AGD= ° 6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。 解:AB∥CD,理由如下: 过点E作∠BEF=∠B ∴AB∥EF() ∵∠BED=∠B+∠D(已知) 且∠BED=∠BEF+∠FED ∴∠FED=∠D ∴CD∥EF() ∴AB∥CD()7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o, 求∠EAD、∠DAC、∠C的度数。(6分) 8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。(6分)

初中数学几何证明题小妙招

初中数学几何证明题小妙招几何证明题入门难,证明题难做,是很多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不但要标记,还要记在脑海中,做到不看题,就能够把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还能够得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在

图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。 五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。 以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,分析已知、求证与图形,探索证明的思路。 (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举能够做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。使用逆向思维解题,能使学生从不同角度,不同方向思考问题,

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

精选初中数学几何证明经典试题(含答案)

初中几何证明题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600 ,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE 求证:AP =AQ .(初二) A P C D B A F G C E B O D N

F 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 经典题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) 2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线 求证:AE =AF .(初二) 3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 求证:PA =PF .(初二) 4、如图,PC 切圆O 于 C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、 D .求证:AB = DC ,BC =AD .(初三) 经典题(四) 1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二) 2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二) 4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二) D

初中数学几何证明步骤规范性初步基础题(含答案)

初中数学几何证明步骤规范性初步基础题 一、单选题(共4道,每道25分) 1.如图,已知线段AB=18cm,C是线段AB的中点,则AC的长是多少? 解:如图, ∵() ∴() 又∵() ∴() 即AC的长为9cm. ①;②C是线段AB的中点;③AB=18;④⑤; ⑥;⑦;⑧;⑨以上空缺处填写正确的顺序是() A.②⑤③④ B.②⑤①⑧ C.③②①④ D.②④⑥⑨ 答案:A 试题难度:三颗星知识点:中点(一个中点) 2.如图,已知线段AB=14cm,点O是线段AB上任意一点,C、D分别是线段OA、OB的中点,求CD的长. 解:∵C、D分别是线段OA、OB的中点 ∴() ∴ 又∵AB=14 ∴() 即CD的长为7cm. ①C是线段AB的中点;②AB=14;③;④; ⑤;⑥;⑦以上空缺处填写正确的

顺序是() A.③⑥ B.④⑥ C.⑤⑥ D.③⑦ 答案:A 试题难度:三颗星知识点:中点(两个中点) 3.如图,已知∠AOB=78°,OC平分∠AOB,求∠AOC的度数. 解:∵() ∴() 又∵() ∴() ①OC平分∠AOB;②∠AOB=2∠AOC;③∠COB=∠AOC;④∠AOC=∠AOB; ⑤∠AOB=78°;⑥;⑧以上空缺处填写正确的顺序是() A.①④⑤⑥ B.①②⑤⑧ C.①②⑤⑥ D.①③⑤⑥ 答案:A 试题难度:三颗星知识点:角平分线(一个角平分线) 4.已知OC平分∠AOB,OD平分∠AOC,且∠COD=27°,求∠AOB的度数. 解:∵OD平分∠AOC ∴() ∵∠COD=27° ∴()

又∵OC平分∠AOB ∴() ∵∠AOC=54° ∴() ①;②∠AOC=2∠COD;③∠COD=∠AOD;④∠COD=∠AOC; ⑤∠AOB=2∠AOC;⑥∠AOC=∠BOC;⑦∠AOC=∠AOB;⑧∠AOD=27°; ⑨以上空缺处填写正确的顺序是() A.②①⑤⑨ B.③⑧⑥⑨ C.④①⑦⑨ D.②⑤⑥⑨ 答案:A 试题难度:三颗星知识点:角平分线(两个角平分线)

