当前位置:文档之家› 同步电机原理和结构

同步电机原理和结构

同步电机原理和结构
同步电机原理和结构

每相感应电势的有效值为

(15.2)

◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。

同步转速

◆同步转速 从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有:

(15.3) ◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min ,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。

运行方式

◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

? 西安交通大学电机教研室 版权所有,侵权必究 2000.12?

水轮发电机

水轮发电机的特点是:极数多,直径大,轴向长度短,整个转子在外形上与汽轮发电机大不相同。大多数水轮发电机为立式。水轮发电机的直径很大,定子铁心由扇形电工钢片拼装叠成。为了散热的需要,定子铁心中留有径向通风沟。转子磁极由厚度为1~2mm 的钢片叠成;磁极两端有磁极压板,用来压紧磁极冲片和固定磁极绕组。有些发电机磁极的极靴上开有一些槽,槽内放上铜条,并用端环将所有铜条连在一起构成阻尼绕组,其作用是用来拟制短路电流和减弱电机振荡,在电动机中作为起动绕组用。磁极与磁极轭部采用 T 形或鸽尾形连接,如图15.4所示。

隐极式转子

隐极式转子上没有凸出的磁极,如图15.2b 所示。沿着转子本体圆周表面上,开有许多槽,这些槽中嵌放着励磁绕组。在转子表面约1/3部分没有开槽,构成所谓大齿,是磁极的中心区。励磁绕组通入励磁电流后,沿转子圆周也会出现 N 极和 S 极。在大容量高转速汽轮发电机中,转子圆周线速度极高,最大可达170米/秒。为了减小转子本体及转子上的各部件所承受的巨大离心力,大型汽轮发电机都做成细长的隐极式圆柱体转子。考虑到转子冷却和强度方面的要求,隐极式转子的结构和加工工艺较为复杂。

电机供给。如图15.5所示。

建立起来后再转为自励(有时采用永磁发电机)。副励磁机的输出电流经过静止晶闸管整流器整流后供给主励磁机,而主励磁机的交流输出电流经过静止的三相桥式硅整流器整流后供给主发电机的励磁绕组。(见图15.6)

3 旋转整流器励磁 静止整流器的直流输出必须经过电刷和集电环才能输送到旋转的励磁绕组,对于大容量的同步发电机,其励磁电流达到数千安培,使得集电环严重过热。因此,在大容量的同步发电机中,常采用不需要电刷和集电环的旋转整流器励磁系统,如图15.7所示。主励磁机是旋转电枢式三相同步发电机,旋转电枢的交流电流经与主轴一起旋转的硅整流器整流后,直接送到主发电机的转子励磁绕组。交流主励磁机的励磁电流由同轴的交流副励磁机经静止的晶闸管整流器整流后供

额定值

同步电机的额定值有:

☆额定容量

(VA,kVA,MVA 等) 或额定功率PN (W,kW,MW 等) :指电机输出功率的保证值。发电机通过额定容量值可以确定电枢电流,通过额定功率可以确定配套原动机的容量。电动机的额定容量一般用kW 数表示,补偿机则用kVAR表示。☆额定电压(V,kV 等) :指额定运行时定子输出端的线电压。

国产同步电机型号

我国生产的汽轮发电机有QFQ、QFN、QFS等系列,前两个字母表示汽轮发电机;第三个字母表示冷却方式,Q表示氢外冷,N表示氢内冷,S表示双水内冷。我国生产的大型水轮发电机为TS系列,T表示同步,S表示水轮。举例来说:QFS-300-2 表示容量为300MW双水内冷2极汽轮发电机。TSS1264/160-48表示双水内冷水轮发电机,定子外径为1264厘米,铁心长为160厘米,极数为48。此外同步电动机系列有TD、TDL等,TD表示同步电动机,后面的字母指出其主要用途。如TDG表示高速同步电动机;TDL表示立式同步电动机。同步补偿机为TT系列。

