当前位置:文档之家› 碱性蚀刻废液再生新方法研

碱性蚀刻废液再生新方法研

碱性蚀刻废液再生新方法研
碱性蚀刻废液再生新方法研

碱性蚀刻废液再生新方法研

发表时间:2019-07-23T16:17:31.583Z 来源:《科技研究》2019年5期作者:李瀚

[导读] 本文对碱性蚀刻废水的产生及危害进行了分析,并对当前碱性蚀刻废液再生新方法进行了介绍。希望能为碱性蚀刻废水的再生处理提供一定的指导。

(惠州市鸿宇泰科技有限公司广东惠州 516000)

摘要:碱性蚀刻废水中含有大量的铜离子和铵态氮和氯化物等成分。进入到水体或土壤中,会造成水体污染和富营养化、土壤污染和盐渍化等环境污染及生态破坏问题,对人类健康也会产生较大的风险。且该废水中含有大量的铜,具有很高的回收价值。因此需要采取有效的再生技术对碱性蚀刻废液进行资源化利用。本文对碱性蚀刻废水的产生及危害进行了分析,并对当前碱性蚀刻废液再生新方法进行了介绍。希望能为碱性蚀刻废水的再生处理提供一定的指导。

关键词:碱性蚀刻;蚀刻废液;再生方法

前言:蚀刻是PCB生产过程中的常规操作,碱性蚀刻液是PCB蚀刻最常使用的蚀刻液。因此,随着PCB产量的增大,碱性蚀刻液的用量也显著增大,进而导致碱性蚀刻废水的量也显著增加。碱性蚀刻废水中含有大量的铜离子(浓度在100g/L以上)和铵态氮(浓度在150g/L以上),还包括氯化物等成分。如果不能对该废水进行有效的处理而直接排放会造成严重的环境污染问题,而且还会造成铜的流失,产生较大的经济损失。采用合适的再生技术对蚀刻废水中的铜和铵态氮进行再生回收利用,不仅可以使得实现铜的资源化利用,还能避免蚀刻废水对环境造成污染,具有十分重要的意义。目前用于碱性蚀刻液再生的技术有多种,需要根据碱性蚀刻液废水的性质和厂家的需求选择合适的再生技术。

1 碱性蚀刻废液的产生

印刷电路板的制作有多种方法,其中上世纪四十年代提出的铜箔腐蚀法是最常见和实用的电路板的制作方法。采用该生产工艺的PCB 蚀刻工艺包括材料开孔、钻孔、沉铜、图案转移、电镀、退膜、蚀刻、镀锡、成型等步骤。蚀刻液主要应用于蚀刻步骤。随着蚀刻工艺的进行,蚀刻液将电路板上多余的铜箔腐蚀而使其发生溶解,使得溶液中铜离子越来越多。当铜离子浓度达到饱和以后蚀刻反应会慢慢结束,直到最终消除蚀刻效果,就形成了蚀刻废液。据数据显示,每平方米的PCB平均会产生2.5 千克左右的蚀刻废液。在印制电路板的蚀刻过程中产生的蚀刻废液主要包括碱性氯化铜蚀刻废液、酸性氯化铜蚀刻废液和氯化铁蚀刻废液等。每种蚀刻废液的成分由于蚀刻工艺的不同而显著不同。其中,碱性蚀刻废液中主要包含铜离子、铵盐和氯化物等成分。在蚀刻过程中,印刷电路板上的铜箔表面的金属铜会与蚀刻液中的铜离子发生氧化还原反应,并与铵离子发生配位反应,转化为亚铜的络合物而溶解,在溶液中氧气的氧化作用下又可形成铜离子的络合物,所以碱性蚀刻废水中通常含有铜离子、铵盐和氯化物等成分。

2 碱性蚀刻废液的污染危害

碱性蚀刻废液中含有铜离子、铵盐和氯化物等。这些污染物进入环境中会对水体、土壤环境造成较大危害,主要体现在:首先,铜离子是重金属元素,具有一定的毒性,进入到环境中容易对生物造成不利影响,还能被生物积累,随食物链进入到人体,危害人体健康。其次,铵盐含量较高,铵态氮是常见的营养元素,进入到水体环境中,会导致水体出现富营养化,破坏水生生态系统的平衡,造成严重水质下降问题。还有这些盐类进入到土壤环境中容易导致土壤盐渍化,影响土壤肥力和农产品产量。此外,蚀刻液具有一定的腐蚀性,对城市排水管道具有一定侵蚀作用,严重时会导致泄漏。因此,必须要采取有效的措施来处理碱性蚀刻废水。

3 碱性蚀刻废液再生新方法

碱性蚀刻废液再生的机理是采用有效手段将铜氨络合物中氨释放出来,以单质铜或铜化合物的形式提取铜。其中以单质铜形式的方法包括内电解法、电解法、溶剂萃取和膜萃取等方法,而以铜化合物形式的方法主要是沉淀法。目前使用再生新方法主要包括内电解法、复极式电解法、离子膜电解法、溶剂离心萃取法和膜萃取法。下面对这几种再生新方法进行介绍。

3.1 内电解法

该方法是利用铁、铝等活泼金属来形成原电池,提供电解的内在动力,使得铜离子沉积在金属的表面从水中去除的过程。通常是采用活泼金属作为阴极,蚀刻废液作为阳极,然后进行电解反应,铜离子在阴极发生还原反应生成单质铜,滤液就是再生的蚀刻液。可见,内电解法操作简便,容易实现,但在效率方面还需要进一步的提高。

3.2 复极式电解法

直接电解法采用的是单级式电解槽,而复极式电解法对电解槽进行了优化升级,采用的是复极式电解槽。这样就使得电极的两面都能产生作用,同时发生阳极反应和铜离子的还原,生产单质铜,而对蚀刻液进行了再生。具有成本低、空间小的优点,但是该方法铜容易在电极上沉积,很难从电极上剥离下来。

3.3 离子膜电解法

在电解槽中加入离子交换膜,使得阴阳离子分开,避免阴阳离子发生复合,这样会使得阴极室铜离子还原生成的铜单质反应加快,铜粉的纯度提升。但在阳极室容易生成毒性气体氯气。

3.4 溶剂离心萃取法

采用二酮代替羟基肟作为萃取剂对蚀刻废液中的铜离子进行萃取,该萃取剂可以与铜离子发生络合作用,而对铜离子起到了选择性去除作用,使得溶剂萃取法的效果得到加强,避免了氯离子的干扰,具有很好的应用价值。为了进一步减小装置的体积,加入离心的步骤,开发了离心萃取工艺,使得萃取效率大幅提升,还使得设备的占地面积显著降低,使得成本下降。

