当前位置:文档之家› 用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略
用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略

罗建中

一、棱锥补成棱柱

例1 一个四面体的所有棱长都为

2,四个顶点在同一球面上,则球的表面积为

A. π3

B. π

4 C. π3

3 D. π

6

分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD1

1

1

1

D

C

B

A

-,则四面体D

BC

A

1

1

-就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积

2

2

3

4

S??

?

?

?

?

π

=

π

=3。

评注:对棱长全相等的正四面体通常把它补成正方体。若是相对棱长相等的四面体,则可考虑把它补成长方体。

例2 如图1,在底面是直角梯形的四棱锥ABCD

S-中,∠ABC=?

90,SA⊥面ABCD,SA=AB=BC=1,AD=2

1

(1)求四棱锥ABCD

S-的体积;

(2)求面SCD与面SBA所成的二面角的正切值。

解:(1)解答略。

(2)以SA为棱,构造正方体AECB-SFGH,如图2,分别取棱SF、HG中点M、N,连结DM、MN、SN、ND,设ND与SC相交于O,连接MO。

则有面MDN∥面SAB,且SM⊥面MDN,

所以所求的二面角等于二面角S-DN-M。

在正方体AECB-SFGH中,△NSD与△NMD都是等腰三角形,所以SO⊥DN,

MO⊥DN,所以∠SOM是二面角S-DN-M的平面角。又MO2

1

=

SB=2

2

,SM=2

1

,所以2

2

MO

SM

SOM

tan=

=

,故所求二面角的正切值是2

2

评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。

二、三棱柱可补成四棱柱

例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=?90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。

解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面

11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以

3

D A 1=,又∠ABC=?90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以

AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=?90,所以DE ∥BC ,D 为AC 中点,且

1BC 21

DE ==

2

DE D A E A 2211=+=,而

d

S D A S V 11ABB A 1ABMC ?=?=平行六面体。

所以

3

2

3

2S D A S d 11ABB A 1ABMC ==?=

评注:本例通过斜三棱柱补成四棱柱,从而达到把线面距离转化为面面距离,再通过等积变换达到简化解题之目

的。

三、棱台补成棱锥

例4 如图4,三棱柱ABC 111C B A -中,若E 、F 分别为AB 、AC 的中点,平面F C EB 11将三棱柱分成体积为1V 、2

V 的两部分,那么21V :V 等于多少?

解:延长A A 1到2A ,B B 1到2B ,C C 1到2C ,且21AA A A =,21BB B B =,21CC C C =,则得三棱柱

222C B A ABC -,且111C B A ABC V -222C B A ABC V -=,延长E B 1、F C 1,则211A F C E B =?即有三棱锥1112C B A A -。

因为2:1A A :A A 122=,所以11122C B A A AEF A V 81V --=,又31

41V 41V ABC A AEF A 22?

==-- 111222C B A ABC C B A ABC V 121

V --=

所以

1112111C B A ABC AEF A C B A AEF V 127

V 7V ---=

=。

故()5:7712:7V :V 21=-=。 评注:本题通过把棱台补成棱锥,以棱锥AEF

A 2-为辅助几何体,利用它与棱柱ABC

2

22C B A -及棱台

1

11C B A AEF -的关系进行变换。

四、补相同几何体

例5 长方体1111D C B A ABCD -中,AB=21

,AD=1,2AA 1=,求异面直线11C A 与1BD 所成的角。

解:如图5,补一个与原长方体全等的并与原长方体有公共面1BC 的长方体F B 1,连结BF ,则∠BF D 1为异面直

线11C A 与1BD 所成的角,而

21

AB =

,AD=1,2AA 1=。

连结F D 1,在△BF D 1中,BF=25,221BD 1=,5F D 1=,由余弦定理得35105

BF D cos 1=

∠,故11C A 与1

BD 所成角为

35105

arccos

评注:补相同几何体之目的在于平移相关直线。

五、不规则几何体补成规则几何体

例6 如图6,多面体的底面是边长为l 的正方形,上面的棱平行于底面,其长为l 2,其余棱均为l ,求这个多面体的体积。

解:如图7,作以l 2为棱长的正四面体ABCD ,连结AC 、AD 、BC 、BD 中点组成的四边形为正方形即为多面体的底面(因正四面体的对棱互相垂直),这个正方形所在平面把四面体分成两个全等的多面体,故