☆额定电

流(A) :指

额定运行时

定子的线电

流。

☆额定功

率因数

额定运行时

电机的功率

因数。

☆额定频

率:额定运

行时电机电

枢输出端电

能的频率,

我国标准工

业频率规定

为50Hz。

☆额定转

速:额定运

行时电机的

转速,即同

步转速。

除上述额定

值外,同步

电机名牌上

还常列出一

些其它的运

行数据,例

如额定负载

时的温升、

励磁容量

和励磁

电压

等。

同步电机篇:第二章同步发电机对称运行分析

空载气隙磁场

◆对于凸极发电机来说,由于定转子间的气隙沿整个电枢圆周分布不均匀,极面下气隙较小,而极间气隙较大,极面下的磁阻较小,而极间磁阻很大,而且在同一个极面下,在一个极的范围内气隙径向磁通密度的分布近似于平顶的帽形。极靴以外的气隙磁通密度减少很快,相邻两极中线上的磁通密度为零。气隙磁密可以用付立叶谐波分析的方法分解出空间基波和一系列谐波。图16.1a 中画出了基波波形 。通常将极靴的极弧半径做成小于定子的内圆半径,而且两圆弧的圆心不重合(称为偏心气隙),从而形成极弧中心处的气隙最小,沿极弧中心线两侧方向气隙逐渐增大,这样可以使得气隙磁通密度的分布较接近正弦波形。◆隐极电机的励磁绕组嵌埋于转子槽内,沿转子圆周气隙可视为是均匀的。励磁磁势在空间的分布为一个阶梯形,受齿槽的影响,气隙磁密呈现出波动变化。用谐波分析法可求出其基波分量,如图16.1 (b)所示。合理地选择大齿的宽度可以使气隙磁密的分布接近正弦波。在本书以后的分析中,如无特殊说明,仅考虑磁通密度的基波分量。◆感应电势的波形和大小与气隙磁密的分布形状及幅值大小紧密相关,在设计和制造电机时,应采取适当的措施,以获得尽可能接近正弦分布的气隙磁密,从而得到品质较高的感应电势。在本课程以后的分析中,我们仅考虑感应电势的基波分量。

空载特性

◆当空载运行时,励磁电势随励磁电流变化的关系 称为同步发电机的空载特性。励磁电势的大小 (有效值) 与转子每极磁通成正比,而励磁电流的大小又和作用于同步电机磁路上的励磁磁势 正比例变化,所以空载特性与电机磁路的磁化曲线具有类似的变化规律。如图16.2 所示。

◆由图可见,当励磁电流较小时,由于磁通较小,电机磁路没有饱和,空载特性呈直线(将其延长后的射线称为气隙线)。随着励磁电流的增大,磁路逐渐饱和,磁化曲线开始进入饱和段。为了合理地利用材料,空载额定电压一般设计在空载特性的弯曲处,如图中的c 点。

◆空载特性可以通过计算或试验得到。试验测定的方法

与直流发电机类似。同步电机的空载特性也常用标么值表示,空载电势以额定电压为基值,取 时的励磁电流 (称为额定励磁电流)为励磁电流的基值。用标么值表示的空载特性具有典型性,不论电机容量的大小,电压的高低,其空载特性彼此非常接近。

◆空载特性在同步发电机理论中有着重要作用:① 将设计好的电机的空载特性与表16-1中的数据相比较,如果两者接近,说明电机设计合理,反之,则说明该电机的磁路过于饱和或者材料没有充分利用。②空载特性结合短路特性(在后面介绍 )可以求取同步电机的参数。③发电厂通过测取空载特性来判断三相绕组的对称性以及励磁系统的故障。

同步电机篇:第二章 同步发电机对称运行分析

★空载时,同步电机中只有一个以同步转速旋转的励磁磁势

★由此可见,负载以后同步电机内部将会产生又一个旋转磁

势 --电枢旋转磁势。因此,同步发电机接上三相对称负

载以后,电机中除了随轴同转的转子磁势 (

外,又多了一个电枢旋转磁势(

态,可以用矢量加法将其合成为一个合成磁势

气隙磁场可以看成是由合成磁势在电机的气隙中建

电枢反应的情况决定于空间相量和之间的夹角,而这一夹角又和时间相量

相绕组中感应电势

相电流和同相位,则

▲由异步电机篇的介绍可知,电枢磁势

)的轴线在此瞬间将和

一般情况下,

电角度时,(空间相量)的轴线位置也滞后或超前于A 相

电角度。即和在时间上的相位差等于的

以上结论虽然是在一个特殊的瞬间(磁极轴线和

得出的,由于和同速同步旋转,故

在负载一定的情况下,和的空间相位差等于

▲为了分析方便,人们常将时间相量,,,U

量,,

线位置,称为交轴,用

性质决定,和重合。

此时和此时与之间的夹角此时与之间的夹角为

当三相对称电枢电流流过电枢绕组时,将产生旋转的电枢磁势,将在电机内部产生跨过气隙的电枢反应磁通和不通过气隙的漏磁通,和将分别在电

和漏磁电势。与电枢电流的大小成正比电势为:

电枢反应电抗的大小和电枢反应磁通所经过磁路的磁阻成反比,磁阻与电枢磁

势轴线的位置有关。对于凸极电机而言,当和重合时,经过直轴

所示。此时由于直轴磁路中的气隙较短,磁阻较小,所以电枢反应电抗就较大。当和正

交时,即和磁极的轴线垂直时,

所示。此时由于交轴磁路中的气隙较长,磁阻较

大,所以电枢反应电抗就较小。一般情况下,和之间的夹角由负载的

,的流通路径介于直轴磁路和交轴磁路之间,电枢反应电

由于和之间的夹角受制于内功率

和交轴分量,产生直

,与同相或反相,起增磁或者去磁作用;产生

交轴电枢磁势,与正交,起

,不同负载时,和之间的夹角不同,对应的也就不同,这给分析问题带来了诸多不便。为了解决这一问题,人们采用了正交

分解法和叠加原理,将看成是其直轴分量和交轴分量的叠加,并认为单独激励直轴电枢反应磁通

轴电枢反应电抗 ,并在定子每相绕组中产生直轴电枢反应电势

励交轴电枢反应磁通

电枢反应电抗,并在电枢每相绕组中产生交轴电枢反应电势。电枢绕组总的电枢反应电势可以写为

(16-4)