3.5 膜萃取法

该方法是采用微孔膜来对蚀刻液中铜离子进行萃取分离,通常采用微孔膜反应器对碱性蚀刻废液进行再生操作,能够获得高纯度的铜。但是膜容易被污染,使得其萃取性能下降,还容易出现机械强度不足的情况;利用除铜后的含氨氮废水,通过一系列检验、分析、调整、制备而成新的碱性蚀刻液,循环应用到PCB蚀刻工艺中,从而形成废液产生、提铜、回用的环保节能减排模式。

20T软化水处理技术

20m3/h 全自动软化水设备系统技术说明

1、设计依据及验收标准 1.1原水水质分析:(见原水水质报告) 1.1.1总硬度:<0.03mmo1/1 1.1.2悬浮物: 5mg/l 1.2设备主要技术参数: 1.2.1进水硬度:≤ 8.5 (以H+计按需方水质报告) 1.2.2系统出水量: 20m3/h 出水硬度不大于0.03meq/L 1.2.3进水压力: 0.6~0.8 1.2.4进水温度: 4~50℃ 1.2.5单台再生时间:2小时 1.2.6工作电压:220V /50Hz 1.2.7工作压力:0.25-0.5Mpa 1.2.8运行方式:同时运行、分别再生 1.2.9控制方式:流量控制 1.2.10原水至成品水设备系统自动运行,出水符合《低压锅炉给水质量标准》 2、工艺流程图及设备平面布置图 工艺流程: 3、工程交接点 3.1本工程的设计范围包括软化水站的工艺、设备制造、现场管道件的按装、系统设备调试、电气与自控等专业的全部内容。 3.2系统设备的基础土建施工由需方完成。 3.3系统接口: 系统进水:进口接点管径DN65钢管,由供方将待处理水送至软水器入口; 系统出水:出口管径DN65钢管; 设备的冲洗水:设备排放接口接至地沟;

电源:需方提供220V 50HZ电源, 备注:进口、出口采用标准法兰连接,DN65/PN16 3.4交换柱采用钢衬胶罐,外形美观又耐腐蚀,运输方便。 3.5设备、管道及阀门自带标识或标牌,以便识别; 3.6设备顶部须盖简易房,以保护设备,另室内照明由用户负责; 3.7本设备在调试运行过程中所用工业盐由需方负责; 3.8设备基础、水站现场地沟由供方提供施工图纸,施工及材料均由需方负责。 4、工艺设计说明 根据我公司对以往的工程经验,进行优化设计。 软化系统采用美国Pentair公司的FLECK2900#7控制阀,同时运行、分别再生。其工作过程包括:运行→反洗→吸盐→置换→盐箱注水→运行五个过程,其间每个过程的持续时间可以根据处理水质和量的不同来调整时间;根据流量来控制再生。 钠离子交换器选用2台钢衬胶树脂罐,保证系统24小时平均连续供水量可达20吨/时。 树脂采用上海树脂厂001×7型强酸阳离子交换树脂,其交换容量大,树脂颗粒均匀。 5、主要设备技术规范 5.1自动钠离子交换器 外形尺寸: 1500*4500 数量: 2套 树脂型号: 732(001X7) 运行流速: 25m/h 设计出水: 20 m3/h 工作压力: 0.3Mpa 工作介质: H2O和稀NaCl 工作温度: 4~50℃ 再生型式:顺流再生 材质: FRP

循环用水、重复用水、中水、再生水的区别和关系

“中水”和“再生水”是同一定义么,有什么区别“中水”起名于日本,“中水”的定义有多种解释,在污水工程方面称为“再生水”,工厂方面称为“回用水”,一般以水质作为区分的标志。其主要是指城市污水或生活污水经处理后达到一定的水质标准,可在一定范围内重复使用的非饮用水。在美国、日本、以色列等国,厕所冲洗、园林和农田灌溉、道路保洁、洗车、城市喷泉、冷却设备补充用水等,都大量的使用中水。我国是水资源匮乏的国家,但目前还没有中水利用专项工程,也没有专项资金,只是政策上引导,各城市的中水利用量是根据此城市的缺水程度不同而定的。 再生水是指污水经深度处理后,达到一定水质指标、回用用户的水。再生水一般可以饮用。 循环用水、重复用水、中水、再生水的区别和关系定义1:水循环是指水由地球不同的地方透过吸收太阳带来的能量转变存在的模式到地球另一些地方,例如:地面的水份被太阳蒸发成为空气中的水蒸汽。而水在地球的存在模式包括有固态、液态和气态。而地球的水多数存在于大气层中、地面、地底、湖泊、河流及海洋中。水会透过一些物理作用,例如:蒸发、降水、渗透、表面的流动和表底下流动等,由一个地方移动至另一个地方。如水由河川流动至海洋。 定义 2 :在太阳能和地球表面热能的作用下,地球上的水不断被蒸发成为水蒸气,进入大气。水蒸气遇冷又凝聚成水,在重力的作用下,以降水的形式落到地面,这个周而复始的过程,称为水循环。 定义3 :水循环是指大自然的水通过蒸发,植物蒸腾,水汽输送,降水,地表径流,下渗,地下径流等环节,在水圈,大气圈,岩石圈,生物圈中进行连续运动的过程。 2.主要作用 水是一切生命机体的组成物质,也是生命代谢活动所必需的物质,又是人类进行生产活动的重要资源。地球上的水分布在海洋、湖泊、沼泽、河流、冰川、雪山,以及大气、生物体、土壤和地层。水的总量约为1.4×1013 m3,其中97%在海洋中,约覆盖地球总面积的70%。陆地上、大气和生物体中的水只占很少一部分。

再生资源循环利用产业集群规划

. 再生资源循环利用产业集群规划 一、产业理解 1 、政策导向 2005 年 9 月,国家发改委出台了《废旧家电及电子产品回收处理管理条例》;2006 年 1 月,国家环保总局出台了《电子废弃物污染环境防治管理办法(征求意见稿)》;2006 年 2 月,国家发改委、科技部、国家环保总局出台了《汽车产品回收利用技术政策》等等。 表1 近年来有关再生资源产业的政策、法规(部分)