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

几何证明中的几种技巧

几何证明中的几种技巧 一.角平分线--轴对称 1.已知在ΔABC 中,E为BC的中点,AD平分BAC ∠,BD AD ⊥于D.AB=9,AC=13.求DE的长. 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD=DF.又BE=EC,即DE为ΔBCF 的中位 线.∴11 ()222DE FC AC AB = =-=. 2.已知在ΔABC 中,108A ∠=o ,AB=AC,BD平分ABC ∠.求证:BC=AB+CD. B B 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=o , 108A BED ∠=∠=o ,36C ABC ∠=∠=o . ∴72DEC EDC ∠=∠=o ,∴CD=CE,∴BC=AB+CD. 3.已知在ΔABC 中,100A ∠=o ,AB=AC,BD平分ABC ∠.求证:BC=BD+AD. B B 分析:在BC上分别截取BE=BA,BF=BD.易证ΔABD ≌ΔEBD .∴AD=ED, 100A BED ∠=∠=o .由已知可得:40C ∠=o ,20DBF ∠=o .由∵BF=BD, ∴80BFD ∠=o .由三角形外角性质可得:40CDF C ∠==∠o .∴CF=DF. ∵100BED ∠=o ,∴80BFD DEF ∠=∠=o ,∴ED=FD=CF,∴AD=CF,

∴BC=BD+AD. 4.已知在ΔABC 中,AC BC ⊥,CE AB ⊥,AF平分CAB ∠,过F作FD∥BC ,交AB于D.求 证:AC=AD. C B C B 分析:延长DF交AC于G.∵FD∥BC,BC⊥AC,∴FG⊥AC. 易证ΔAGF ≌ΔAEF .∴EF=FG.则易证ΔGFC ≌ΔEFD .∴GC=ED. ∴AC=AD. 5.如图(1)所示,BD和CE分别是ABC V 的外角平分线,过点A作AF⊥BD于F,AG⊥CE于G,延长AF及AG与BC相交,连接FG. (1)求证: 1 ()2FG AB BC CA = ++ (2)若(a)BD与CE分别是ABC V 的内角平分线(如图(2)); (b)BD是ΔABC 的内角平分线,CE是ΔABC 的外角平分线(如图(3)). 则在图(2)与图(3)两种情况下,线段FG与ΔABC 的三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. 图(1) 图(2) 图(3) 分析:图(1)中易证ΔABF ≌ΔIBF 及ΔACG ≌ΔHCG .∴有AB=BI,AC=CH及AD=ID,AG =GH.∴GF为ΔAIH 的中位线.∴ 1 ()2FG AB BC CA = ++. 同理可得图(2)中 1()2FG AB CA BC = +-;图(3)中1 ()2FG BC CA AB =+- 6.如图,ΔABC 中,E是BC边上的中点,DE⊥BC于E,交BAC ∠的平分线AD于D,过D作DM⊥AB于M,作DN⊥AC于N.求证:BM=CN.

