当前位置:文档之家› 石墨烯与金属欧姆接触电阻研究进展

石墨烯与金属欧姆接触电阻研究进展

石墨烯与金属欧姆接触电阻研究进展
石墨烯与金属欧姆接触电阻研究进展

龙源期刊网 https://www.doczj.com/doc/5914197832.html,

石墨烯与金属欧姆接触电阻研究进展

作者:王顺冲孙宁宁

来源:《河南科技》2018年第08期

摘要:石墨烯在半导体器件领域具有广阔的应用前景,然而石墨烯和金属电极之间较大

的接触电阻不利于石墨烯本征优异性能的发挥。本文梳理了石墨烯与金属接触的重要专利技术,并给出了技术发展的路线图。

关键词:石墨烯;金属;接触电阻

中图分类号:TN304.18;TN386 文献标识码:A 文章编号:1003-5168(2018)08-0145-02

Progress in the Study of The Contact Resistance of Graphene and Metal Ohm

Wang Shunchong Sun Ningning

神奇的石墨烯——石墨烯研究进展

神奇的石墨烯 ——石墨烯的研究进展 石墨烯简介 石墨烯(Graphene),又称单层石墨,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m?K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V?s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω?cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾),也可称为“单层石墨”。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。 既然石墨烯这么的神奇,有这么多的特性,那它的制备会不会特别难呢? 事实表明现在大规模的制造石墨烯还比较困难,但小规模的制造用于科研还是比较容易

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

新型石墨烯涂层使金属耐腐蚀性提高百倍

新型石墨烯涂层使金属耐腐蚀性提高百倍 链接:https://www.doczj.com/doc/5914197832.html,/tech/39047.html 新型石墨烯涂层使金属耐腐蚀性提高百倍 最近,澳大利亚莫纳什大学和美国莱斯大学研究人员合作,用肉眼看不见的石墨烯薄膜作为涂层,使铜的耐腐蚀性增强近百倍,为恶劣环境下的金属防洪提供了巨大潜力。研究人员指出,用石墨烯薄膜作防腐蚀涂层也意味着在开发保护性涂层方面有了模式性转变。相关论文发表在9月出版的《碳》杂志上。 作为广受关注的新材料,目前,科学家们正在开发用石墨烯提高金属耐腐蚀性方面的潜能。研究小组通过一种叫做“化学气相沉积”的技术,在800—900摄氏度时使石墨烯紧密贴在铜上,并在盐水中对其进行测试。“我们的成果也是迄今为止所报道的最佳改进之一。”论文合著者曼纳卡玛加姆德说,“其耐腐蚀性比未经处理的铜提高了近100倍。其他研究可能只有五六倍或更多。这是一个相当大的飞跃。” 该研究的主要实验人员帕拉玛班纳吉说,石墨烯具有优良的机械性能和很高的强度。金属上常用的聚合物涂层很容易被刮伤,降低了保护性能。虽然石墨烯涂层从外观上既看不到也摸不着,却更加坚固抗损伤。“我把它叫做‘神奇的材料’。” “在澳大利亚这样被海洋包围的国家,用原子涂层为环境提供特殊保护尤为重要。”班纳吉说,虽然初步实验仅限于铜,目前他们已在用其他金属开展实验。 研究人员指出,这项技术具有广泛的应用前景,从远洋轮船到电子产品,在任何用到金属并有腐蚀风险的地方,都能大大延长金属的使用寿命。这也意味着许多行业将因此节约巨大的成本。目前,该技术的工艺过程尚处于实验测试阶段。玛加姆德说,他们不仅在各种金属上进行实验,还研究怎样在低温下制作涂层,这将简化生产并提高产品的市场潜力。(记者 常丽君) 原文地址:https://www.doczj.com/doc/5914197832.html,/tech/39047.html 页面 1 / 1