. 1

. 近几年来,我国就再生资源循环利用问题出台的多项政策法规, 对我国再生资源循环利用给予了方向上的指导。 除了国家相关政策法规外,全国各地根据实际情况出台了一系列 相关地方性法规。总之加强再生资源循环利用,加强环境保护越来越 受到重视,特别是党的十八大将我国生态建设上升到国家战略层面。 2 、技术解读 2006 年 12 月,国家发改委在《“十一五”资源综合利用指导 意见》中,将再生资源解释为“生产、流通、消费等过程中产生的不 再具有使用价值而以各种形态赋存,但可以通过不同的加工途径而使 其获得使用价值的各种物料的总称”。2007 年 5 月 1 日起施行的《再生资源回收管理办法》将再生资源定义为,“在社会生产和生活消费 过程中产生的,已经失去原有全部或部分使用价值,经过回收、加工 处理,能够使其重新获得使用价值的各种废弃物”。 从以上定义可以看出,再生资源覆盖了商品和资源在生产和生活 环节流通的全过程。从开采和生产过程的尾矿、伴生矿、工业废渣等,到流通环节的包装、运输,再到终端消费环节产生的各种废弃物。从 类型来看,再生资源主要包括三大类:金属类再生资源、非金属类再 生资源和废旧电子电气机械设备(见表 6-2)。 表 2 再生资源分类表 再生资源产业是专门或主要从事再生资源流通(即收购与销售作 为各种再生资源赋存形式的物品)与加工利用(即以再生资源为原料

再生水处理工程自动化控制系统应用探讨

再生水处理工程自动化控制系统应用探讨 发表时间:2017-06-16T10:03:29.313Z 来源:《基层建设》2017年5期作者:钟逵邱建中 [导读] 本文中结合“双膜法”处理工艺展开相关的探讨,分别对系统构成、功能、配置等方面进行阐述,并进一步提出应用注意事项。 浙江浙大中控信息技术有限公司浙江省杭州市 310051 摘要:再生水处理是解决工业化时代水资源污染、匮乏的重要技术,尤其在城市化背景下,包括生活污水处理在内的各项需求,都离不开再生水处理工程自动化控制系统。再生水处理工程涉及到复杂的技术、设备、原料,其中控制过程的自动化是系统应用的核心部分。本文中结合“双膜法”处理工艺展开相关的探讨,分别对系统构成、功能、配置等方面进行阐述,并进一步提出应用注意事项。 关键词:再生水处理;自动化;控制系统;双膜法;应用 1、我国再生水处理技术发展的必要性 人类社会现代化程度越高,客观上对自然资源的消耗就越多,水资源既是人类生存的必需品,也是工业、农业、建筑业等国民经济支柱产业发展的重要资源。水资源紧张的局面形成来源于两个方面的影响,其一是过度开采,尤其是针对地下水的不合理应用,导致人口聚集规模较大的城市缺水严重,其二是水源污染,以江河湖海等地表水较为严重,如上世纪90年代我国的淮河污染至今尚未彻底解决。为了应对我国水资源分布不均衡、供给短缺的现象,近年来我国在水利工程发展上做出了巨大努力,如“南水北调”;但相对于区域化的水资源管理、开发和利用层面,再生水循环利用是一种更符合环保理念的方法。 “十三五”是我国未来城市化发展中的重要阶段,城市规模日益扩大、人口不断增加,水资源供应成为了衡量城市化水平的重要标准,相应的,再生水处理工程自动化控制系统应用的程度(或应用的比例)和工艺水平,直接影响着再生水的生产效率。“双膜法”是目前效率及质量均较突出的一种工艺,基于该工艺构建的再生水处理工程自动化控制系统有效回收率可达到75%以上,针对无机离子(城市生活废水的主要成分类型)的去处理可达到98%,是一种发展前景、市场空间较优秀的技术应用。 2、双膜法工艺再生水处理流程概述 “双膜法”本质上是一种以新型膜材料为主体的污水脱盐工艺,配合自动化技术、在线监测技术、集成计算机控制技术、仪表技术等形成一套完善的“再生体系”,目前也是我国城市污水治理中主要的途径之一,其经济性、实用性和环保性十分优越,所获取的再生水资源完全可以满足低端用途和工业需求。 顾名思义,双膜法包括了两种膜材料组合,其一是UF膜组系列,其二是RO膜组系列,从工艺流程角度分析,当污水(预处理后的一级A出水)进入再生水处理系统之后,一部分进入处理系统,充当“配水”角色,其他的进入双膜法工艺的过滤系统。UF膜组包括五组超滤膜,它的主要作用是去除污水中的微生物、杂质以及其他大分子化合物,其中一部分仍然作为配水使用,其他进入RO膜组进行无机盐离子的清除,最后通过管网配送给用户。 显而易见的是,与其他污水处理工艺相比,双膜法工艺再生水处理流程中不包括过度复杂的流程和化学产品应用,当然与该处理工艺相匹配的系统部分中,也包括了反渗透化学清洗、反渗透冲洗系统、在线水质检测系统等,其主要是用来膜杀菌和污染去除。 3、再生水处理系统的核心构成、配置和功能 3.1 系统核心构成 根据国内广泛建设的再生水处理工程自动化控制系统结构分析,其核心部分是“监控系统”,主要负责再生水处理过程的监视、控制和数据采集。整个系统可以分成三层,分别是生产管理监控、现场监控和可编程监控。其中,生产管理监控是核心中的核心,一般以此为基础构建中心控制室;现场监控本身是计算机设备和可编程控制器的运行机制,在设备上包括I/O控制机柜、触摸屏、电控柜以及大量智能仪表设备,其构建方式需要符合在线控制的基本要求,一般国内的控制系统建设利用了C/S架构来保障完整性。 3.2 系统配置概述 基于双膜法工艺实现的再生水处理工程自动化控制系统的配置可划分为两个方面,一方面是中央控制室,一方面是现场控制架构。 第一,中央控制室配置。以二、三线城市中等规模污水处理长建立的再生水处理系统来说,基本已经实现了工业级以太网和光纤冗余网的无缝对接,便于不同地区的系统资源共享,其中以再生水调配为主。在中央控制室的配置上,除了必要的工业级计算机之外,终端计算机配置可搭载windowsXP以上的系统,目前来说计算机搭载工业软件产品的应用主要以32位软件为主,因此配置过高并不存在绝对性优势;配置光纤以太网监控系统,以满足各车间再生水工况运转情况,此外包括报警系统、远程控制系统等。 第二,现场控制架构配置。现场控制架构的主要设备场所是再生水控制室,除工业计算机意外,还需要配置以太网设备、UPS电源设备、PLC控制柜设备、电脑外设等,总体上,配置内容应该满足生产的自动化需求,并实现自动保护和调节,以及对各类参数的接受、处理、分析和打印。 3.3 系统功能分析 首先,系统设备控制。确保设备的良好状态是实现自动化控制的前提,系统设备的控制方式基本上存在两种人工干预模式,其一是本地手动操作,即管理人员在设备当前位置上进行参数、工况的改变。其二是远程控制,最常见的如开关控制、离合控制,以及通过系统实现的传感机械臂控制等。实践中,中等规模再生水处理工程自动化控制系统可以由较多的人工变量参与,这样可以减少设备维修的比例,提高无故障运营周期,确保再生水的产量;远程控制中较为重要的功能是定时启动、运行。 其次,工艺控制功能。利用工艺设备进行工艺控制,客观上要求与监测设备形成连锁形态,如超滤系统、反渗透系统等可采取液位控制的方式,并根据原水池液位控制超滤系统的停开状态,实现水泵及系统的安全运行。此外,超滤进水泵的自动化控制实现依赖变频技术,减少水泵调节的人工成本支出,这与反渗透高压泵所采取的闭环控制策略是一直的,所不同的是,前者调节水泵转速,后者调节水泵压力,依次实现反渗透膜的恒压进水要求。 再次,保护控制功能。双膜法工艺下的再生水处理存在一定的压力状态,尤其是高压泵容易出现异常,压力过高、过低都会导致联锁停车,导致整个生产陷入停顿状态。保护控制的终端可以安装压力传感器,通过预定参数的设置来确保膜组件不被破坏。 总体上说,积极发展再生水处理技术是我国目前应对城市化发展中水资源短缺的重要途径,本文中基于再生水处理工程自动化系统的应用进行了讨论,主要涉及了功能、配置、架构等。此外,国内外目前在这一领域的研究方向主要侧重新型膜材料技术开发,膜性能的提升可以极大地简化自动化控制系统的流程、降低难度、节约成本,这也是我国水处理产业的一个重要研究方向。