21V 21V ==

正四面体多面体()32

l

32l 236l 24

331=?????。

从上述各例可看出,几何体的补形要围绕着已知条件来进行,通常策略是把棱锥补成棱柱,把台体补成锥体,把三棱锥补成四棱锥,把三棱柱补成四棱柱,把不规则几何体补成规则几何体,补同样几何体等。

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

解析法证明平面几何经典问题--举例

五、用解析法证明平面几何问题----极度精彩!充分展现数学之美感!何妨一试? 例1、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引两条直线分别交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .求证:AP =AQ .(初二) (例1图) (例2图) 例2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、 BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 【部分题目解答】 例1、(难度相当于高考压轴题) ; ,、点的方程为:直线的方程为:设直线方程为:轴建立坐标系,设圆的为为原点,轴,为如图,以)(),(,AD ,,)-(2211222y x C y x B nx y mx y AB r a y x Y AO A x MN ===+ 、;则,、,C B )()(4433y x E y x D , 1 - ;12-2-)1,{)-(22 2212212222222+=+=+=++=+=m r a x x m am x x r a amx x m y r a y x mx y 由韦达定理知:得:(消去,1- ;1222 243243+=+=+n r a x x n an x x 同理得: ),-(---23 23 22x x x x y y y y CD = 方程为:直线 ,--Q 3 23 223Q y y y x y x x = 点横坐标:由此得 , --P 1 41441P y y y x y x x = 点横坐标:同理得 ,------1 41441323223P Q y y y x y x y y y x y x x x AQ AP ===;即证:,只需证明:故,要证明 N B

“割补法”求解不规则几何体体积

“割补法”求解不规则几何体体积 我们通常把不是棱柱、棱锥、棱台和圆柱、圆锥、圆台等的几何体,称为不规则几何体.而解决不规则几何体的方法,常用割补法,即通过分割或补形,将它变成规则的几何体.我们可以从不规则几何体的来源上,即它是由何种常见的几何体所截得的来分类. 一、来自三棱柱的截体 例1 如图1,正四面体A BC D -中,E F G H ,,,分别是棱 A B A C B D C D ,,,的中点,求证:平面EFH G 把正四面体分割成 的两部分几何体的体积相等. 分析:显然正四面体被分割成的两部分都是不规则的几何体, 因此我们可使用割补法来推导.那么我们应选择割,还是补呢? 如果选择补,那么补成什么样子呢?显然只能是正四面体,这就 说明我们应该选择割. 证明:连结C E C G A G A H ,,,,左右两个不规则几何体都被分割成了一个四棱锥和一个三棱锥,如图1.易证左右的两个四棱锥的体积相等,两个三棱锥的体积也相等,于是两部分体积相等. 当然此题还有其他的分割方法,比如分成一个三棱柱和一个三棱锥等,也同样好证. 二、来自正方体的截体 例2 如图2,已知多面体ABC D EFG -中,A B A C A D ,,两两互相垂 直,平面ABC ∥平面D E F G ,平面BEF ∥平面A D G C , 2AB AD D C ===,1AC EF ==,则该多面体的体积为( ) A.2 B.4 C.6 D.8 解法一(割):如图3,过点C 作C H D G ⊥于H ,连结EH ,这样就 把多面体分割成一个直三棱柱D EH ABC -和一个斜三棱柱BEF C H G -. 于是所求几何体的体积为: DEH BEF V S AD S DE =?+?△△11212212422????=???+???= ? ?????. 解法二(补):如图4,将多面体补成棱长为2的正方体,那么显然 所求的多面体的体积即为该正方体体积的一半. 于是所求几何体的体积为31242V = ?=. 三、来自圆柱的截体 例3 如图5,如图5,一圆柱被一平面所截,已知被截后几何体的 最长侧面母线长为4,最短侧面母线长为1,且圆柱底面半径长为2,则 该几何体的体积等于_______. 解法一(割):如图6,该几何体的体积等于下面的圆柱的体积与上

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

解析法在几何中的应用 -

解析法在几何中的应用 姓名:周瑞勇 学号:201001071465 专业:物理学 指导教师:何巍巍

解析法在几何的应用 周瑞勇 大庆师范学院物理与电气信息工程学院 摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。 关键词:几何问题,表达关系,表达式,求解问题 一前言 几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。 但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。 由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。 二解析法概述 几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生