初中几何证明题的三种思考和四种方法

初中几何证明题的三种思考和四种方法 发表时间:2013-05-24T10:06:25.373Z 来源:《科教新时代》2013年5月供稿作者:常见山 [导读] 学校应积极构建以校为本的研究机制,引领教师专业成长,反之又以教师的专业成长来推动学校发展,提升学校的办学水平。 山东省诸城市教育局招生办公室常见山 【中图分类号】G552.04 【文章标识码】A 【文章编号】1326-3587(2013)05-0064-02 众所周知,几何证明是初等数学学习的难点之一,其难就难在如何寻找证明思路,追根究底还是因为几何证明题的本质不易把握。为此,在初等几何的学习中融入数学思想方式,具有重要意义,而且切实可行。通过平时的学习、探索和积累,笔者发现其中的“结构思想”,即“数学是一个有机的整体,观察数学问题要着眼于结构的整体性。从宏观上对数学问题进行整体研究,抓住问题的框架结构和本质关系,把一些貌似独立而实质又紧密联系的特征视为系统中的整体”对探寻几何的证明思路,把握问题的本质,培养观察能力有一定的指导意义。新一轮课程改革立足于“改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。”在这样的指导思想下,初中几何发生了较大的变化。 初中几何一直就是中学数学的重要内容,秉承“深化教育改革,全面推进素质教育”的指导思想,在这次新课程改革中,初中几何部分有了较大的调整。对比新课程改革后初中几何的变化,深入理解教改的初衷,全面贯彻教改的思想,不但有利于更好地完成教改的任务,而且有利于利用新教材创造性地提高学生的数学素养。考题:如图,在Rt△ABC中∠C=90°以AC为直接径,作⊙O,交AB于D,过O作OE∥AB,交BC于E,连接ED。 ⑴求证:ED是⊙O的切线。 ⑵E为BC的中点,如果⊙O的半径为1.5, ED=2,求AB的长。 这是某市九年级人教版秋季学期一道期考试题,从题型看这是一道再普通不过的圆有关证明和计算的几何考题,而我校作为一所比较有名的初中,全校九年级约500个考生的答卷中,第(2)问“求AB的长”尚有80%左右的考生能正确的解答出来,而第(1)“求证:ED是⊙O的切线”只有约10%的考生能正确地写出证明解答过程。究其原因何在?笔者认为,其主要原因是教师在平时的课堂教学中,对几何证明的指导不到位、引导方式不够灵活,措施不到位造成的直接后果。 怎样指导学生对几何证明题进行有效正确的证明分析解答,并简单地写出证明过程,笔者通过对本考题学生答卷出现的各种错误情况,结合本校使用新课改教材突出的特点,归纳总结出以下三种思考和四种方法,进行指导,收到良好的效果。三种思考方式:(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。 (3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。四种方法: 1.读。读就是阅读题目和题图的过程中,做到逐个条件,逐个问题地对号入座地进行审题、读图。 2.记。记就是在“读”的过程中,对题目中给出的条件和问题作简要的浓缩并作划记,并用①、②……和“?”作标记。如本考题问可作标记为:已知①∠C=90°;②AC为直径;③OE∥AB求证ED是⊙O的切线? 3.选。“选”就是选定解题思路,确定解题方式,即根据读题和标记的结果,结合自己所掌握的数学知识。选定解题思路,最终确定解题方式,并写出简要解答过程。如本题中,要证明DE为⊙O的切线,得作辅助线:连结OD,则点D就是⊙O的外端,只须再证明OD⊥DE(即∠ODE=90°)就可以了,从而选定证明∠ODE=90°;而要达到这个∠ODE=90°这个结果,只有通过证明△EOC≌△EOD从而也就确定了解题方式。 4.返。就是选定了解题思路、确定了解题方式,并写出解答的过程中,特别是遇到解答的过程受诅时,不断地返回到题目中已作的标记和题图的标记和已知条件中去,检查是否漏用或误用已知条件,及时调整解题方案。可以看出,“读、记、选、返”四个步骤通俗易董、浅显具体,只要始终坚持渗透课程数学课堂教学之中,并要求学生始终运用到式时的练习之中,善于积累,逐渐养成“见其型,通其路,套其法”的良候彀惯,就能很好距淆学生不良的解题思维习惯和学习习惯! 初中数学,我们早已使用人教版的教材,课改的新理念、新思维、新评价如风暴袭来,我们有过欣喜和期盼,教学实践中,没有石头照样过河。评价考试后,我们充满困惑与无奈,却不知路在何方。长期以来,我们数学课堂教学关注的是大量繁杂的公式,陷入了题的海洋。中学数学课堂教学最应该关注什么?既不是单纯的方式总结,也不是数学知识技能的简单积聚。数学教育的发展方向应与教育发展的大方向相一致,数学教育更应该关注思考:上完一节数学课,在学生颔首的同时还是有那么多的学生仍在质疑,到底学到了什么?他们对自己在数学学科上付出那么多的时间和精力感到惋惜,对自己在数学上的天赋和能力产生怀疑与反思。而教师本身是否也反省过自己,一节课下来我们到底教给了学生什么?方式、过程,还是答案?所谓“点石成金”我们到底教给学生“点石”的手指还是“点成”的金子?我们不能武断地归结于学生的不努力,我们的数学教育有没有问题。就目前的状况,中学数学教育仍旧可以用“纸上谈兵”这句成语简单概括之。 课堂是教师演练阵容的战场,解题成为操起的刀戈,忽略了解题思路、解题方式,一味追求解题结果,将会逐渐迷失自我,丧失自我思考的能力!我们是否思考过:路就在自己的脚下,路就在自己的每一节课中,让校本科研走进我们每一个数学教师的每一节课中吧!当今世界,反思意识已成为学术界的重要特征。要使基础教育课程改革向纵深推进,就必须提高教师的素质,尤其是提高教师的反思特质。