[水处理技术]十种常用水处理方法

[水处理技术]十种常用水处理方法 沉淀物过滤法 沉淀物过滤法的目的是将水源内之悬浮颗粒物质或胶体物 质清除干净。这些颗粒物质如果没有清除,会对透析用水其它精密的过滤膜造成破坏或甚至水路的阻塞。这是最古老且最简单的净水法,所以这个步骤常用在水纯化的初步处理,或有必要时,在管路中也会多加入几个滤器(filter)以清除体积较大的杂质。滤过悬浮的颗粒物质所使用的滤器种类很多,例如网状滤器,沙状滤器(如石英沙等)或膜状滤器等。只要颗粒大小大于这些孔洞之大小,就会被阻挡下来。对于溶解于水中的离子,就无法阻拦下来。如果滤器太久没有更换或清洗,堆积在滤器上的颗粒物质会愈来愈多,则水流量及水压会逐渐减少。人们就是利用入水压与出水压差来判断滤器被阻塞的程度。因此滤器要定时逆冲以排除堆积其上的杂质,同时也要在固定时间内更换滤器。沉淀物过滤法还有一个问题值得注意,因为颗粒物质不断被阻拦而堆积下来,这些物质面或许有细菌在此繁殖,并释放毒性物质通过滤器,造成热原反应,所以要经常更换滤器,原则上进水与出水的压力落差升高达到原先的五倍时,就需要换掉滤器。2硬水软化法 硬水的软化需使用离子交换法,它的目的是利用阳离子交换

树脂以钠离子来交换硬水中的钙与镁离子,以此来降低水源内之钙镁离子的浓度。其软化的反应式如下: Ca2++2Na-EX→Ca-EX2+2Na+1Mg2++2Na-EX→Mg-EX2+ 2Na+1式中的EX表示离子交换树脂,这些离子交换树脂结合了Ca2+及Mg2+之後,将原本含在其内的Na+离子释放出来。树脂基质(resin matrix)内藏氯化钠,在硬水软化的过程中,钠离子会逐渐被使用耗尽,则交换树脂的软化效果也会逐渐降低,这时需要作还原(regeneration)的工作,也就是每隔固定时间加入特定浓度的盐水,一般是10%,其反应方式如下:Ca-EX2+2Na+ (浓盐水)→ 2Na-EX+Ca2+Mg-EX2+2Na+ (浓盐水)→ 2Na-EX+Mg2+如果水处理的过程中没有阳离子的软化,不只是逆渗透膜上会有钙镁体的沉积以致降低功效甚至破坏逆渗透膜,长期饮用也容易得到硬水症候群。硬水软化器也会引起细菌繁殖的问题,所以设备上需要有逆冲的功能,一段时间後就要逆冲一次以防止太多杂质吸附其上。全自动钠离子交换器采用离子交换原理,去除水中的钙、镁等结垢离子。当含有硬度离子的原水通过交换器内树脂层时,水中的钙、镁离子便与树脂吸附的钠离子发生置换,树脂吸附了钙、镁离子而钠离子进入水中,这样从交换器内流出的水就是去掉了硬度的软化水。 3去离子法

碱性蚀刻液循环再生技术2013.2.15

碱性蚀刻液循环再生系统 建 议 计 划 书 2013年2月15日

一、项目背景 近20年来,中国的PCB行业一直保持10-00%的年增长速度,目前有多种规模的PCB企业3500多家,月产量达到1.2亿平方米。蚀刻是PCB生产中耗药水量较大的工序,也是产生废液和废水最大的工序,一般而言,每生产一平方米正常厚度(18μm)的双面板消耗蚀刻液约为2~3升,并产出废蚀刻液2~3升。我国PCB行业每月消耗精铜6万吨/月以上,产出的铜蚀刻废液中总铜量在5万吨/月以上,对社会尤其是PCB厂周边地区的水资源和土壤造成了严重污染。 铜是一种存在于土壤及人畜体内的重金属元素,土壤中含量一般在0.2ppm左右,过量的铜会与人畜体内的酶发生沉淀/络合反应,发生酶中毒而丧失生理功能。自然界中的铜通过水体、植物等转移至人畜体内,使人畜体内的微量元素平衡遭到破坏,导致重金属在体内的不正常积累,产生致病变性、致癌性等结果。 探索铜蚀刻过程的清洁生产技术,使铜蚀刻废液消除在生产过程中,实现在线循环再生,以彻底杜绝污染源及其污染扩散,实现真正意义上的源头治理,既是环境保护部门强制执法的第一选择,也是PCB行业降低生产成本,走可持续发展之路的必然选择。

二、项目运作模式 2.1系统设备的提供 1)我公司免费提供一成套碱性蚀刻液循环再生设备,废液处理能力100吨/月,设备造价200万元/套。 2)贵公司负责免费提供设备安装运作所需要的场地和相关水电接入到循环再生设备生产车间等条件。 2.2系统设备运作 1)设备运作由我公司派专人和工程师24小时配合贵公司运作管理; 2)设备运作费用由我公司自行负责; 3)再生子液的化学药剂等费用由我公司负责; 4)贵公司负责设备和我公司现场工作人员的基本安全,为我公司驻厂工作人员提供食宿。 2.3系统设备维护 1)设备维护由我公司负责; 2)设备维护费用由我公司自行负责; 3)设备日常管理记录由我公司负责。 2.4收益共享分配 1)设备运作所产生的效益实现共享原则;