立体几何割补法

立体几何割补法 立体几何中的割补法解题技巧 邹启文 ※ 高考提示 立体几何中常用割补法解题.特别是高考中的立体几何题很多可用割补法解,有时解起来 还比较容易. ※ 解题钥匙 例1 (2005湖南高考,理5)如图,正方体ABCD—ABCD的棱长为1,O是底面ABCD11111111 的中心,则O到平面ACD的距离为( ) 11 2231A、 B、 C、 D、 4222 分析:求点到面的距离通常是过点做面的垂线,而由于该图的局限性显然不太好做垂线,考虑O为AC的中点,故将要求的距离 11 与A到面ACD的距离挂钩,从而与棱锥知识挂钩,所以可在该 111 图中割出一个三棱锥A—ACD而进行解题。 111 解:连AC,可得到三棱锥A—ACD,我们把这个正方体的其 1111

它部分都割去就只剩下这个三棱锥,可以知道所求的距离正好为这个三棱锥的高的一半。这个三棱锥底面为直角边为1与的直 2角三角形。这个三棱维又可视为三棱锥C—AAC,后者高为1,底为腰是1的等腰直角三角111 2形,利用体积相等,立即可求得原三棱锥的高为,故应选B。 2 例2 (2007湖南高考,理8)棱长为1的正方体ABCD—ABCD1111 的8个顶点都在球O的表面上,E,F分别是棱AA、DD的中点, 11则直线EF被球O截得的线段长为( ) 22A、 B、1 C、1+ D、 222 分析:在该题中我们若再在正方体上加上一个球,则该图形变得复杂而烦琐,而又考虑到面AADD截得的球的截面为圆,且EF 11 在截面内,故可连接球心抽出一个圆锥来。 解:如图,正方体ABCD—ABCD,依题O亦为此正方体的中心,补侧面 1111 可得圆锥0—AD(如下图), AD为平面AD,球0截平面A D1111 其底面圆心正为线段AD之中点,亦为线段EF之中点,割去正方体和球 1 的其它部分,只看这个圆锥,容易看出球O截直线EF所得线段长就等于这个圆锥底面圆的直径AD之长,故选D。 1

高考数学用补形法解立体几何题

高考数学用补形法解立体几何题 1. 正四面体补为正方体 例1. 求棱长为1的正四面体的体积。 图1 分析:常规的思路是直接用三棱锥的体积公式去求,但要首先求出此三棱锥的高,求高比较繁琐。如果将正四面体ABCD补形为正方 体(如图1),那么此正方体的棱长为,因此,求正四面体的体 积便有了新的求解思路: 例2. 如图2,正三棱锥S-ABC的侧棱与底面边长都相等,如果E、F、G分别是SC、AB、AC的中点,那么异面直线EF与BG所成角 的余弦值等于__________。图2

分析:常规的思路是“平移法”,取GA的中点H,连结EH、FH,则∠EFH即为所求,但解△EFH的运算量较大。联想到正四面体可补形为正方体(如图3),相当于求与BG所成角的余弦值。在此正方体的左边补上一个大小相同的正方体,构成一个长方体(如图4),则相当于求长方体对角线BD与侧棱所成角的余弦值。 设正方体边长为1,则长方体对角线BD的长为。在中, 2. 三条侧棱两两垂直的三棱锥或对棱相等的三棱锥或一条侧棱垂直于底面的三棱锥都可以考虑补形为长方体 例3. 如图5,是直二面角, ,,那么AB与面β所成的角等于() 图5 A. 90° B. 60° C. 45° D. 30°

分析:由α⊥β,BD⊥CD,得BD⊥α同理得:AC⊥β因此,AC ⊥CD,BD⊥CD,AC⊥BD不妨把三棱锥A-BCD补形为长方体(如图5),易得∠ABC为所求的角。在Rt△ABC中,,选D。例4. 如图6,四面体P-ABC中,侧棱PA、PB、PC两两垂直,O为面ABC 上一点,且O到平面PAB、平面PAC、平面PBC的距离分别为2,3,4,求OP的长度。 分析:可补一个“小”长方体(如图6),由此可得“小”长方体的长、宽、高分别为2,3,4,求OP长可转化为求该“小”长方体的对角线长,得: 3. 一般三棱锥(三棱柱)可补形为三棱柱(平行六面体) 例5. 已知三棱锥P-ABC中,PA⊥BC,PA=BC=a,PA、BC的公垂线段DE=h,求证三棱锥的体积是。分析:以ABC为底面,PA为侧棱补形为一个三棱柱ABC-,进一步补形为平行六面体ABCD-(如图7),那么