=-j(

电枢电流引起的总的感应电势为

(16-5)

=+=Xaq+

后,可以认为隐极电机直轴磁路和交轴磁路的磁阻相等,直轴和交轴电枢反应电抗相等,即== ,结合=+,并代入式(16-5)可得

(16-6)

机的端电压,用方程式表示为

(16-8)

◇对于隐极电机来说,+=-j,其方程式可表示为

j(16-9)

① 在水平方向作出相量

角找出的方向并作出相量;

③ 在的尾端,加上相量j,它超前于

j。

◇对于凸极电机来说,需要首先将分解为和,然后才能根据方程式

位,与正交,只要找出的方位,就可以方便地将分解为和。

◇方程式(16-8)两边同时加上-j(-),即:

上式左边的相量j可以很

16.7b,凸极电机的相量图可按下述步骤作出。

① 在水平方位作出相量,错开角作出

j,它超前于

的方位即为d

③ 将在正交分解为和;

用。对于凸极电机来说,

(16-10)

而对于隐极电机来说,有

续短路然后加上励磁电流,称为短路运行。这时端电压,如果改变励磁电流,则电枢短路电流的有效值也改

=f()

态,励磁电势和励磁电流之间在数量上呈线性关系。由于短路,所以和励磁电流在数量也呈线性关系,短路特

和相量图。对凸极式电机来说,短路时交轴电枢磁势

代替,将

利用短路特性和空载特性求取同步电抗

电流为,显然在略去电枢电阻时,同步电抗上的压降(

② 将测取的数据在同一坐标纸上绘制成曲线,并作出气隙线

③选取一固定的,求得对应的短路电流和对应于气隙线上的电势,则同步电抗可按下式求得

=/(16-12)

发电机的负载特性是指当负载电流=常数,功率因数

与励磁电流的关系

代数加减,即

(16-15)

在已知空载特性()和同步电抗

同步电抗和漏抗的测定

同步电抗在==

于的空载电势

=(-)/ (16-16)

时,对应于零功率因数特性上的励磁电流=OC ,将该电流分为两部分,

段用来产生电枢电势以平衡电枢反应电抗压降,可见△ABC

n=n1,=

常数的条件下,同步发电机作单机运行时随负载电流而变化的关系

U=f()行时的励磁电流和转速不变,将发电机的完全卸载电压将由变化为空载电势,电压变化的幅度可以用整率来表示

(16-18)

40% 。

◆单机供电的缺点是明显的:既不能保证供电质量(电压和频率的稳定性)和可靠性(发生故障就得停电),又无法实现供电的灵活性和经济性。这些缺点可以通过多机并联来改善。

◆通过并联可将几台电机或几个电站并成一个电网。现代发电厂中都是把几台同步发电机并联起来接在共同的汇流排上(见图17.1),一个地区总是有好几个发电厂并联起来组成一个强大的电力系统(电网)。 ◆电网供电比单机供电有许多优点:

①提高了供电的可靠性,一台电机发生故障或定期检修不会引起停电事故。 ②提高了供电的经济性和灵活性,例如水电厂与火电厂并联时,在枯水期和旺水期,两种电厂可以调配发电,使得水资源得到合理使用。在用电高峰期和低谷期,可以灵活地决定投入电网的发电机数量,提高了发电效率和供电灵活性。 ③提高了供电质量,电网的容量巨大(相对于单台发电机或者个别负载可视为无穷大),单台发电机的投入与停机,个别负载的变化,对电网的影响甚微,衡量供电质量的电压和频率可视为恒定不变的常数。 电网对单台发电机来说可视为无穷大电网或无穷大汇流排。同步发电机并联到电网后,它的运行情况要受到电网的制约,也就是说它的电压、频率要和电网一致而不能单独变化。

并联条件 ◆把同步发电机并联至电网的过程称为投入并联,或称为并列、并车、整步。在并车时必须避免产生巨大的冲击电流,以防止同步发电机受到损坏、电网遭受干扰。

◆并车前必须检查发电机和电网是否适合以下条件: ① 双方应有一致的相序; ② 双方应有相等的电压;

③ 双方应有同样或者十分接近的频率和相位。

◆若以上条件中的任何一个不满足则在开关K 的两端,会出现差额电压 ,如果闭合K ,在发电机和电网组成的回路中必然会出现瞬态冲击电流。

◆上述条件中,除相序一致是绝对条件外,其它条件都是相对的,因为通常电机可以承受一些小的冲击电流。

◆并车的准备工作是检查并车条件和确定合闸时刻。通常用电压表测量电网电压 ,并调节发电机的励磁电流使得发电机的输出电压U=U1。再借助同步指示器检查并调整频率和相位以确定合闸时刻。