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

金属嵌入石墨烯

金嵌入石墨烯:一个可能具有高活性的催化剂 Au嵌入石墨烯的催化活性是通过使用CO的氧化为基准探针并且利用第一性原理方法来研究的。CO氧化Au嵌入石墨烯的催化的第一个最可能的步骤是继续进行朗缪尔 - 欣谢尔伍德反应(CO + O2→OOCO→ CO2 +O),其能量势垒是低至0.31ev。氧化的第二步骤将是埃利-Rideal反应(CO+O→ CO2)其具有小得多的能量势垒(0.18ev)。金部分填充d状态处于费米能级的周围,由于Au与相邻的碳原子之间的相互作用。Au嵌入石墨烯的高活性可能归因于CO,O2,Au之间的电子共振,尤其,是在Au原子的d状态和CO和O2的反键2π状态。这将打开一个新的途径来制造低成本,高活性碳系催化剂。 介绍 石墨烯、单原子厚度的碳板具有独特的电子和几何特性,被认为是最有前途的下一代电子材料。完美的石墨烯在正常环境下化学惰性是稳定的。然而,对于过渡金属催化剂而言,纳米结构的碳材料和石墨烯是比较好的基底材料,如碳纳米管(CNT)和碳纳米纤维(CNFs)。主要由于其高的表面积,已被广泛地研究。近来,有报道说,金属subnanoclusters,包含仅有几个原子,在石墨烯片显示出对氧化反应不寻常的高活性。金属簇和石墨烯之间的强相互作用被发现。在单层石墨烯或碳原子的悬空键处的碳空位可以调节负载金属簇的电子结构。调查了过渡金属利用密度泛函理论嵌入石墨烯,发现过渡金属原子和相邻的碳原子之间的键确定系统的磁性和电子结构。因此,惰性石墨烯可以通过碳空位和金属簇,甚至一个单一的原子之间的相互作用转变为非常活泼的催化剂。该金属原子的嵌入石墨烯结构最近已制造,并且金属原子在石墨烯平面中的扩散可被控制。它开辟了新的途径来设计基于石墨烯的先进催化剂。在本文中,我们使用CO氧化为基准探头,对金嵌入石墨烯的催化活性进行研究。我们对金特别感兴趣,因为金是最高贵的金属而且并没有被认为是一个很好的催化剂,直到最近。我们的计算显示,金嵌入石墨烯是一个很好的高效催化剂,并且成本低。

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯力学性能研究进展

石墨烯力学性能研究进展* 韩同伟‘贺鹏飞2,t骆英‘张小燕“ 江苏大学土木工程与力学学院,江苏镇江212013 2同济大学航空航天与力学学院,上海200092 3江苏大学化学化工学院,江苏镇江212013 摘要石墨烯是近年来发现的由单层碳原子通过共价键结合而成的具有规则六方对称的理想二维晶体,是继富勒烯和碳纳米管之后的又一种新型低维碳材料.由于具有非凡的电学、热学和力学性能以及广阔的应用前景,石墨烯被认为是具有战略意义的新材料,近年来迅速成为材料科学和凝聚态物理等领域最为活跃的研究前沿.本文简要介绍了研究石墨烯力学性能的实验测试、数值模拟和理论分析方法,重点综述了石墨烯力学性能的最新研究进展,主要包括二维石墨烯的不平整性和稳定性,石墨烯的杨氏模量、强度等基本力学性能参数的预测,石墨烯力学性能的温度相关性和应变率相关性、原子尺度缺陷和掺杂等对力学性能的影响以及石墨烯在纳米增强复合材料和微纳电子器件等领域的应用,最后对石墨烯材料与结构的力学研究进行了展望. 关键词石墨烯,力学性能.分子动力学,缺陷 1引言 石墨烯(graphene),又称为二维石墨片,是由单层碳原子通过共价键(碳5pz杂化轨道所形成的二键、二键)结合而成的具有规则六方对称的理想二维晶体11-21,如图1所示,于2004年由英国曼彻斯特大学的安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)首先发现[fll,是继富勒烯(Cso)和碳纳米管(CNTs)之后的又一种新型低维碳材料,其厚度仅为头发丝直径的20万分之一。约为0.335 nm,是目前发现的最薄的层状材料. 在石墨烯中,每个碳原子通过很强的0键(自然界中最强的化学键)与其他3个碳原子相连接,这些很强的碳一碳键致使石墨烯片层具有极其优异的力学性质和结构刚性.碳原子有4个价电子,每个碳原子都贡献一个未成键的兀电子。这些兀电子与平面成垂直的方向可形成二轨道,二电子可在晶体中自由移动,赋予石墨烯良好的导电性.但这些面外离位的二键与相邻层内的二键的层间相互作用远远小于一个6键,即片层间的作用力较弱,因此石墨层间很容易互相剥离,形成薄的石墨片.石墨烯的碳基二维晶体是形成sp“杂化碳质材料的基元,它可以包裹起来形成零维的富勒烯(fullerene, Cso),卷起来形成一维的纳米碳管(carbon nanotube, CNT),层层堆积形成三维的石墨(graphite),石墨烯是构建众多碳质材料的基本结构单元[[3J,如图2所示. 由于独特的二维结构以及优异的晶体品质,石墨烯具有十分优异的电学、热学、磁学和力学性能fl-$1,有望在高性能纳米电子器件、复合材料、场发射材料、气体传感器、能量存储等领域获得广泛应用.石墨烯是零隙半导体,具有一般低维碳材料所无法比拟的载流子特性,是其备受关注的重要原因之一石墨烯成为凝聚态物理学中独一无二的描述无质量狄拉克一费米子(masslessDirac Fermions)的模型体系,这种现象导致了许多新奇的电学性质因此,石墨烯为相对论量子电动力学现象的研究提供了重要借鉴.研究还表明,石墨烯的热导率和机械强度(5kW}m-1}K-1和1.06 TPa)可与宏观石墨材料相媲美,断裂强度与碳纳米管相当f7-sl.此外,石墨烯为制备集超高导电、导热及机械性能等各种优越性能于一体的新型功能复合材料提供了一种理想的纳米填料[fl。一’‘].因此,石墨烯被誉为新一代战略材料,近年来迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[2,1“一’51. 2009年12月,Science杂志将石墨烯研究取得新进展”列为2009年十大科技进展之一2010年10月,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁.诺沃肖罗夫因在二维空间材料石墨烯方面的开创性实验而获得诺贝尔物理学奖,由此引发石墨烯新的研究热潮.