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

解析法巧解中考数学压轴题

解析法巧解中考压轴题 在平面几何题中,适当的建立直角坐标系,利用代数的方法解决几何问题,即解析法,有时会显得更简洁高效.现以近年中考压轴题为例,分析说明解析法之妙.例1 (2013泰州)如图1,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连结PQ,M为PQ中点. 若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M 落在矩形ABCD外部时,求a的取值范围. 分析本题将矩形、三角形、动点、参数相结合,考察学生利用相似解决问题的综合能力,难度较大,区分度高,按照参考答案给出的解题思路,如图2所示,当点M落在矩形ABCD外部时,须满足的条件是“BE>MN”.分别求出BE与MN的表达式,列不等式求解,即可求出a的取值范围. 由△ADP∽△ABQ,解得QB=4 5 a. 由△QBE∽△QCP,同样由比例关系得出BE= () 28 225 a a a - + . 又因为MN为QCP的中位线,得出 MN=1 2 PC= 1 2 (a-8). 再由BE>MN, 即 () 28 225 a a a - + () 1 8 2 a >- 得出a> . 当点M落在矩形ABCD外部时,a的取值范围为a>. 这种解法不仅要想到添加辅助线,还两次运用了相似比,计算量大,易出错.比较稳妥而简洁的做法是将图形放进直角坐标系中,利用数形结合的方法来解决此类问题. 一如何建立合适、恰当的坐标系呢通常需要考虑以下两点: 第一,让尽可能多的点落在直角坐标系上,这些点的坐标含有数字O,可以起到简化运算的功效; 第二,考虑图形的对称性,同样,也能起到简化运算的作用. 解答如图3所示,建立以B点为原点,BC方向为x轴正半轴,BA方向为y轴正半轴的直角坐标系.

中考复习数学思想方法之二:割补法“补形”在初中几何问题中的应用

中考复习数学思想方法之一:割补法“补形”在初中几何问题中的应用 平面几何中的“补形”就是根据题设条件,通过添加辅助线,将原题中的图形补成某种熟悉的,较规则的,或者较为简单的几何基本图形,使原题转化为新的易解的问题.从“补形”的角度思考问题,常能得到巧妙的辅助线,而使解题方向明朗化,所以,补形是添加辅助线的重要方法.下面举例加以说明,供参考. 例1 如图1,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于. 解析题中六边形是不规则的图形,现将它补形为较规则的正三角形,分别向两方延长AB、CD、EF相交于G、H、I (如图2). ∵六边形ABCDEF的六个内角都相等, ∴六边形的各角为120°, ∴△AFI、△BCG、△DEH均是正三角形,从而△GHI为正三角形,则有 GC=BC=3,DH=EH=DE=2, IF=AF, IH=GH=GC+CD+DH =3+3+2=8, ∴IE=IH-EH=8-2=6. ∴六边形的周长等于: AB+BC+CD+DE+EF+F A =AB+BC+CD+DE+IE =1+3+3+2+6=15. 注:本题亦可补成平行四边形求解,如图3. 例2 如图4,在Rt△ABC中,AC=BC,AD是∠A的平分线,过点B作AD的垂线交AD的延长线于点E,求证:AD=2BE. 解析从等腰三角形的性质得到启示:顶角平分线垂直底边且平分底边.结合AE平分∠CAB,B E⊥AE,启发我们补全一个等腰三角形.所以延长BE交AC的延长线于点F(如

图5),易证△ABF 为等腰三角形,∴ BF =2BE ,再证△ACD ≌△BCF ,全等的条件显然满足,故结论成立. 例3 某片绿地的形状如图6所示,其中∠A =60°,A B ⊥BC ,C D ⊥AD ,AB =200m ,CD =100m ,求AD ,BC 的长. 解析 由题设∠A=60°,A B ⊥BC ,可将四边形补成图7所示的直角三角形. 易得∠E =30°,AE =400,CE =200,然后再由勾股定理或三角函数求出BE , DE 由此得到AD =400-200。 例4 如图8,在平面直角坐标系中直线y =x -2与y 轴相交于点A ,与反比例函数在第一象限内的图像相交于点B (m ,2). (1) 求反比例函数的关系式; (2) 将直线y =x -2向上平移后与反比例函数图像在第一象限内交于点C ,且△ABC 的面积为18,求平移后的直线的函数关系式. 解析 (1) 所求解析式为y =8 x ; (2) 本题方法不一,下面着重对此题进行分析解答.