并联方法 ◆同步指示器: 1 灯光明暗法(看动画) 如图17.3a 所示,将三只灯泡直接跨接于电网与发电机的对应相之间。并车方法为:①通过调节发电机励磁电流的大小使得 ;②电压调整好后,如果相序一致,灯光应表现为明暗交替,如果灯光不是明暗交替,则说明相序不一致,这时应调整发电机的出线相序或电网的引线相序,严格保证相序一致;③通过调节发电机的转速改变的频率,直到灯光明暗交替十分缓慢时,说明和的频率已十分接近,这时等待灯光完全变暗的瞬间到来,即可合闸并车。

2 灯光旋转法(看动画)参看图17.3(b)和

图,灯1跨接于A1B ,灯2 跨接于B1A ,灯3 跨接于C1C 。旋转法并车方法为:①通过调节发电机励磁电流的大小使得 ;②电压调整好后,如果相序一致,则灯光旋转,否则说明相序不一致,这时应调整发电机的出线相序或电网的引线相序,严格保证相序一致;③通过调节发电机的转速改变 的频率,直到灯光旋转十分缓慢时,说明 和 频率已十分接近,这时等待灯 3 完全熄灭的瞬间到来,

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

解析国标图集_常用电机控制电路图_

BUILDING ELECTRICITY 2011年 第期 Jun.2011Vol.30No.6 6 *:国家科技支撑计划子课题,课题名称:村镇小康住宅规划设计成套技术研究(课题任务书编号:2006BAJ04A01),子课 题名称:村镇住宅设备与设施设计技术集成及软件开发(子课题任务书编号:2006BAJ04A01-3)。Xu Lingxian Sun Lan (China Institute of Building Standard Design &Research ,Beijing 100048,China ) 徐玲献 孙 兰(中国建筑标准设计研究院,北京市 100048) Explanation and Analysis of National Standardization Collective Drawings Control Circuit Diagrams of Common Electric Machines * 解析国标图集《常用电机控制电路图》摘 要 对多年来国家建筑标准设计图集 10D303-2~3《常用电机控制电路图》(2010年合订本,已修编出版发行)使用中遇到的疑问进行汇总、解析,以加深读者对10D303-2~3的理解。 关键词信号灯端子标志消防控制室的监控消防风机消防水泵 过负荷 水源水池水位 双 速风机 0引言 国家建筑标准设计图集10D303-2~3《常用电 机控制电路图》 (2010年合订本) (以下简称 10D303)适用于民用及一般工业建筑内3/N /PE ~220/380V 50Hz 系统中常用风机和水泵的控制,是对99D303-2《常用风机控制电路图》和01D303-3《常用水泵控制电路图》的修编。根据现行的国家标 准,对图集中涉及到的项目分类代码和图形符号进行了修改,并在原图集方案的基础上,增加了两用单速风机、平时用双速风机、射流风机联动排风机及冷冻(冷却)水泵控制电路图。根据节能环保的要求,增加了YDT 型双速风机的控制方案。并根据电气产品的发展,增加了控制与保护开关电器(CPS )和电机控制器的控制方案,供设计人员直接选用。 10D303从立项调研、修编到送印,历经两年多的时间,期间收到了不少反馈意见和建议,为图集的编制提供了宝贵的建议,在此答谢。 《常用电机控制电路图》 (2002年合订本)发行 十余年中一直受到读者青睐,使用者涉及设计、生产和建造等多领域,通过国标热线和其他途径咨询问题的读者很多。问题中除风机和水泵的控制电路外,经常牵涉到现行的国家标准、制图要求和电气设计技术等多方面的内容,有些问题无法通过修编图集 10D303直接解决,因此借助《建筑电气》平台,把《常用电机控制电路图》经常咨询的问题归纳汇总、解析,以利于读者更好使用和理解10D303图集。 1有关国家标准、规范和制图要求的问题 1.1指示器(信号灯)和操作器(按钮)的颜色 标识 10D303中有关信号灯和按钮的颜色标识是依据国家标准GB /T 4025-2003/IEC 60073:1996《人-机界面标志标识的基本和安全规则 指示器和 作者信息 徐玲献,女,中国建筑标准设计研究院,高级工程师,主任工程师。 孙兰,女,中国建筑标准设计研究院,教授级高级工程师,院副总工程师。 Abstract The collective drawings of national building standard design 10D303-2~3Control Circuit Diagrams of Common Electric Machines (2010bound volume )has been revised and published.This paper summarizes and analyzes the questions encountered during use over the years so as to deepen the readers 'understanding of the collective drawings. Key words Signal light Terminal symbol Fire control room monitoring Fire fan Fire pump Overload Water level of the water tank of water source Two -speed fans * 34 330