最新对再生铜循环利用实践的反思

对再生铜循环利用实 践的反思

对再生铜循环利用实践的反思 ---暨对铜矿资源枯竭地区产业转型实践的补充探讨 (昆明云铜杆业有限公司李鹰 2014/5/14) 关键词:再生铜反射炉焚烧炉循环利用原料预处理环境治理商业模式前言:传统的再生铜循环利用产业链,在已经占据了铜及铜合金产品近40%左右产业份额的同时,却一直都面临着来自于原料分类混乱、财税支持政策不到位、环境治理要求日益提高、供销市场与生产衔接不畅通等方面的制约和困扰。本文试图从再生铜循环利用制造业的实践出发,对原料分类及预处理、环境治理、盈利模式等问题,进行查漏补缺式的补充探讨。为了避免本文对一些刊物已有定论的重复,特别是已经非常成熟的精炼加工的工艺、技术、设备、质量管理体系,以及废铜直接电解技术等方面的论述,均不在本文赘述。又为了让读者对再生铜循环利用的业态有一个全面的了解,就在参考文献里罗列了大量与再生铜循环利用有关的文献和资料,供参阅。 1.0产业背景 1.1再生铜的循环利用的流入闭合环 (图一)再生铜流入闭合环 ⑴→⑵→⑶→⑷→⑸→⑹→⑺→⑻ ↑再生铜↓ ⑿循环利用⑼ ↑闭合环↓ ⑾←⑽ 图例:⑴含铜矿物。⑵采选冶加工。⑶铜及铜合金产品。⑷使用。⑸报废。 ⑹回收。⑺分类。⑻预处理。⑼加工。⑽铜及铜合金产品。⑾使用。⑿报废。 1.2再生铜循环利用状况 因国内废铜资源不足,依靠大量进口,形成了遍布各地规模庞大的再生铜循环利用产业,国内再生铜循环利用量早已突破百万吨,占国内铜的总用量已接近40%,在再生铜循环利用的全产业链上的产品,形成的工业增加值达到百亿元以上,且涉及到众多的行业受惠。 再生铜循环利用的工艺、技术、设备的不断创新,满足了国民经济发展带来的市场需求,也带动了相关产业发展,不断延伸的再生铜循环利用产业链,为这个传统产业带来了持续不断的挑战和机遇,再生铜循环利用无疑将长期成为可持续发展的资源综合利用产业。这也可以视为寻找铜矿资源枯竭地区产业转型的渠道之一。 2.0原料的预处理

第四节 高分子材料的循环再生

第四节高分子材料的循环再生 一、塑料的循环再生 20世纪70年代塑料工业获得飞速发展,产生了大量塑料废弃物而成为社会环境问题,塑料在制造过程和使用后的废弃物达到产量的一半以上。 (一)塑料循环再生的方法分类 (二)高分子材料废弃物的分离和预处理 为了有效地利用高分子材料废弃物,一般就要根据再生材料的种类、再生品的形态和使用目的进行收集、分离、筛选、洗净、干燥和破碎等处理。高分子材料废弃物的品种越单纯其再生品的附加值越高,虽然高分子材料品种繁多,实际大量使用的只有聚乙烯、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯和聚酯类。所以实际操作也有这种可能性。 最简单和最经常使用的分离方法是手工分离,所以一些国家制定了塑料种类标识,要求生产厂在出厂前印上标识,而大多数国家还是按经验识别。为使分离达到高效率化开发了许多先进技术,其中包括CO2、SF6超临界连续分离法,根据材料不同的导电性、热电效应及带电特性的静电分离法,利用光学分离的近红外光谱分离法和X光分离法,颜色分级分离法,冲击粉碎分离法,利用对溶剂溶解度不同的溶剂分离法等。 (三)化学方法循环再生 选择化学方法循环再生主要应用在以下几个方面:与焚烧回收热能相比,高分子材料裂解产物附加值更高;受技术或经济因素未分离的混合高分子材料废弃物;废弃物不能进行物理循环和进行物理循环经济不合理;食品或药物包装材料不允许使用再生材料。 化学方法循环再生是使高分子发生化学反应,生成低分子量产物或进行高分子化学反应,可分类如下。 1.解聚回收原料单体加成聚合和开环聚合合成的高分子材料在高于聚合的上限温度时解聚反应优先,使回收单体有了可能,但是适用这个方法的高分子材料还是有限。聚甲基丙烯酸甲酯(PMMA)单体回收率可达到95%,而聚苯乙烯只达到72%,消费量大的聚乙烯、聚丙烯、聚氯乙烯单体回收率极低,没有实际应用意义。 2.用化学分解反应回收单体聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚碳酸酯(PC)、聚氨酯(PU)等水解和醇解单体回收率均很高。PET由于产量大、价值高,循环利用一直受到重视,尤其是再生料不适合物理方法循环利用,采用加压水解、乙二醇醇解、甲醇醇解、碱解和氨解等方法回收单体。采用碱解甚至可以定量地回收乙二醇和对苯二甲酸二钠盐,用含10%二氧己环的甲醇醇解,在60℃,40min就可以完成反应。聚氨酯是有独特加工性能的高聚物,用途广泛,所以废弃物的回收也受到重视。聚氨酯采用水解、醇解、碱解和氨解法回收多元醇、多胺,尤其是醇解法已有工业规模的实践。为减少复杂的分离过程,研究发展了聚氨酯、聚对苯二甲酸乙二醇酯、尼龙混合废塑料回收多元醇的方法。 3.以化学方法循环再生为前提的高分子合成反应典型的例子是聚碳酸酯的回收利用,目前工业生产采用双酚A和光气反应制取聚碳酸酯,考虑环境的调和性,采用无氯甲烷(有机溶剂)和聚毒的光气的固相聚合或熔融聚合方法进行,聚碳酸酯碱解可回收双酚A但不能回收光气。新方法是双酚A 和二苯基