石墨烯增强铝基复合材料的研究进展

Material Sciences 材料科学, 2019, 9(8), 803-812 Published Online August 2019 in Hans. https://www.doczj.com/doc/5914197832.html,/journal/ms https://https://www.doczj.com/doc/5914197832.html,/10.12677/ms.2019.98100 Research Progress on Graphene Reinforced Aluminum-Based Composites Jiangyu Li1, Shourong Zhao2, Wei Zhang1,2, Yunlai Deng2, Keda Jiang2 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2Light Alloy Research Institute, Central South University, Changsha Hunan Received: July 29th, 2019; accepted: August 13th, 2019; published: August 20th, 2019 Abstract Graphene possesses excellent mechanical properties, high thermal conductivity and low density. It is recognized as an ideal reinforcing material for metal matrix composites (MMC). In this paper, the preparation methods of graphene reinforced aluminum matrix composites are reviewed, the research status of powder metallurgy, stir casting process and other methods is summarized. Casting process effects of different preparation methods on the microstructure and properties of graphene reinforced aluminum matrix composites were discussed. Its application prospect is also predicted at last. Keywords Grapheme, Aluminum-Based Composites, Manufacturing Methods, Properties 石墨烯增强铝基复合材料的研究进展 李江宇1,赵寿荣2,张伟1,2,邓运来2,姜科达2 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学轻合金研究院,湖南长沙 收稿日期:2019年7月29日;录用日期:2019年8月13日;发布日期:2019年8月20日 摘要 石墨烯具有优异的力学性能、高导热系数和低密度,被公认为金属基复合材料(MMC)的理想增强材料。 本文综述了石墨烯增强铝基复合材料的制备方法,归纳了粉末冶金法、搅拌鋳造法及其他多种方法的研