立体几何巧思妙解之割补法

立体几何巧思妙解之割补法 在立体几何解题中,对于一些不规则几何体,若能采用割补法,往往能起到化繁为简、一目了然的作用。 一 、求异面直线所成的角 例1、如图1,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于( ) 000090604530A B C D 分析:平移直线法是求解异面直线所成角最基本的方法。如图1,只要AC 的中点G ,连EG ,FG ,解△EFG 即可.应该是情理之中的事。若把三棱锥巧妙补形特殊的正方体,定会叫人惊喜不已。 巧思妙解:如图2,把正三棱锥S-ABC 补成一个正方体11AGBH ACB S -, 1//,EF AA ∴异面直线EF 与SA 所成的角为0145A AS ∠=。故选C 。 二、体积问题 例2、如图3,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======锥子P —ABC 的体积为( )。 4080160240A B C D 分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶 点到底面的高无法作出,自然无法求出。若能换个角度来思考,注意到三 棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不 难解决。 巧思妙解:如图4所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易 知三棱锥P —ABC 的各边分别是长方体的面对角线。 PE=x,EB=y,EA=z 不妨令,则由已知有: 2222221001366,8,10164x y x z x y z y z ?+=?+=?===??+=? ,从而知 416810468101606 P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=??-????= 例3、如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形, 且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) (A ) 32 (B )33 (C )34 (D )23

空间立体几何练习题(含答案)

第一章 空间几何体 [基础训练A 组] 一、选择题 1.有一个几何体的三视图如下图所示,这个几何体应是一个( ) A.棱台 B.棱锥 C.棱柱 D.都不对 2.棱长都是1的三棱锥的表面积为( ) 3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( ) A .25π B .50π C .125π D .都不对 4.正方体的内切球和外接球的半径之比为( ) A B 2 C . 5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( ) A. 92π B. 72π C. 52π D. 32 π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题 1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。 2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。 3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。 4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长 方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用) ,已建的仓库的 主视图 左视图 俯视图

例谈构造平行六面体解立体几何题

例谈构造平行六面体解立体几何题 立体几何题的题设中若有“垂直”(包括线线垂直、线面垂直及面面垂直)可以试着构造长方体来求解,若没有“垂直”也可尝试构造平行六面体来求解.本文以普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版)(下简称教科书)中的题目及几道高考题来谈谈这种解题方法. 题1 (教科书第106页例2)如图1,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从,A B 到直线l (库底与水坝的交线)的距离AC 和BD 分别为a 和b ,CD 的长为c ,AB 的长为d .求库底与水坝所成二面角的余弦值. 图1 图2 解 可在如图2所示的平行六面体中求解:因为,//CD AC AC A D '⊥,所以CD A D '⊥.又CD BD ⊥,所以CD ⊥面A DB ',得AA A B ''⊥,所以222A B d c '=-. 在A BD '?中,由余弦定理可求得2222 cos 2a b c d A DB ab ++-'∠=,此即所求二面角的余弦值. 题 2 (教科书第107页练习第2题)如图3,60?的二面角棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,求CD 的长. 图3 图4 解 可在如图4所示的平行六面体中求解:在ACE ?中,6,6,60AC AE BD CAE ===∠=?,由余弦定理可求得252CE =.