水循环知识点

自然界的水循环 1、水圈的概念:指地球上各种水体共同构成的一个连续但不规则的圈层。 2、水的三种存在形式:液态水、气态水、固态水 3.水体分类(课本P54) 地球上的水体海洋水、陆地水、大气水,其中海洋水是最主要的 陆地水分类河流水、湖泊水、沼泽水、土壤水、地下水、生物水、冰川水(地球上淡水主体是冰川) 4.河流主要补给类型及特点 ★补给类型★补给 季节 补给 特点 ★我国分 布地区 ★径流量的季节变化(以我国为例) 雨水补给我国以 夏秋两 季为主 ①水量变化 大②时间集 中③不连续 普遍,尤 以东部季 风区最典 型 径流变化与降水量变化一致,具有明显的季节 变化和年际变化。 季节性 积雪融 水补给春季①季节性 ②水量稳定 ③连续性 东北地区 东北地区河流有季节性积雪融水补给形成的 春汛和降水补给形成的夏汛。冬季气温低河流 封冻 冰川融 水补给夏季①有明显的 季节、日变 化②水量较 稳定 西北地区、 青藏高原 径流变化与气温变化密切相关。1、2月份径流 出现断流的原因:气温低于0℃,冰川无融水。 湖泊水补给全年①较稳定 ②对径流有 调节作用 普遍①河流水与湖泊水的相互补给关系:枯水期湖 泊水补给河流水,丰水期河流水补给湖泊水 ②河流水、湖泊水与地下水间的相互补给关 系:当河流、湖泊水位高于地下水位时,河流 水、湖泊水补给地下水。反之,地下水补给河 流水、湖泊水。 地下水补给全年①稳定 ②一般与河 流有互补作 普遍

用★特例:黄河下游为“地上悬河”,河水补给 地下水。 5、陆地水体间的相互补关系 ①陆地的各种水体最主要的补给来源是大气降水 ②河流水、湖泊水、地下水之间,存在着相互补给关系。相互补给关系主 要看各种水位的高低,水位较高的水体可以补给给水位较低的水体。 ③三种水体的变化速度:河流水>湖泊水>地下水 ④洪水期水位:河流水>湖泊水>地下水 洪水期的补给关系:河流水补给湖泊水和地下水;湖泊水补给地下水 ⑤枯水期水位:地下水>湖泊水>河流水 枯水期的补给关系:地下水补给湖泊水和河流水;湖泊水补给河流水 6.河流的特征 项目描述方法影响因素对航运的影响 水 文 特 征 流量流量的大小河流流量大小的变化 主要取决于河流补给 量与流域面积的大 小。一般来讲,补给 量与流域面积越大, 河流流量越大;河流 流量的时间变化主要 取决于河流的补给方 式。 水量大,流量平稳, 丰水期长,无结冰期, 含沙量少,对航运有 利 水位汛期水位高低和季节变 化,汛期的时间及长 短 包括丰水期、枯水期 时间,汛期长短等, 主要与补给方式和河 道特征有关。河流主 要的补给季节处于汛 期,水位高。河流流 量相同的情况下,河

几种典型再生水处理工艺出水水质对比分析

给水排水 Vol 137 N o 12 2011 47 几种典型再生水处理工艺出水水质对比分析 冯运玲 戴前进 李 艺 方先金 (北京市市政工程设计研究总院,北京 100082) 摘要 通过对北京市目前运行的4种典型再生水处理工艺中的主要处理单元出水水质进行监测,得到各种再生水处理工艺对主要水质指标的去除情况。结果表明,4种再生水处理工艺出水基本能满足设计及使用要求;T N 和NH 3)N 浓度仍然是影响多数再生水厂最终出水水质的限制性指标;再生水用于地下水回灌时水质要求较高,尤其是其中的/井灌0对水质要求很高,一般的沉淀过滤、超滤及MBR 工艺较难满足要求。 关键词 再生水 水质标准 处理工艺 膜生物反应器 C omparative analysis on effluents of several typical wastewater reclamation processes Feng Yunling,Dai Qianjin,Li Yi,Fang Xianjin (Beij ing G ener al Municip al Eng ineer ing Design &Resear ch I nstitute,Beij ing 100082,China ) Abstract:We got the main water quality removal efficiencies of the four typical wastew ater reclamation processes running in Beijing by monitoring the effluents of the main treating units.The results show ed that effluents of the four wastew ater reclamation processes can meet the design and use requirement basically.TN and NH 3)N are still the limited items to final effluent qualities of the water reclamation plants.The reclaimed w ater quality is required more strictly when it is used for groundwater recharge,especially for injection recharge,and normal filtration and MBR processes are very difficult to meet it. Keyw ords:Reclaimed water;water quality standard;Treatment process;Membrane bioreactor 近年来,随着水资源短缺问题的日渐突出及国家相关政策法规的颁布实施,我国的再生水事业得到了迅猛发展,再生水利用量逐年提高。据资料统计,2007年北京市再生水用量达到4.8亿m 3,2008年北京市再生水利用量提高了近30%,达到6.2亿m 3,占北京市总用水量的17.6%。随着再生水用量的增加和使用对象的多样化,国家相应出台实施了再生水不同使用领域的相关水质标准。北京目前再生水主要使用对象为工业(如热电厂)、景观环境、市政杂用等。为满足各种使用对象的水质要求,采用了多种再生水处理工艺和技术。本文针对北京市目前运行的4种典型再生水处理工艺,通过实测数据,对各工艺出水水质进行了分析,并与现行的4种再生水回用标准进行了对比,以期为今后再生水厂不同处理工艺的选择、设计、运行控制及管理提供参考。 1 典型再生水处理工艺 目前,国内已建设的再生水厂较多选用的处理工艺是借用传统的净水工艺,即混凝、沉淀和过滤工艺,随着膜技术的发展,不少发达地区再生水厂开始推行膜处理工艺,如超滤膜技术、膜生物反应器(MBR)工艺、反渗透(RO)技术及其组合工艺等。本文重点结合北京市再生水工程实际情况,对目前北京市正在运行的4种典型再生水处理工艺出水进行测定和分析,其4种工艺分别如下: (1)工艺1(混凝、沉淀和过滤):二级出水y 混凝y 臭氧脱色y 机械加速澄清池y V 型滤池y 紫外线消毒y 出水。 (2)工艺2(MBR 工艺):城市污水y 曝气沉砂池y M BR y 臭氧脱色y 二氧化氯消毒y 出水。 (3)工艺3(M BR+RO 工艺):城市污水y 曝气

碱性蚀刻液再生循环处理系统介绍

碱性蚀刻液再生循环系统介绍 目录 一、碱性蚀刻液再生循环系统简介 1.1系统工作原理 1.2系统工作流程简图 二、系统成本分析 2.1系统运行成本分析 三、项目效益分析 四、项目运作 4.1系统安装条件 4.2工程进度计划 4.3运行常用的主要物料 4.4系统排放物及其处理