同步电动机原理

同步电动机的原理 同步电动机是属于交流电机,定子绕组与异步电动机相同。它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。为此,在很多时候,同步电动机是用以改进供电系统的功率因素的。 同步电动机在结构上大致有两种: 1、转子用直流电进行励磁。这种电动机的转子做成显极式的,安装在磁极铁芯上面的磁场线圈是相互串联的,接成具有交替相反的极性,并有两根引线连接到装在轴上的两只滑环上面。磁场线圈是由一只小型直流发电机或蓄电池来激励,在大多数同步电动机中,直流发电机是装在电动机轴上的,用以供应转子磁极线圈的励磁电流。 由于这种同步电动机不能自动启动,所以在转子上还装有鼠笼式绕组而作为电动机启动之用。鼠笼绕组放在转子的周围,结构与异步电动机相似。 当在定子绕组通上三相交流电源时,电动机内就产生了一个旋转磁场,鼠笼绕组切割磁力线而产生感应电流,从而使电动机旋转起来。电动机旋转之后,其速度慢慢增高到稍低于旋转磁场的转速,此时转子磁场线圈经由直流电来激励,使转子上面形成一定的磁极,这些磁极就企图跟踪定子上的旋转磁极,这样就增加电动机转子的速率直至与旋转磁场同步旋转为止。 2、转子不需要励磁的同步电机 转子不励磁的同步电动机能够运用于单相电源上,也能运用于多相电源上。这种电动机中,有一种的定子绕组与分相电动机或多相电动机的定子相似,同时有一个鼠笼转子,而转子的表面切成平面。所以是属于显极转子,转子磁极是由一种磁化钢做成的,而且能够经常保持磁性。鼠笼绕组是用来产生启动转矩的,而当电动机旋转到一定的转速时,转子显极就跟住定子线圈的电流频率而达到同步。显极的极性是由定子感应出来的,因此它的数目应和定子上极数相等,当电动机转到它应有的速度时,鼠笼绕组就失去了作用,维持旋转是靠着转子与磁极跟住定子磁极,使之同步。

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

同步电机的基本工作原理和结构

同步电机的基本工作原理和结构 第一节精编资料 本章主要介绍同步电机的结构和基本工作原理,同步电机的电动势和磁动势,异步电动...二,同步电机的工作原理1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场... 原理,结构 同步电机的基本工作原理和结构 本章主要介绍同步电机的结构和基本工作原理、同步电机的电动势和磁动势、异步电动机的电势平衡,磁势平衡、等值电路及相量图、功率转矩、同步发电机运行原理等内容。本章共有10节课,内容和时间分配如下: 1.掌握同步电机的结构特点及工作原理。(2节) 2.掌握同步电机绕组有关的结构、额定参数(1节) 3.掌握同步电机机绕组的磁动势、等效电路,一般掌握相量图。(3节) 4.掌握同步电机功率、转矩和同步电机启动特性。(2节) 5.了解同步发电机的运行原理。(2节) 一、简介 交流电机,根据用途,可以分为同步发电机、同步电动机和同步补偿机三类。 (交流电能几乎全部是由同步发电机提供的。目前电力系统中运行的发电机都 是三相同步发电机。 同步电动机可以通过调节其励磁电流来改善电网的功率因数,因而在不需要调速的低速大功率机械中也得到较广泛的应用。随着变频技术的不断发展,同步电动机的起动和调速问题都得到了解决,从而进一步扩大了其应用范围。

同步补偿机实质上是接在交流电网上空载运行的同步电动机,其作用是从电网汲取超前无功功率来补偿其它电力用户从电网汲取的滞后无功功率,以改善电网的供功率因数。) 二、同步电机的工作原理 1磁场:三相同步电机运行时存在两个旋转磁场: 定子旋转磁场和转子旋转磁场。定子旋转磁场—又常称为电枢磁势,而相应的磁场称为电枢磁场60f1n,速度:同步速度,即 1p 方向:从具有超前电流的相转向具有滞后电流的相。 形成原因:以电气方式形成。 (当对称三相电流流过定子对称三相绕组时,将在空气隙中产生旋转磁通势。它的旋转速度 60f1n,1p为同步速度,即;它的旋转方向是从具有超前电流的相转向具有滞后电流的相;当某相电流达到最大值的瞬间,旋转磁势的振幅恰好转到该相绕组轴线处。这个旋转磁通势是以电气方式形成的。同步电机不论作为发电机运行还是作为电动机运行,只要其定子三相绕 组中流通对称三相电流,都将在空气隙中产生上述旋转磁通势,建立旋转磁场。同步电机的定子绕组被称为电枢绕组,因此,上述磁势又常称为电枢磁势,而相应的磁场称为电枢磁场。转子旋转磁场—直流励磁的旋转磁场。 60f1n, 速度:同步速度,即1p 方向:与定子相同。 形成原因:机械方式形成。 (在同步电机的转子上装有由直流励磁产生的磁极,磁极与转子无相对运动。当转子旋转时, 以机械方式形成旋转磁通势,并在气隙中形成另一种旋转磁场。由于磁场随转子一同旋转,被称为直流励磁的旋转磁场。) 2 电动势—两个旋转磁场切割绕组产生。