石墨烯在金属防腐蚀领域中的应用

金属材料的腐蚀不仅给社会带来了巨大的经济损失,而且给工业生产、运输及 家居生活带来了安全隐患。为解决这一问题,常在金属表面涂覆防腐涂料,这 种方法便于施工和维护,且成本低。其原理是利用涂料固化成膜后隔绝氧气、 水分子等腐蚀介质,达到保护基材的作用。石墨烯是碳原子以sp2 轨道杂化形 成的二维网状碳材料,其中每个碳原子与其相邻的3 个碳原子形成C-C σ键,按正六边形紧密有序排列形成稳定结构。单层石墨烯理论厚度0. 35 nm,具有 超大的比表面积(达2630 m2/g),超高的力学性能(杨氏模量达1100 GPa,断裂强度达130 GPa),超快的载流子迁移率(达15 000 cm2/(V·s))。 凭借这些优异的性能,石墨烯在防腐蚀领域得到了广泛的应用。 1石墨烯的制备 1.1 机械剥离法机械剥离法的应用原理是通过物理作用力克服石墨分子层间的范德华力,进而分离石墨片获得石墨烯。2004 年,Novoselov 等使用机械剥离法,用胶带反复剥离石墨片直至获得仅一个原子厚度的石墨单片,即为石墨烯。此外,用石墨反复摩擦另一个固体表面,从而获得附着于该固体表面上的石墨 烯层。早期对石墨烯片层的研究是通过扫描隧道显微镜或原子力显微镜的针尖 与石墨相互作用而获得石墨烯的结构。通过机械玻璃法合成的石墨烯分子缺陷少,但制备时间久、产率低下,不适于大规模生产。 1.2 氧化还原法先将石墨氧化。石墨在氧化过程中,表面和边缘会形成大量含氧官能团,如—COOH、—C = O、—OH、—O—等。氧原子进入石墨层间,拉大 了氧化石墨层间距。再经超声使得层与层剥离得到氧化石墨烯,最后利用还原 反应将氧化石墨烯中氧化基团还原为C—C 结构,得到石墨烯。其中,石墨的 氧化方法包括Brodie法、Staudenmaier 法和Hummers 法,三种方法均用强质 子酸( 如浓H 2SO 4 、HNO3或其混合物) 处理原始石墨,形成石墨层间化合物,再 利用强氧化剂( 如KMnO 4、KClO 3 等)对其进行氧化,得到氧化石墨。经超声后得 氧化石墨烯,再将氧化石墨烯还原。根据还原方法的不同,可以分为热还原、化学试剂还原、光照还原、水热还原等。 1.3 化学气相沉积法( CVD)CVD 法是将含碳化合物作为碳源在基体表面升温至气态,气态碳源裂解形成的碳原子在金属基体表面沉积生成石墨烯。由于铜薄膜对碳源、温度、压力等要求较低,因此一般用铜作为基体,在铜表面富集石墨烯,这是CVD 中最有前景的制备高质量石墨烯的方法。 为了进一步降低石墨烯的制备温度和能耗,采用等离子体增强化学气相沉积法( PECVD),生长温度为700 ℃,在镍/石英衬底上直接生长单层石墨烯,比使用热CVD 合成的石墨烯低250 ℃。Li 等以苯为碳源,在300 ℃下制得质量优异的单层石墨烯片。CVD 法制得的石墨烯质量高、可大面积生长,已成为制备石墨烯的主要方法。 1.4 外延生长法是指利用晶格匹配,在一个晶体层基质上生长出另外一种晶体层的方法。基于不同的基底材料,外延生长法可以分为金属催化外延生长法和碳化硅外延生长法。金属催化外延生长法是指特定温度和压强条件下,在基底( 如Pt、Ir、Ru、Cu 等) 表面进行碳氢化合物(碳源) 的吸附,通过催化剂作用及加热,使吸附气体催化脱氢,从而制得石墨烯。碳化硅外延生长法是通过高温加热碳化硅使其分解,当表面硅原子气化离开后,剩余的碳原子在碳

石墨烯的研究进展概述

龙源期刊网 https://www.doczj.com/doc/5914197832.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

石墨烯复合材料的制备及其性能研究进展

石墨烯复合材料的制备及其性能研究进展

论文 题目: 石墨烯复合材料的制备 及其性能研究进展学生姓名: 学号: 院(系):化工与制药工程系专业班级: 指导教师: 职称: 201 年月

石墨烯复合材料的制备及其性能研究进展 摘要: 石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点。本文综述了石墨烯的制备方法并分析比较了各种方法的优缺点, 简单介绍了石墨烯的力学、光学、电学及热学性能。基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 本文详细介绍了石墨烯聚合物复合材料和石墨烯基无机纳米复合材料的制备及应用,以及石墨烯复合材料的展望。 关键词:石墨烯;制备;性能;复合材料

Research Progress on Preparation and properties of graphene composite materials Abstract: Graphene has become a hot research field of material for its excellent performance and unique two-dimensional structure. This paper summarizes the method for preparing graphene and compared the advantages and disadvantages of various methods,introduces the mechanics,graphene optical,electrical and thermal properties. Composite materials based on graphene is an important research direction in the field of application of graphene,this paper introduces the preparation and application of graphene polymer composites and graphene based inorganic nano composite material,and the prospect of graphene composite materials. Key words:graphene;preparation;properties;composite materials