可证BA ⊥面ACE ,所以有DE CE ⊥,在CDE ?中可求得217CD =. 题3 (教科书第113页第12题)一条线段夹在一个直二面角的两个半平面内,它与两个半平面所成的角都是30?,求这条线段与这个二面角的棱所成角的大小. 解 可在如图5所示的长方体中求解:30ADB DAE ∠=∠=?,可不妨设2AD =,得1,3,2DE CB AB AE BD BE CD =======,所以在Rt ACD ?中可求得45ADC ∠=?,即夹在直二面角A BE D --的线段AD 与棱BE 所成角的大小是45?. 图5 题 4 已知两平行平面,αβ的距离为23,点,A B α∈,点,C D β∈,且3,2AB CD ==,异面直线,AB CD 成60?角,求四面体ABCD 的体积. 解 可在如图6所示的平行六面体中求解: 图6 在图6所示的平行六面体中,60A CD '∠=?或120?, 133,23sin 322 A CD A C A B S A CD '?''===??∠=,所以13323332 A BCD A BCD V V '--===. 题 5 (2012·安徽·文·15) 若四面体ABCD 的三组对棱分别相等,即,,A B CD A C B D AD BC ===,则下列命题正确的是 (写出所有正确命题的编号)。 ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等 ③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180° ④连接四面体ABCD 每组对棱中点的线段相互垂直平分 ⑤从四面体ABCD 每个顶点出发的三条棱可作为一个三角形的三边长

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (1)线段的中点为,线段的中点为, 求证:; (2)求直线与平面所成角的正切值. 解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC ∴ PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠ ⊥//AB DE (1)求证:AO ⊥平面CDE ; (2)求直线BD 与平面CBE 所成角的正弦值 3、如图,在△ABC 中,?=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于 E ,AC P F //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面 ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A '; (2)若PB AP 2=,求二面角E PC A --'的平面角的正切值. 解:(1)因为PE FC //,?FC 平面PE A ',所以//FC 平面PE A '. 因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '. …6分 (2)因为a BC AC 3==,BP AP 2=, 所以a CE =,a A E 2=',a PE 2=,a PC 5=. …8分 A B C D E F M . . C B F P A F C ' B ' A E

高中竞赛数学讲义第56讲解析法证几何题

第56讲 解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A 类例题例1.如图,以直角三角形ABC 的斜边A B 及直角边B C 为边向三角形两侧作正方形ABDE 、CBFG . 求证:DC ⊥FA . 分析 只要证k C D ·k AF =-1,故只要求点D 的坐标. 证明 以C 为原点,CB 为x 轴正方向建立直角坐标系.设A (0,a ),B (b ,0),D (x ,y ). 则直线AB 的方程为ax +by -ab =0. 故直线BD 的方程为bx -ay -(b ·b -a ·0)=0, 即bx -ay -b 2=0. ED 方程设为ax +by +C =0. 由AB 、ED 距离等于|AB |,得 |C +ab | a 2+b 2=a 2+b 2, 解得C =±(a 2+b 2)-ab . 如图,应舍去负号. 所以直线ED 方程为ax +by +a 2+b 2-ab =0. 解得x =b -a ,y =-b .(只要作DH ⊥x 轴,由△DBH ≌△BAC 就可得到这个结果). 即D (b -a ,-b ). 因为k AF =b -a b ,k CD =-b b -a ,而k AF ·k CD =-1.所以DC ⊥FA . 例2.自ΔABC 的顶点A 引BC 的垂线,垂足为D ,在AD 上任取一点H ,直线BH 交AC 于E ,CH 交AB 于F . 试证:AD 平分ED 与DF 所成的角. 证明 建立直角坐标系,设A (0,a ),B (b ,0),C (c ,0),H (0,h ),于是 BH :x b +y h =1 AC :x c +y a =1 过BH 、AC 的交点E 的直线系为: λ(x b +y h -1)+μ(x c +y a -1)=0. 以(0,0)代入,得λ+μ=0. y x H F E D C B A y x O A B C D E F G