交流发电机地结构及工作原理

交流发电机的结构 一、6管交流发电机的结构 交流发电机一般由转子、定子、整流器、端盖四部分组成。JF132型交流发电机组件图见图2-5a JF132型交流发电机结构图见图2-5b JF132型交流发电机结构图见图2-5c

(一)转子 转子的功用是产生旋转磁场。 转子由爪极、磁轭、磁场绕组、集电环、转子轴组成,见图2-6 转子轴上压装着两块爪极,两块爪极各有六个鸟嘴形磁极,爪极空腔装有磁场绕组(转子线圈)和磁轭。集电环由两个彼此绝缘的铜环组成,集电环压装在转子轴上并与轴绝缘,两个集电环分别与磁场绕组的两端相连。 当两集电环通入直流电时(通过电刷),磁场绕组中就有电流通过,并产生轴向磁通,使爪极一块被磁化为N极,另一块被磁化为S极,从而形成六对相互交错的磁极。当转子转动时,就形成了旋转的磁场。 交流发电机的磁路为:磁轭→N极→转子与定子之间的气隙→定子→定子与转子间的气隙→S 极→磁轭。见图2-7。

2.整流管的安装 将正极管安装在一块铝制散热板上,称为正整流板;将负极管安装另一块铝制散热板上,称为负整流板,也可用发电机后盖代替负整流板。见图2-10。 在正整流板上有一个输出接线柱B(发电机的输出端)。负整流板上直接搭铁。负整流板上一定和壳体相联接。整流板的形状各异,有马蹄形、长方形、半圆形等见图2-11

二、8管交流发电机 8管交流发电机(如夏利车用)和6管交流发电机的基本机构是相同的,所不同的是整流器有 8只硅整流二极管,其中6只组成三相全波桥式整流电路,还有2只是中性点二极管,1只正 极管接在中性点和正极之间,1只负极管接在中性点和负极之间。对中性点电压进行全波整流。(见图2-14) 试验表明:加装中性点二极管的交流发电机在结构不变的情况下可以提高发电机的功率10%~15%。 中性点二极管提高发电机功率的原理: 交流发电机中性点电压为三次谐波,随着发电机转速的提高,中性点三次谐波电压也升高。见图2-15

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

电动机控制原理图

三相异步电动机启动控制原理图 1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。在生产实际应用

中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2.三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB(起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时, 接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

最新同步电机原理和结构精编版

2020年同步电机原理和结构精编版

同步电机篇:第一章同步电机原理和结构 结构模型 ◆同步发电机和其它类型的旋转电机一 样,由固定的定子和可旋转的转子两大部 分组成。一般分为转场式同步电机和转枢 式同步电机。 ◆图15.1给出了最常用的转场式同步 发电机的结构模型,其定子铁心的内圆均 匀分布着定子槽,槽内嵌放着按一定规律 排列的三相对称交流绕组。这种同步电机 的定子又称为电枢,定子铁心和绕组又称 为电枢铁心和电枢绕组。 ◆转子铁心上装有制成一定形状的成对 磁极,磁极上绕有励磁绕组,通以直流电 流时,将会在电机的气隙中形成极性相间 的分布磁场,称为励磁磁场(也称主磁场、 转子磁场)。 ◆气隙处于电枢内圆和转子磁极之间, 气隙层的厚度和形状对电机内部磁场的分 布和同步电机的性能有重大影响。 ◆ 除了转场式同步电机外,还有转枢式 同步电机,其磁极安装于定子上,而交流 绕组分布于转子表面的槽内,这种同步电 机的转子充当了电枢。图中用AX、BY、CZ 三个在空间错开120电角度分布的线圈代 表三相对称交流绕组。

工作原理 ◆主磁场的建立:励磁绕组通以直流励 磁电流,建立极性相间的励磁磁场,即建 立起主磁场。 ◆ 载流导体:三相对称的电枢绕组充 当功率绕组,成为感应电势或者感应电流 的载体。 ◆ 切割运动:原动机拖动转子旋转 (给电机输入机械能),极性相间的励磁 磁场随轴一起旋转并顺次切割定子各相绕 组(相当于绕组的导体反向切割励磁磁 场)。 ◆ 交变电势的产生:由于电枢绕组与 主磁场之间的相对切割运动,电枢绕组中 将会感应出大小和方向按周期性变化的三 相对称交变电势。通过引出线,即可提供 交流电源。 ◆ 感应电势有效值:由第11章可 知,每相感应电势的有效值为 (15.1) ◆ 感应电势频率:感应电势的频率 决定于同步电机的转速n 和极对数p ,即 (15.2) ◆ 交变性与对称性:由于旋转磁场极 性相间,使得感应电势的极性交变;由于 电枢绕组的对称性,保证了感应电势的三 相对称性。 同步转速 ◆同步转速从供电品质考虑,由众多 同步发电机并联构成的交流电网的频率应 该是一个不变的值,这就要求发电机的频 率应该和电网的频率一致。我国电网的频 率为50Hz ,故有: (15.3)◆要使得发电机供给 电网50Hz的工频电能,发电机的转速必须 运行方式 ◆同步电机的主要运行方式有三种,即作为发 电机、电动机和补偿机运行。作为发电机运行是 同步电机最主要的运行方式,作为电动机运行是 同步电机的另一种重要的运行方式。同步电动机 的功率因数可以调节,在不要求调速的场合,应 用大型同步电动机可以提高运行效率。近年来, 小型同步电动机在变频调速系统中开始得到较多 地应用。同步电机还可以接于电网作为同步补偿