石墨烯传感器研究进展

石墨烯传感器的研究进展 摘要 本文论述了石墨烯电化学和生物传感器的研究进展,包括石墨烯的直接电化学基础、石墨烯对生物小分子的电催化活性、石墨烯酶传感器、基于石墨烯薄膜 和石墨烯纳米带的实用气体传感器(可检测O 2、CO和NO 2 )、石墨烯DNA传 感器和石墨烯医药传感器(可用于检测扑热息痛)。 2004年,英国曼彻斯特大学AndreK.Geim等以石墨为原料,通过微机械力剥离法得到一系列叫作二维原子晶体的新材料———“石墨烯(Graphene)”。 石墨烯是碳纳米材料家族的新成员,具有二维层状纳米结构,室温下相当稳定。由于在石墨烯中碳原子呈sp2杂化,贡献剩余一个p轨道上的电子形成了大π键,π电子可以自由移动,使石墨烯具有优良的导电性、新型的量子霍尔效应以及独特的超导性能。石墨烯对一些酶呈现出优异的电子迁移能力,并且对一些小分子(如H2O2、NADH)具有良好的催化性能,使其适合做基于酶的生物传感器,即葡萄糖传感器和乙醇生物传感器。在电化学中应用的石墨烯大部分都是由还原石墨烯氧化物得到的,也称为功能化石墨烯片或者化学还原石墨烯氧化物,这种物质通常有较多的结构缺陷和官能团,在电化学应用上具有优势。 碳是电化学分析和电催化领域应用最广的材料。例如,碳纳米管在生物传感器、生物燃料电池和质子交换膜(PEM)燃料电池方面有着良好的性能。基于石墨烯的电极在电催化活性和宏观尺度的导电性上比碳纳米管更有优势。因此,在电化学领域,石墨烯就有了大展身手的机会。石墨烯在电化学传感器上的应用有以下优点:①体积小,表面积大;②灵敏度高;③响应时间快;④电子传递快; ⑤易于固定蛋白质并保持其活性;⑥减少表面污染的影响。 1石墨烯的电化学基础 为了更好地了解碳材料在电化学领域的应用,有必要研究决定碳电极的几种重要参数的基本电化学行为,即电化学位窗口、电子迁移速率、氧化还原电位等。 ZhouMing等报道称石墨烯在0.1mol/LPBS(pH为7.0)中具有大约2.5V的电化学电位窗口,这与石墨、玻碳、甚至掺杂硼的金刚石电极相似,但是,从交流阻抗谱来看,石墨烯对电荷迁移的阻力比石墨和玻碳电极对电荷迁移的阻力小。 Tang等通过氧化还原电对的循环伏安法研究了石墨烯的电子迁移行为,如具有良好氧化还原峰的3-/4-和3+/2+。在循环伏安法中所有阴阳两极的峰值电流都与扫描速率的平方根呈线性关系,表明石墨烯电极的氧化还原过程主要是由扩散控制的。在CVs(循环伏安法)中,石墨烯中一个电子迁移的氧化还原电对的峰值电位差(ΔEp)非常低,很接近于59mV的理想值,比玻碳电极的小很多;另外,3-/4-的峰值电位差为61.5~73mV