高中物理运用割补法解电场强度问题

高中物理运用割补法解电场强度问题 所谓割补法,就是在求解电场强度时根据给出的条件建立起物理模型,如果这个模型是一个完整的标准模型,则容易解决,但有时由题给的条件建立起的模型不是一个完整的标准模型,比如说A不是一个标准的、完整的模型,可设法补上一个B,补偿的原则是使A+B成为一个完整的模型,从而使A+B变得易于求解,而且补上的B也必须容易求解,那样待求的A便可从两者的差中获得,这种转换思维角度的方法常常使一些难题的求解变得简单明了。我们只学到有关点电荷的电场强度、匀强电场的电场强度的计算公式,但不能看成点电荷的带电体产生的电场强度,没有现成公式能用,这时我们就可用割补法使带电体变成标准模型来求解。例、如图所示,用金属AB弯成半径r=1m的圆弧,但在A、B之间留出宽度d=2cm的间隙,将Q=3.13×10-9C的正电荷分布于金属丝上,求圆心处的电场强度。分析:我们可以应用割补思维,假设将图中圆环缺口补上,并且它的电荷密度与缺了口的环体原有电荷密度一样,这样就形成了一个电荷均匀分布的完整带电环,环上处于同一直径两端的微小部分可视为两个相对应的点电荷,它们产生的电场在圆心O处叠加后合电场强度为零,根据对称性可知,带电圆环在圆心O处的总电场强度E=0。至于补上的带电小段,由题给条件

可视作点电荷,它在圆心O处的电场强度E1是可求的,设题中待求电场强度为E2,则E1+E2=E=0,便可求得E2。本题中如果在A、B之间留出宽度比较大的间隙,则不能运用上面的方法求圆心处的电场强度,因为此时AB段带电体不能当作点电荷来处理,库仑定律不能直接使用。解析:设原缺口环所带电荷的线密度为,,则补上的金属小段的带电荷量,求出它在O处的电场强度。设待求的电场强度为E2,因为E1+E2=0,可得E2=-E1=-9×10-2N/C负号表示E2与E1反向,背向球心向左。

立体几何练习题(含答案)

《立体几何 》练习题 一、 选择题 1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A 、垂直 B 、平行 C 、相交不垂直 D 、不确定 2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( ) A. BD B. CD C. BC D. 1CC 3、线n m ,和平面βα、,能得出βα⊥的一个条件是( ) A.βα//n ,//m ,n m ⊥ B.m ⊥n ,α∩β=m ,n ?α C.αβ?⊥m n n m ,,// D.βα⊥⊥n m n m ,,// 4、平面α与平面β平行的条件可以是( ) A.α内有无穷多条直线与β平行; B.直线a//α,a//β C.直线a α?,直线b β?,且a//β,b//α D.α内的任何直线都与β平行 5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A.①和② B.②和③ C.③和④ D.①和④ 6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC , 则点O 是ΔABC 的( ) A.内心 B.外心 C.重心 D.垂心 7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面, 则下列命题中为真命题的是( ) A .若//,,l n αβαβ??,则//l n B .若,l αβα⊥?,则l β⊥ C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 8. 已知两个平面垂直,下列命题中正确的个数是( ) ①一个平面内的已知直线必垂直于另一个平面的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面; ④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面. A.3 B.2 C.1 D.0 9. 设m.n 是两条不同的直线,α.β是两个不同的平面, ( ) A .若m∥α,n∥α,则m∥n B .若m∥α,m∥β,则α∥β C .若m∥n,m⊥α,则n ⊥α D .若m∥α,α⊥β,则m⊥β

第56讲 解析法证几何题教学内容

第56讲解析法证 几何题

第56讲解析法证 几何题 解析法是利用代数方法解决几何问题的一种常用方法.其一般的顺序是:建立坐标系,设出各点坐标及各线的方程,然后根据求解或求证要求进行代数推算.它的优点是具有一般性与程序性,几何所有的平面几何问题都可以用解析法获解,但对于有些题目演算太繁. 此外,如果建立坐标系或设点坐标时处理不当,也可能增加计算量.建系设点坐标的一般原则是使各点坐标出现尽量多的0,但也不可死搬教条,对于一些“地位平等”的点、线,建系设点坐标时,要保持其原有的“对称性”. A类例题 收集于网络,如有侵权请联系管理员删除

斜边AB及直角边BC为边向三角形两 侧作正方形ABDE、CBFG. 求证:DC⊥FA. 分析只要证k CD·k AF=-1,故只要求点D的坐标. 证明以C为原点,CB为x轴正方向建立直角坐标 系.设A(0,a),B(b,0),D(x,y). 则直线AB的方程为ax+by-ab=0. 故直线BD的方程为bx-ay-(b·b-a·0)=0, 即bx-ay-b2=0. ED方程设为ax+by+C=0. 由AB、ED距离等于|AB|,得 |C+ab| =a2+b2, a2+b2 解得C=±(a2+b2)-ab. 如图,应舍去负号. 收集于网络,如有侵权请联系管理员删除