同步电机原理和结构

每相感应电势的有效值为

(15.2) ◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 同步转速 ◆同步转速 从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: (15.3) ◆要使得发电机供给电网50Hz 的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min ,4极电机的同步转速为1500r/min ,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 运行方式 ◆同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。 作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。 同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 ? 西安交通大学电机教研室 版权所有,侵权必究 2000.12?

水轮发电机 水轮发电机的特点是:极数多,直径大,轴向长度短,整个转子在外形上与汽轮发电机大不相同。大多数水轮发电机为立式。水轮发电机的直径很大,定子铁心由扇形电工钢片拼装叠成。为了散热的需要,定子铁心中留有径向通风沟。转子磁极由厚度为1~2mm 的钢片叠成;磁极两端有磁极压板,用来压紧磁极冲片和固定磁极绕组。有些发电机磁极的极靴上开有一些槽,槽内放上铜条,并用端环将所有铜条连在一起构成阻尼绕组,其作用是用来拟制短路电流和减弱电机振荡,在电动机中作为起动绕组用。磁极与磁极轭部采用 T 形或鸽尾形连接,如图15.4所示。 隐极式转子 隐极式转子上没有凸出的磁极,如图15.2b 所示。沿着转子本体圆周表面上,开有许多槽,这些槽中嵌放着励磁绕组。在转子表面约1/3部分没有开槽,构成所谓大齿,是磁极的中心区。励磁绕组通入励磁电流后,沿转子圆周也会出现 N 极和 S 极。在大容量高转速汽轮发电机中,转子圆周线速度极高,最大可达170米/秒。为了减小转子本体及转子上的各部件所承受的巨大离心力,大型汽轮发电机都做成细长的隐极式圆柱体转子。考虑到转子冷却和强度方面的要求,隐极式转子的结构和加工工艺较为复杂。

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机。 永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。 2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

三相异步电动机控制电路图

三相异步电动机的控制 1.直接启动控制电路 直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说, 电动机的容量不大于直接供电变压器容量的20%~30%时,都可以直接启 动。 1).点动控制 合上开关QF ,三相电源被引入控 制电路,但电动机还不能起动。按下按钮SF ,接触器KM 线圈通电,衔铁吸合,常开主触点接通,电动机定子接入 三相电源起动运转。松开按钮SF , 图5-13 点动控制 接触器KM 线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。 2).直接起动控制 (1)起动过程。按下起动按钮SF ,接触器KM 线圈通电,与SF 并联的KM 的辅助常开触点闭合,以保 证松开按钮SF 后KM 线圈持续通电,串联在电动机回路中的KM 的主触点持续闭合,电动机连续运转,从而实现连续运转控制。 (2)停止过程。按下停止按钮SS ,接触器KM 线圈断电,与SF 并联的KM 的辅助常开触点断开,以保 证松开按钮SS 后KM 线圈持续失电,串联在电动机回路中的KM 的主触点持续断开,电动机停转。 与SF 并联的KM 的辅助常开触点的这种作用称为自锁。 图示控制电路还可实现短路保护、过载保护和零压 保护。 图5-14直接起动控制 ? 起短路保护的是串接在主电路中的熔断器FU 。一旦电路发生短路故障,熔体立即熔断,电动机立即停转。 ? 起过载保护的是热继电器KH 。当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM 线圈断电,串联在电动机回路中的KM 的主触点断开,电动机停转。同时KM 辅助触点也断开,解除自锁。故障排除后若要重新起动,需按下KH 的复位按钮,使KH 的常闭触点复位(闭合)即可。 ? 起零压(或欠压)保护的是接触器KM 本身。当电源暂时断电或电压严重下降时,接触器KM 线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

同步电动机原理

同步电动机原理 Synchronous Motor Principle 三相交流电动机是用三相交流电产生的旋转磁场来带动电机转子旋 转的,有关旋转磁场的产生原理在前面已作介绍,在这里只介绍电机转 子是如何在旋转磁场的作用下旋转的。 永磁交流同步电动机 最简单的方法是在产生旋转磁场的空间放一永久磁铁,该磁铁就会 跟着磁场旋转了。下图就是这样一个永久磁铁转子。 永久磁铁转子 把永久磁铁转子放在能产生旋转磁场的定子铁芯中,它将会跟随旋 转磁场同步旋转,其转速与旋转磁场一致,故称之为同步电动机,下图 便是一个永磁同步电动机模型的示意图。