石墨烯基复合材料的制备及其性质

研究生专业课程考试答题册 学号2016260713 姓名李亚飞 考试课程先进复合材料学 考试日期2016年1月16日 西北工业大学研究生院

石墨烯基复合材料的制备及其性质 摘要 石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点。本文综述了石墨烯的制备方法并分析比较了各种方法的优缺点, 简单介绍了石墨烯的力学、光学、电学及热学性能。基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 本文介绍了石墨烯基聚合物复合材料和石墨烯无机纳米复合材料的 制备及性质。 关键词:石墨烯;制备;性质;复合材料 Abstract Graphene its excellent performance and unique two-dimensional structure has become a hot research field of materials. This article reviews the graphene preparation and analysis and comparison of the advantages and disadvantages of each method, a brief introduction to mechanical, optical, electrical and thermal properties of graphene. Graphene-based composite material is graphene applications in important research, this paper describes the preparation and properties ofgraphene-based polymer composites and inorganic nano-graphenecomposites. Keywords:graphene; preparation; properties; composite 一、引言 自从石墨烯单层结构被诺沃肖洛夫等人在2004年首次剥离之后,有关石墨烯及其应用特性的研究在多个领域得到了广泛发展。石墨烯是sp2杂化碳原子形成的厚度仅为单原子层,排列成二维六角网格状的晶体。当施加外部机械力时,碳原子层就会弯曲变形来适应外力,而不必使碳原子重新排列,这样就保持了结构的稳定。石墨烯中的电子在二维六角网格中运动时,不会因晶格缺陷或掺杂原子而发生散射。由于原子间相互作用力较强,即使在常温下周围碳原子间发生挤撞,石墨烯中电子受到的干扰也非常小。石墨烯具有许多优异的性质,如理论上理想的单层石墨烯的比表面积达2630 m2/g,而厚度仅为0.35 nm;理想情况下,电子在石墨烯上的运动速度远超过在一般导体中的运动速度,达到了光速的1/300;石墨烯的拉伸模量和力学强度分别可达1000和130GPa,是目前已知最高的,为钢的100多倍。为了在各种应用中进一步发掘这些性质,研究人员对石墨烯及石墨烯基复合材料的合成进行了多种合成路径的开发。迄今为止,石墨烯已经被成功地与无机纳米结构、有机晶体、聚合物、金属有机框架结构、生物材料、碳纳米管等材料复合,并在电池、超级电容器、燃料电池、光催化、传感、拉曼增强等领域得到了广泛的研究。 1.1、石墨烯的制备 石墨烯的制备从最早的机械剥离法开始逐渐发展出多种制备方法, 如: 晶体外延生长法、化学气相沉积法、液相直接剥离法以及高温脱氧和化学还原法等。我国科研工作者较早开展了石墨烯制备的研究工作。化学气相沉积法是一种制备

石墨烯增强金属基复合材料项目

石墨烯增强金属基复合材料项目 可行性研究报告 有色金属及复合材料研究所编制 二零一四年十月

目录 第一章研究概论 (1) 第二章项目背景和发展概况 (4) 第三章项目发展环境分析 (12) 第四章应用技术方案 (20) 第五章 项目企业竞争策略 (21) 第六章行业国内市场分析 (22) 第七章可行性研究结论与建议 (27) 报告撰写人 冷金凤 二〇一五年十月

第一章 研究概述 1.1研究背景及目标 上世纪九十年代,我国开始金属基复合材料(MMC)的研究,经过二十多年发展,金属基复合材料已经在军事国防领域取得了产业化应用并向民用领域渗透,如今已在陆上交通、民航、工业和体育休闲产业等诸多领域实现商业化的应用。从全球溯源及发展来看,美国是起步最早、投入最大,也是终端产品应用最多的国家,日本和英国也拥有一些生产工艺成熟的企业。相比较而言,我国在金属基研究方向起步较晚,目前在军工、航天领域已在某些器件上获得规模化应用,但也存在生产工艺不成熟,成品率低等问题,在民用领域还没有大的突破。同时,对于颗粒增强金属基复合材料的增强体选择上,通常为陶瓷相,产业化上应用最多的是SiC、Al2O3等陶瓷颗粒,由于硬、脆质点的本征属性,导致金属基复合材料难以进一步塑形成型,同时加工成本高。所以,从金属基复合材料应用深度和广度来看,有必要进一步完善金属基复合材料的制备工艺,提高工艺稳定性,降低制备和加工成本。二维特殊结构石墨烯纳米材料的出现,为解决硬、脆质点加入导致的难以二次加工提供了解决方案,同时进一步降低密度,提高综合性能,所以有必要研究石墨烯增强的金属基复合材料,以满足我国航空航天、军工、交通运输及热管理领域等需求。本文目标在于论证石墨烯增强金属基复合材料在国内生产的项目可行性研究。

我国石墨烯材料应用研究进展和发展前景

我国石墨烯材料应用研究进展和发展前景我国石墨烯材料应用研究进展和发展前景 中国粉体技术网 2015-09-21 11:55:24 阅读(620) 评论(0) 声明:本文由入驻搜狐媒体平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。举报 导读:手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。石墨烯这种二维碳材料引起l人们的广泛关注。那么近几年来我国石墨烯研究进展和发展前景又如何呢? 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。2004年