浅谈初中数学证明题解题技巧与步骤

浅谈初中数学证明题解题技巧与步骤 北师大版初中数学教材中《证明》占三章节,教材这样安排的目地是想:通过对《证明》的学习,让学生通过对图形的性质及相互关系进行大量的探索,在探索的同时,使学生经历推理的过程,进行了简单的推理训练,从而具备了一定的推理能力,树立了初步的推理意识,为严格的推理证明打下了基础。但生活很丰满,现实很骨干,许多学生在实际解决证明题的过程中,却因为种种原因而感到无从下手!那如何求解证明题呢?如何让学生不再畏惧证明题呢?通过对教材中《证明》的教学,根据学生的认知水平,本人认为可以从以下六个方面来解决: [例题] 证明:等腰三角形两底角的平分线相等 1.弄清题意 此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平

分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了! 2.根据题意,画出图形。 图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。 3.根据题意与图形,用数学的语言与符号写出已知和求证。 众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。 已知:如图(1),在△ABC中,AB=AC, BD、CE分别是△ABC的角平分线。 求证:BD=CE 4.分析已知、求证与图形,探索证明的思路。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

初中几何证明题专项练习

初中几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠ DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.

5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE. 6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE ⊥DF,点E,F分别在AC,BC上,求证:DE=DF.

9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD. 11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.

12.如图,AB∥CD,E是CD上一点,BE交AD于点F, EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE.

初中几何证明题的做法

初中几何证明题的做法 多年的教学经验告诉我:证明题历来是很多学生的痛。作为教育机构的一员,努力的教导学生解题的同时,更加希望他们能掌握解题的方法,所谓授人以鱼不如授人以渔。 做好证明题有几个必要条件:第一,必须要具有扎实的基础知识。我们说基础知识是解题时的最基本保证,你得对书本中的定义、公理、定理、逆定理还有几何图形的基本性质要了然于胸。当题干中出现某一条件时,你必须条件反射般的想到与之相关的所有性质定理。第二,我们需要较强的逻辑思维能力。做证明题本身就是逻辑推理的过程,有因才有果。每得到一个结论,你都要问自己为什么,在之前的步骤中有没有把该结论的原因进行陈述。第三,我们还需要较强的想象力以及破旧立新的勇气。很多证明题我们乍一看甚至会云里雾里,结论和条件风马牛不相及。这个时候需要我们就有一定的想象力。还有的时候我们在做证明题做到一半就做不下去了,没有任何条件继续支持,这个时候就需要你破旧立新的勇气,你需要抛开你之前的所有思路,另辟蹊径,重新开始。第四,我们还需要一个保障,那就是把思路变成几何语言规范的书写出来。这其实是一个比较简单的过程,但是往往很多同学都做不到。有思路却不知道怎么用几何语言表达,终将功亏一篑。 至于证明题的方法也无非两种:一是正向推理:即根据条件慢慢的一步一步推导出我们所需要的结论。二是根据所要证明的结论逆向推导,我们想要得出这个结论,那么必须先知道什么,反复的提问自己,最终与题中条件相结合。另外,还需要我们懂得数学解题的一些套路。没有发现数学解题套路的同学其实是题目做的太少,或者你做了很多但是自己从来没有想过归纳和总结。我们要学会举一反三。

例题解析1: 已知ABCD是圆O的内接四边形,AB=BD,BM⊥AC于M,求证:AM=DC+CM 我们不忙着求解,这道题求证的结果是线段之间的数量关系,很多用心的同学会反应过来,这类题型的一般方法是截长补短。所以我们的思路就是来源截长补短:

几何证明题的一般步骤

1、几何证明题的一般步骤:一“标”二“想”三“整理” (1)标出已知条件,如线段相等可以用单杆双杆等表示,角相等可以用单弧线双弧线等表示; (2)一要想出题目或图中的隐含的相等条件:如①对顶角相等、②(部分)公共边、③(部分)公共角、④等(同)角的余(补)角相等,⑤BD=CE BD+DC=EC+CD即BC=ED等;二要想出已知条件、隐含条件与所求证之间的关系,进而得到解题的思路; (3)整理时,须按照三角形全等的对应关系和判定条件一一整理,如果(三个或两个)条件不够,那么需要提前做好铺垫,再通过对应关系进行整理,保证思路清晰,书写条理; 思路:证明两条边相等、两个角相等或两边平行的一个重要方法是利用这两条边或这两个 角所在的两个三角形全等; 2、证明文字叙述的真命题的一般步骤: (1)分清条件和结论;(2)画出图形;(3)根据条件写出已知,根据结论写出求证;(4)证明 3、选择证明三角形全等的方法与技巧(“题目中找,图形中看”) (1)已知两边对应相等 ①证第三边相等,再用S.S.S.证全等 ②证已知边的夹角相等,再用S.A.S.证全等 ③找直角,再用H.L.证全等 (2)已知一角及其邻边相等 ①证已知角的另一邻边相等,再用S.A.S.证全等 ②证已知边的另一邻角相等,再用A.S.A.证全等 ③证已知边的对角相等,再用A.A.S.证全等 (3)已知一角及其对边相等证另一角相等,再用A.A.S.证全等 (4)已知两角对应相等 ①证其夹边相等,再用A.S.A.证全等 ②证一已知角的对边相等,再用A.A.S.证全等 4、全等三角形中的基本图形的构造与运用 (1)出现角平分线时,常在角的两边截取相等的线段,构造全等三角形 (2)出现线段的中点(或三角形的中线)时,可利用中点构造全等三角形(常用加倍延长中线)(3)利用加长(或截取)的方法解决线段的和、倍问题(转移线段)

几何证明中应注意的问题

几何证明中应注意的问题 金铺中学卫鹏展 在教学中,我认识到:很多同学对几何证明题,不知从何做起,谈到几何学习就头痛,甚至部分同学知道了答案,不知道怎么书写解题过程,叙述不清楚,说不出理由。这使大部分的学生失去了学习的信心。 对此,我在数学教学中思考、摸索,得出了一些感悟: 首先,注重基础知识的生成过程的理解。 我们应改变传统的只注重结果,不重过程的教学观念,即重视过程,又重视结果。发展学生的思维能力。 充分分析学生的“最近发展区”,寻找知识的生长点。在备课时,考虑学生的认知水平,已有知识、经验,以及学生的情感体验,对学习几何的认识等。 结合学生的实际生活,遵循“知识来源于生活,运用于生活”的思想,让学生用自己的思维观念去探索、发现、建构知识,增强学生学习几何的兴趣,让学生体会学习几何的价值。 鼓励学生主动探索知识,教师要做好组织者、主持人,让学生充分动脑,动手投入到知识生成过程,让个体最大限度的参与学习过程,共同探索知识的产生,体会学习的乐趣。 我们应耐心等待,细心指导,相信学生能做好,不应急于得到结果,不得有灰心、叹气等消极的教学情绪。 其次,引导学生学会运用知识分析问题,解决问题,提高学生分析思考问题的能力。 审题,第一、粗审,采用浏览的方式,了解问题的背景,把握重点词句;第二、对重点思考、推敲,弄清题意。对已知可进行编号,如有图,边读题边看图,把已知条件、未知条件标注在图中;如没有图,则要求根据题意画出图形,再复审。这样,后面做题时就不易忘

记已知,做到图文结合,数形结合;另外,还应尽量挖掘题中隐含的条件,如题中说到平行四边形,就要想到平行四边形的特征,以便解题时可灵活选用。 第二、分析,可让学生结合自己的经历选择方法,但在教学中更多的要引导学生学会思考,学会思维方法,在教学中我常用综合法、分析法引导学生做题。 综合法,就是结合已知、定义、公理、定理,进行推理、探索,寻求答案,“由因寻果”,解决问题的一种办法。综合法是从已知到可知,从可知到解决问题的思维过程。 分析法,从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止。执果索因,由未知到须知,再到已知的过程。 当然,综合法与分析法不是要严格区分,思考问题的过程中,要综合使用两种方法。 第三、证明过程的书写,教师应引导学生写出规范的解题过程,让学生明白每一个步骤的理由,不能无中生有,想当然的就写出来。要注意证明过程的科学性、规范性,给学生树立榜样。同时,也要让学生独立思考,写解题过程,或让其在小组内交流,或让其边思考边叙述,再交换检查。通过多种形式修正自己的思维。教师要对学生的学习情况作出恰当的评价,明确指出学生的优缺点,让学生明确方向。 第四、反思总结,总结解题的方法。 最后,根据学生情况,进行巩固训练,布置适合学生层次的不同难度的习题。让学生完成,并检查评析。

相关主题
文本预览
相关文档 最新文档