一、碱性蚀刻液再生循环系统简介 1.1系统工作原理 本系统采用多级萃取-反萃及电解再生工艺组合,可实现碱性蚀刻液完全回用零排放,是将碱性蚀刻废液提铜处理和再生利用进行组合的系统设备,可根据需要调整再生液的品质,完全确保PCB 企业蚀刻工序产品质量的稳定。 该系统主要由以下部分组成:铜分离系统、铜提取系统、存储及调配系统。 1)铜分离系统:是将废蚀刻液中的铜离子通过铜吸附剂从废液中无损分离吸取铜离子,并将铜离子转移到铜提取系统,释放铜离子后的吸铜剂再回到此系统循环工作。 2)铜提取系统:吸铜剂中的铜离子释放到此系统中,通过电解提取高纯度产品铜。 3)存储及调配系统:系统将已降低铜含量的蚀刻液通过组份调节,使Cu 2+、Cl -、PH 值及相关工艺元素达至生产所需要求,待生产所用。 整个系统工作时无排放封闭式循环运行。 系统工作时,只需在碱性蚀刻设备的溢流排出口接一管道,直接将废液引入再生循环设备中,经过系统处理后,再通过自动添加系统循环回到蚀刻工序,整个系统无排放封闭式循环运行,系统设备与生产线对接时,产线不需停机。 1.2系统工作流程简图 碱性蚀刻液在线循环技术工艺原理图 蚀刻 蚀刻废液 水相 净化、组份调节 富载铜油相 萃取 再生蚀刻液 电积 阴极铜 电积后液 O 2排空 水相 油相 化气塔净化排放

软化水循环系统再生程序紊乱后重新调整步骤

软化水循环系统再生程序紊乱后重新调整 步骤 软化水设备就是采用阳树脂对水进行软化,主要目的是让阳树脂吸附水中的钙、镁离子(形成水垢的主要成分)、降低水的硬度,并可以进行树脂再生,循环使用。全自动软水器是将软水器运行及再生的每一个步骤实现自动控制,并采用时间、流量或其它感应器等方式来启动再生。全自动软水器的基本构成为:多路控制阀、树脂罐(含树脂)、盐箱及管路系统。 软化水设备再生程序紊乱后重新调整的步骤如下: 1、手动逆时针拨动再生轮,使设备进入再生状态; 2、停顿5秒钟待多向阀平移到位后观察出水状态,判断实际再生状态(反洗、吸盐、小正洗、冲洗、盐罐注水5步中的某一步); 3、设备断电(拔下电源插头); 4、手动缓慢拨动程序轮,使程序轮指针对准b步骤的实际状态;

5、设备重新上电,手动拨动程序轮前进,每进入下一状态时停顿10秒钟以上,让多向阀平移到位后再继续拨动程序轮,直至程序轮复位(限位开关到达程序轮的凹槽处); 6、再次手动逆时针拨动手动再生轮,使设备进入再生状态,验证程序轮是否正常,如不正常,重复a~e步骤进行校正,直至设备程序正常。 工厂软化水设备适用范围: 主要用于工业及民用软化水制备,如锅炉给水、空调系统补充水,换热器以及纯水系统的预处理。 富莱克软水器再生程序紊乱后重新调整的步骤介绍: 富莱克软水器再生程序紊乱后重新调整的步骤介绍--富莱 克软水器-辽阳富莱克控制阀专卖-辽阳富莱克软化水特价。富莱克控制阀程序,富莱克软水器。由电讯号远传驱动的软水器不能断电,如产水过程断电会导致生水流出,造成出水硬度不合格;如再生过程断电则会造成再生程序紊乱。

彻底根治循环冷却水系统四大难题

彻底根治循环冷却水系统四大难题 一、方案特点 在工业冷却循环水方面,均采用水为能量的传递介质,在循环使用时,水质会浓缩、恶化,产生水垢、污垢、腐蚀、菌藻等,严重影响系统的效率,加大能耗,减少设备使用寿命。 以往通用的化学水处理方式不仅每年需要经费,而且会造成大量含有化学药剂的污水,加大 环境污染,同时会腐蚀管道,甚至造成冷却器穿孔报废。例如,一个保有水量100T的冷冻、冷 却、采暖循环水为例,如果采用传统化学处理方法,一年要用化学药剂10吨、每吨药剂会形成500 立方米的污染水。 针对以上问题,罗德斯尔?循环水水质深度净化方案引进国外先进成熟的变频磁场技术,采用“以水治水、物理吸垢”方式,不仅解决了循环水净化、除垢、杀菌、灭藻、去锈等一系列难题,而且每年保养经费很少,不会产生污染,节电节水,是一种环保节能的新型循环水水质深度净化方案。 循环水优化设备图片 二、罗德斯尔?循环水水质深度净化方案的优势 除垢防垢,使热交换表面始终无垢状态,提高热交换效率 除锈防腐,解决水体红锈问题,延长管道和热交换器使用年限 杀菌灭藻,尤其对军团菌的杀灭,提高安全性能,提高冷却效率 无需停机,提高水资源利用效率和生产连续性 保留原管,即无需改变原有循环水管道 节水环保,大幅减少循环水排放,节省用水,没有污染,保养经费很少 三、设备构成和原理 概述 罗德斯尔?循环水系统优化方案体现的是一种综合性、多功能、环保、节水节能的循环水处理理念和技术,具有补水净化、去垢、灭藻、除锈、杀菌、环保、节能、节水等多重功效,本方案的主要设备为LT系列循环水系统优化设备。 LT系列循环水系统优化设备工作原理 LT 系列循环水系统优化设备是罗德斯尔?循环水系统解决方案的核心设备,该装置由高频发