英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖以来,石墨烯这种二维碳材料开始引起人们的广泛关注。那么近几年来我国石墨烯研究进展和发展前景又如何呢? “重庆造“石墨烯安全手机获2万套订单 继今年3月全球首批量产石墨烯手机在重庆市问世后,“重庆造”石墨烯手机又有新产品。重庆墨希科技有限公司(以下简称重庆墨希科技)与重庆华森心时代实业公司(以下简称华森心时代)日前签订《石墨烯商务安全手机采购协议》,根据协议,华森心时代计划向重庆墨希科技采购价值3800万元的2万套石墨烯商务安全手机。 根据相关公告显示,这批石墨烯手机是符合国家保密局等保四级标准的硬件加密安全手机。其机型名为“LT521”,是一款5.5寸全高清屏的五模4G手机,采用了石墨烯触控屏、石墨烯导热膜及石墨烯电池,采购单价为1900元/套,配置方面与目前市场上主流的安卓智能手机差不多。据了解,华森心时代采购的这批手机将主要面向金融业、政府部门和商务高端人士销售。 今年3月,重庆墨希科技发布全球首批量产石墨烯手机时表示,由于采用石墨烯触摸屏、石墨烯电池和石墨烯导热

石墨烯的研究发展

石墨烯的研究发展 前言 石墨烯[1]是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳 质材料,他可看作是构建其他维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有特殊的优异的力学、电学和光学性质,这些优异的性能和独特的纳米结构,使石墨烯成为近年来广泛关注的焦点。基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景[2~4]。本文将从材料化学的角度对石墨烯的发展、制备合成、表面修饰、基于石墨烯的纳米复合材料及其性能等方面进行简要的综述[5~6]。 图1 石墨烯独特的原子结构和电子结构(a)石墨烯翘曲成0D 富勒烯, 卷成 1D 碳纳米管或者堆垛成3D的石墨,是构成其他石墨材料的基本单元[7]; (b)非支 撑单层石墨烯的能带结构[8] 发展简史 在1934年,朗道(L.D.Landau)和佩尔斯(R.E.Peierls)[9] 指出准二维晶体材料由于其自身的热力学不稳定性,在常温常压下会

迅速分解。 1947年,菲利普·华莱士(Philip Wallace)就开始研究石墨烯的电子结构[10]。 1956年,麦克鲁(J.W.McClure)推导出了相应的波函数方程[11]。 1960年,林纳斯·鲍林(Linus Paul.ing,诺贝尔化学奖、和平奖双料得主)曾质疑过石墨烯的导电性[12]。 1966年,大卫·莫明(DavidMermin)和赫伯特·瓦格纳(Herbert Wagner)提出Mermin.Wagner理论[13],指出表面起伏会破坏二维晶体的长程有序。因此,虽然理论物理学家对石墨烯并不陌生,但并未对它寄予太多的期望。 1984年,谢米诺夫(G.W.Semenoff)得出与波函数方程类似的狄拉克(Dirac)方程[14]。 1987年,穆拉斯(S.Mouras)才首次使用“graphene”这个名称来指代单层石墨片(石墨烯)[15]。在进行理论计算时,石墨烯一直是石墨以及后来出现的碳纳米管的基本结构单元。但传统理论认为,石墨烯也只能是一个理论上的结构,不会实际存在。 美国德克萨斯大学奥斯汀分校(University of Texas at Austin)的罗德尼·鲁夫(Rodney Rouff,当时在华盛顿大学)曾尝试着将石墨在硅片上摩擦[16],并深信采用这个简单的方法可获得单层石墨烯,但很可惜他当时并没有对产物的厚度做进一步的测量。美国哥仑比亚大学(Columbia University)的菲利普·金(Philip Kim)也利用石墨制作了一个“纳米铅笔”,在一个表面上划写,并得到了石墨薄片,