所以直线ED方程为ax+by+a2+b2-ab=0. 解得x=b-a,y=-b.(只要作DH⊥x轴,由△DBH≌△BAC就可得到这个结果). 即D(b-a,-b). 因为k AF=b-a b,k CD= -b b-a,而k AF·k CD=-1.所以 DC⊥FA. 例2.自ΔABC的顶点A引BC的垂线,垂足为D,在AD上任取一点H,直线BH交AC于E,CH交AB于F.试证:AD平分ED与DF所成的角. 证明建立直角坐标系,设A(0,a),B(b,0),C(c,0),H(0,h),于是 BH:x b+ y h=1 AC:x c+ y a=1 x

用补形法解立体几何题的常用策略

用补形法解立体几何题的常用策略 罗建中 一、棱锥补成棱柱 例1 一个四面体的所有棱长都为 2,四个顶点在同一球面上,则球的表面积为 A. π3 B. π 4 C. π3 3 D. π 6 分析:正四面体可看作是正方体经过切割而得到,因而构造一个棱长为1的正方体ABCD1 1 1 1 D C B A -,则四面体D BC A 1 1 -就是棱长为2的正四面体,而正方体的外接球就是四面体的外接球,又正方体的对角线长就是球的直径,易知对角线长度为3,故球表面积 2 2 3 4 S?? ? ? ? ? π = π =3。 评注:对棱长全相等的正四面体通常把它补成正方体。若是相对棱长相等的四面体,则可考虑把它补成长方体。 例2 如图1,在底面是直角梯形的四棱锥ABCD S-中,∠ABC=? 90,SA⊥面ABCD,SA=AB=BC=1,AD=2 1 。 (1)求四棱锥ABCD S-的体积; (2)求面SCD与面SBA所成的二面角的正切值。 解:(1)解答略。 (2)以SA为棱,构造正方体AECB-SFGH,如图2,分别取棱SF、HG中点M、N,连结DM、MN、SN、ND,设ND与SC相交于O,连接MO。 则有面MDN∥面SAB,且SM⊥面MDN, 所以所求的二面角等于二面角S-DN-M。 在正方体AECB-SFGH中,△NSD与△NMD都是等腰三角形,所以SO⊥DN, MO⊥DN,所以∠SOM是二面角S-DN-M的平面角。又MO2 1 = SB=2 2 ,SM=2 1 ,所以2 2 MO SM SOM tan= = ∠ ,故所求二面角的正切值是2 2 。

评注:从一顶点出发的三条棱互相垂直的锥体通常可考虑把它补成长方体或正方体。 二、三棱柱可补成四棱柱 例3 已知斜三棱柱的侧面11ACC A 与平面ABC 垂直,∠ABC=?90,BC=2,AC=32,且C A AA 11⊥,C A AA 11=,求点C 到侧面11ABB A 的距离。 解:把斜三棱柱ABC 111C B A -补成如图3所示的平行六面体,设所求的距离为d ,则d 也是平面11A ABB 与平面 11C CMM 间距离,作AC D A 1⊥于点D ,作AB E A 1⊥于点F ,因为C A AA 11=,32AC =,C A AA 11⊥,所以 3 D A 1=,又∠ABC=?90,BC=2,所以22AB =,因侧面11ACC A 与底面ABC 垂直,AC D A 1⊥于点D ,所以 AB D A 1⊥,又AB E A 1⊥,知AB ⊥面ED A 1,因而AB ⊥ED ,又∠ABC=?90,所以DE ∥BC ,D 为AC 中点,且 1BC 21 DE == , 故 2 DE D A E A 2211=+=,而 d S D A S V 11ABB A 1ABMC ?=?=平行六面体。 所以 3 2 3 2S D A S d 11ABB A 1ABMC ==?= 。 评注:本例通过斜三棱柱补成四棱柱,从而达到把线面距离转化为面面距离,再通过等积变换达到简化解题之目 的。 三、棱台补成棱锥 例4 如图4,三棱柱ABC 111C B A -中,若E 、F 分别为AB 、AC 的中点,平面F C EB 11将三棱柱分成体积为1V 、2 V 的两部分,那么21V :V 等于多少?

相关主题
文本预览
相关文档 最新文档