电厂化学水处理技术全解析

由于电厂中的某些热力设备可能受到水中一些物质的作用从而产生有害的成分,使设备发生腐蚀的现象,因此电厂安全运行和化学水处理系统具有直接的关系。水中杂质对设备的破坏决定了电厂中的水必须要经过一定的处理才能被使用,该处理就是电厂中的化学水处理系统。 1 电厂化学水处理技术发展的现状 1.1 电厂获得纯净除盐水主要采用的三种方式: (1)采用传统澄清、过滤+离子交换方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→阳离子交换床→除二氧化碳风机→中间水箱→阴离子交换床→阴阳离子交换床→树脂捕捉器→机组用水。 (2)采用反渗透+混床制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性碳滤器→精密过滤器→保安过滤器→高压泵→反渗透装置→中间水箱→混床装置→树脂捕捉器→除盐水箱。 (3)采用预处理、反渗透+EDI 制水方式,其流程如下: 原水→絮凝澄清池→多介质过滤器→活性炭过滤器→超滤装置→反渗透装置→反渗透水箱→EDI装置→微孔过滤器→除盐水箱。 以上3种水处理方式是目前电厂获得纯净除盐水的主要工艺,其他的水质净化流程大都是在以上3种制水方式的基础上进行不同组合而搭成的制水工艺流程。 1.2三种制水方式的优缺点: (1)第一种采用澄清、过滤+离子交换的优点在初期投资少,设备占用地方相对较少,其缺点是离子交换器失效需要酸、碱进行再生来恢复其交换容量,需大量耗费酸碱。再生所产生的废液需要中和排放,后期成本较高,容易对环境造成破坏。 (2)第二种采用反渗透+混床,这种制水工艺是化学制取超纯除盐水相对经济的方法,只需对混床进行再生,而且经过反渗透半除盐处理的水质较好,缓解了混床的失效频度。减少了再生需要的酸、碱用量,对环境的破坏相对较小。其缺点是在投资初期反渗透膜费用较大,但总的比较相对划算,多数电厂目前考虑接受这种制水工艺。 (3)第三种采用预处理、反渗透+EDI的制水方式也称全膜法制水。这种制水方法不需要用酸、碱进行再生就可以制取纯净除盐水,不会对环境造成破坏。是目前电厂最经济、最环保的化学制水工艺,但其缺点是设备初期投资相对前面两种制水方式过于昂贵。 2 电厂化学水处理措施 2.1 补给水的处理措施 电厂在生产锅炉的补给水处理中,关系到生产安全与效率。目前随着科学技术的快速发展,电厂关于环保节能的理念深入人心,过去传统的离子交换、澄清过滤或混凝等比较落后的技术已经逐渐被摒弃,现如今新的纤维材料广泛应用于过滤设备,不仅除去了胶体,微生物以及一些颗粒的悬浮物等,在过滤中也具有较强的吸附、截污能力,取得了相当好的效果。膜分离技术被采用,当前反参透占主导地位,反渗透技术能除去水中90%以上离子,如水中有机物、硅有较好的去除率。由于膜分离技术具有明显的优势,因此在锅炉补给水的处理中节约了大量的由于离子交换或澄清过滤等落后技术在运营时产生废水排放的费用,同时过去操作复杂和排放困难的许多问题也得到了改进。新的膜分离技术不仅达到了环保的要求。当水中的氯含量比较高时,可以采用活性碳过滤或者使用水质还原剂来进行处理。而混床在除盐处理的作用仍占有重要的位置,混床除盐技术相对成熟、可靠,混床的功能具有其他除盐所无法替代的作用。目前将超滤、反渗透装置和电渗析除盐技术有效的搭配,形成高效的除盐工艺,不需要酸、碱再生剂,只通过对水电离出来的H+和OH-即可完成再生的作用,从而完成电渗析的再生、除盐。这种制水工艺将是电厂化学制水的发展方向。

MB产水及再生步骤说明

4.4.1.3.5 MB產水及再生步驟說明 (A) 產水狀態 (a) 00:Circulation, 循環。 以RO水為進水,經MB塔出水循環回RO水池,同時偵測 產水端水質狀態。 (b) 01:Service Stop, 採水循環。 投入運轉後的產水期間,若遇水質低於spec.時,會先行進 行循環的動作(即Service Stop Time的步驟);如於設定時 間內仍無法達到產水水質的spec.時,則會停止運轉,並發 出警報訊息,等待再生。 (c) 02:Service, 產水。 產水至DI水池。 (B) 再生狀態:可選擇進行Normal或Double再生。 (a) 11:Regeneration Start, 再生開始。 檢查可執行再生的條件是否均符合。 (b) 11a:NaOH Filling, NaOH藥劑補充。 先行注藥NaOH,強制使凝結之陰陽離子交換樹脂分離 NaOH輸送泵(P-441)將45%NaOH泵送至MB NaOH計 量桶。 當計時讀秒(Elapsed)到設定時間(Preset)時,檢查確認 MB NaOH計量桶內藥劑已補充至”H”液位。 (c) 11b:NaOH Feeding-1, NaOH注藥-1。

再生泵浦(P-421)啟動,再生水經管路進入MB塔。(d) 11c:NaOH Feeding-2, NaOH注藥-2。 再生泵浦(P-421)啟動,再生水經管路將45%NaOH稀釋 成5%左右再進入MB塔,使藥劑與MB塔內的陰陽離 子交換樹脂進行作用,以利陰陽離子交換樹脂分離完 全。 當計時讀秒(Elapsed)到設定時間(Preset)時,檢查確認 MB NaOH計量桶於設定的注藥時間內已降至”L”液位。 (e) 11d:NaOH Rinse, NaOH清洗。 再生泵浦(P-421)啟動,再生水經MB桶槽上部進入,再由 底部排水,將MB塔內未反應的NaOH藥劑洗出。 (f) 12:Backwash-1(Chemical Filling-1), 逆洗-1(藥劑補充-1)。 再生泵浦(P-421)啟動,再生水經管路由MB塔底部進入, 上部排出,以大流量進行逆洗,擾動樹脂床,並將 懸浮微細粒子由頂部管排洗出。 同時NaOH輸送泵(P-441)將45%NaOH泵送至MB NaOH 計量槽;HCl輸送泵(P-431)將32%HCl泵送至MB HCl計量桶。 (g) 13:Backwash-2, 逆洗-2。 再生泵浦(P-421)啟動,再生水經管路由MB塔底部進入, 上部排出,以小流量進行逆洗,將懸浮微細粒子由 頂部管排洗出。

建筑材料再生循环利用

浅析建筑材料的再生循环与利用 摘要:长期以来,基于建筑材料垃圾作为一种重要资源来利用的认识,分析了建筑材料垃圾的成分及特征,并结合建筑材料垃圾的管理现状及综合利用技术的调查和总结,对建筑材料垃圾综合利用和管理方面的问题进行研究,对建筑材料垃圾循环管理模式进行探讨。 关键词:建筑材料;建筑垃圾;循环利用 中图分类号:tu5 文献标识码:a 文章编号: abstract: for a long time, based on building material waste, as a kind of important resources to use of understanding, analysis the building materials of garbage composition and characteristics, and connecting with the present situation of the management of building materials garbage and comprehensive utilization of the investigation and summarization of the technology of building material waste comprehensive utilization and management problems of the research on building materials garbage cycle management models are discussed. key words: building materials; construction waste; recycling 引言:建筑材料垃圾的管理是城市管理的重要环节之一。建 筑材料垃圾是在建(构)筑物的建设、维修、拆除过程中产生的,

相关主题
文本预览
相关文档 最新文档