石墨烯在金属表面上 Graphene on metal surfaces

U N C O R R E C T E D P R O O F 1 2 Graphene on metal surfaces 3 J.Wintterlin a,*,M.-L.Bocquet b 4a Ludwig-Maximilians-Universit?t München,Dept.Chemie und Biochemie and Center for Nanoscience CeNS,Butenandtstr.5-13,81377Munich,Germany 5 b Universitéde Lyon,Laboratoire de Chimie,Ecole Normale Supérieure de Lyon,CNRS,F69007Lyon,France 68a r t i c l e i n f o 9Article history: 10Available online xxxx 11Keywords:12Review 13Graphene 14Metal surfaces 15Nickel 16Ruthenium 17Platinum 18Iridium 19 20a b s t r a c t 21The article reviews work on graphene monolayers adsorbed on metal surfaces.Graphene layers on metals 22have been prepared by surface segregation of carbon and by decomposition of hydrocarbons.The ?lms 23are often not rotationally aligned to the metal surface.However,for a number of hexagonally close-24packed surfaces perfectly ordered epitaxial overlayers can be obtained,with domains larger than the ter-25races of the metal substrate.In most cases the well-ordered overlayers display moiréstructures with 26large periodicities,resulting from the lattice mismatch between graphene and the underlying metal.27These structures are connected with a buckling of the graphene layer indicating local variations of the 28binding to the metal.For the metal–graphene spacings values between approximately 2.1and 3.8?were 29found,depending on the metal.Reasons for these strong variations are not yet clear,but there are indi-30cations that the systems fall into two classes that differ qualitatively with respect to the metal/graphene 31interaction.These variations are also re?ected by the electronic structure.There are metal–graphene sys-32tems in which the p band is signi?cantly downshifted in energy compared to the free-standing graphene, 33and a band gap of order eV has opened at the K point of the Brillouin zone.In other systems,the electronic 34structure of free-standing graphene is almost intact.The perfectness of the epitaxial moiréphases offers 35promising applications,e.g.,as templates for nanostructures. 36ó2009Published by Elsevier B.V. 37 3839 1.Introduction 40The publication in 2004of a method to prepare free-standing 41graphene,single 2D carbon sheets with the same structure as the 42individual layers in graphite,has initiated enormous scienti?c 43activities [1–4].Graphene is a unique material.It is strictly 2D 44(apart from a small,long-range buckling [5]),it has a high crystal-45lographic quality,and it is stable under ambient conditions.It has a 46very special electronic structure,the p and p *bands touch in a sin-47gle point at the Fermi energy (E F )at the corner of the Brillouin 48zone,and close to this so-called Dirac point the bands display a lin-49ear dispersion.This topology of the bands gives rise to exotic elec-50tronic transport properties –the charge carriers behave like 51relativistic particles –which manifest themselves in unusual phe-52nomena such as an anomalous quantum Hall effect [6,7].The bal-53listic charge carrier transport at 300K and at high charge carrier 54concentrations makes graphene also interesting for applications 55in electronic devices [4]. 56In the adsorbed form on metal surfaces graphene has been 57known for at least 40years.The formation of graphene was ?rst 58observed during preparation of Pt and Ru single crystal surfaces 59[8–12].When during the usual preparation the samples were 60 annealed to high temperatures,carbon impurities segregated from 61the bulk to the surface.It was soon realized that one form of this 62surface carbon is graphene [11].Graphene on metal surfaces is also 63known from industrial heterogeneous catalysis,where,for reac-64tions involving hydrocarbons,the deposition of graphitic carbon 65on the catalyst surface is a major reason for deactivation [13,14].66Recent investigations have shown that these graphitic layers can 67consist of a few graphene layers only,or even of monolayers 68[15].Not surprisingly,the current boom in research on free-stand-69ing graphene has led to renewed interest in graphene adsorbed on 70metal surfaces.Exploration of these systems has meanwhile be-71come a third main ?eld of graphene research,in addition to inves-72tigations of free-standing graphene and of epitaxial graphene on 73SiC.(The decomposition of SiC is the second major method for 74graphene preparation [16–18],apart from the mechanical exfolia-75tion from graphite.) 76In this contribution,we give an overview of results for metal–77graphene systems.The available published material on graphene 78on metals has strongly grown since two previous reviews from 791997[19,20],and currently the ?eld is developing so rapidly that 80we cannot hope to provide much more than a snapshot.An impor-81tant issue in many of the investigations has been the question of 82how the graphene layer interacts with the metal,which,of course,83is the discriminating factor from isolated and SiC-supported graph-84ene:Is the graphene layer physisorbed –as one may expect from 85the very weak interaction between the layers in bulk graphite –86 or is it bound more strongly?And how is the electronic structure 0039-6028/$-see front matter ó2009Published by Elsevier B.V.doi:10.1016/j.susc.2008.08.037 *Corresponding author.Tel.:+4908921807606;fax:+49089218079994.E-mail address:wintterlin@cup.uni-muenchen.de (J.Wintterlin).Surface Science xxx (2009)xxx–xxx Contents lists available at ScienceDirect Surface Science j o u r n a l ho m e p a g e :w w w.e l s e vier.c om/locate/susc

相关主题
文本预览
相关文档 最新文档