永磁同步电动机模型 下面是该三相交流同步电动机模型的动画截图,为看清线圈与磁力线,定子与转子用半透明显示。动画中有输入三相电流的变化波形,有旋转磁场与跟着旋转的永磁转子。

永磁同步电动机动画截图 请观看永磁转子同步电动机原理模型3D动画 这个三相交流同步电动机的旋转磁场只有一对磁极,永磁转子也是一对磁极,转速与交流电源相同,用50周的交流电供电时转子转速是每秒50转。

电励磁交流同步电动机 实际上的三相交流同步电动机转子多数是电励磁的,转子上有励磁绕组,用直流励磁电源产生固定磁场,下图是一个电励磁三相交流同步电动机原理模型旋转动画的截图。 电励磁三相交流同步电动机模型 请观看三相交流同步电动机原理3D动画 该三相交流同步电动机的旋转磁场只有一对磁极,电励磁转子也是一对磁极,用50周的交流电供电时转子转速是每秒50转,也即每分钟3000转。两极同步电动机的转子一般采用隐极式转子。

多极交流同步电动机 许多场合需用低转速,大力矩输出的交流同步电动机,此时的电机多做成大直径的多极电机形式,定子绕组产生多对磁极旋转磁场,转子采用多对凸极结构。下图是一个3对磁极同步电动机模型示意图,定子有3个3相绕组,转子有3对(6个)凸极,转速为每分钟1000转。 多极三相交流同步电动机模型

三相同步发电机的结构和工作原理

三相同步发电机结构及工作原理1 LEROYSOMER 电球侧视图 LEROYSOMER 电球分解图 1.定子 2.转子100.励磁电枢90.励磁定子34 3.旋转二极管桥架347.浪涌抑制器198.AVR70.轴承 meccaltespa 电球分解图 10.励磁定子143.励磁线柱19.轴承11.旋转二极管架13.励磁电枢14.转子40.固定环 绕组和AVR Kirloskar 电球分解图 1.定子 2.转子 3.励磁转子 4.励磁定子10.AVR11.轴承22.旋转整流集成 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势。 发电机曲轴带动发电机的转子,利用“电磁感应”原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。主磁场的建立:励磁绕组通入直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体(定子)。 切割运动:引擎曲轴拖动转子旋转(给电球输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过接线端子引出,接在回路中,便产生了电流。 励磁机 整流器 转子 定子 AVR(自动电压调节器) 风扇 飞轮连接 盘 出线端子

交流发电机机结构和原理一体化教案

教案首页 系别教师班级 课型一体化课时 6 周次 日期地点 课题(章)汽车电气设备构造与维修第四章充电系统系统子课题(节)交流发电机机结构和原理 教学目标(1)掌握发电机的结构组成; (2)掌握发动机的工作原理; 教学重点及 难点重点:发电机的结构组成难点:发动机的工作原理 教学方法讲授法、练习法、、实物演示法等 教学器材及 设备 实训台架、实物教具、多媒体教学设备、动画等课后小结

审核人:日期: 教学过程教师活动学生活动【复习提问】 提出问题“蓄电池有哪些作用” 【新课引入】 汽车上蓄电池存储的电能是有限的,在它放电以后必须及时的补充充电,因此汽车上必须装备充电系统。充电系统一般由发电机、蓄电池、调节器、点火开关、充电指示灯组成(动画视频)。汽车使用的电源有蓄电池和发电机,其中交流发电机作为主要电源,蓄电池作为辅助电源,今天我们就来学习交流发电机。 【新课教授】 一、充电系统 充电系统一般由发电机、蓄电池、调节器、点火开关、充电指示灯组成。 1、发电机 发电机作为汽车运行中的主要的电源,担负着向启动系之外的所有用电设备供电的任务,并为蓄电池充电,目前,汽车普遍采用硅整流发电机。 2、调节器 发动机的转速变化时,发电机的输出电压也随之发生变化,发电机配有调节电压的电压调节器,以保持发电机输出的电压基本稳定,满足汽车用电设备对电压的要求。 3、充电状态指示装置 充电状态指示装置用于指示充电系统的工作情况,反应蓄电池是处于充电还是放电状态。 二、交流发电机的结构组成及原理 硅整流发电机的全称是硅整流交流发电机,俗称交流发电机。 普通硅整流发电机的构造一般由三相同步交流发电机和硅二极管整流器两部分组成。 三相同步交流发电机主要由转子、定子、前后端盖、电刷和电刷架以及皮带轮、风扇等部件组成。 图1 交流发电机的结构图 提问 讲授 提问 讲授 讲授 实物展示 思考 回答 回答 听讲 记笔记 听讲 观察

相关主题
文本预览
相关文档 最新文档