当前位置:文档之家› 高等数学考研大总结之四导数与微分知识讲解

高等数学考研大总结之四导数与微分知识讲解

高等数学考研大总结之四导数与微分知识讲解
高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义:

1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限

()()0

lim

00→??-?+x x

x f x x f (其中()()

x

x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/

x f

,若记()()00,x f x f y x x x -=?-=?则

()0/

x f =()()0

00lim

x x x x x f x f →--=0lim →???x x y

解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值

越大,则函数在该点附近变化的速度越快。

⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/

x f

,0/x x y =,0x x dx

dy

=。

⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。

⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增

量x ?之比x

y ??③求极限0

lim

→???x x y

若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不

存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数,

x ?是变量, 求出的极限值一般依赖于0x

⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。

⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。

2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

()()-→??-?+0lim

00x x x f x x f (或()()

+

→??-?+0lim 0x x

x f x x f )存在,则称其极限值为()x f 在0x 点的左(右)导数,记为:()00/

-x f 或()0/x f -(或()()0/0/,0x f x f ++)。左导数和右导数

统称为单侧导数。

函数在某一点处有导数的充要条件:左导数和右导数存在且相等。

3 函数在某一区间上的导数:⑴在()b a ,内可导:如果函数()x f 在开区间()b a ,内每一点都可导,则说()x f 在()b a ,内可导(描述性)。⑵在[]b a ,内可导:如果函数()x f 在()b a ,内可导且()()b f a f /

/

,-+存在则说函数()x f 在[]b a ,上可导。

4 导函数:如果函数()x f 在区间I 上可导,则对于任意一个I x ∈都对应着唯一一个(极

限的唯一性)确定的导数值()x f

/

,这样就构成了一个新的函数,称为函数()x f y =的导

函数。记为:()x f /或dx dy 或()dx

x df 或/

y ,由此可知函数()x f 某一点0

x 处的导数实质是在

点0x 处的导函数值。 解析:(1)区别()0/

x f

与()[]/0x f :()0/x f 表示函数()x f 在点0x 处的导函数值,而()[]

/

0x f 表示对函数值()0x f 这个常数求导,其结果为零。

(2)与在某一区间可导的关系:在某一区间可导就是在该区间上存在导函数。

5 可导与连续的关系:可导必连续,但连续不一定可导。 二,导数的几何意义: 当y=()x f 表示一条曲线时,则()x f

/

表示曲线在()y x ,点的切线的斜率,()x f /的正和负分

别表示曲线在该点是上升还是下降. ()x f

/

的大小则表示曲线在该点的邻域内起伏的程度,

()x f /越小说明曲线在该点的邻域内近似水平,反之()x f /越大说明曲线在该点的邻域内

越陡,起伏明显。

解析:⑴用曲线上某点和增量点连线的割线的斜率的极限来表达曲线在某点的斜率。

⑵过曲线y=()x f 上的点(0x ,0y )的方程:①切线方程y -0y =()0/

x f (x-0x ).

②法线方程: y -0y =()

()00/

1

x x x f --

( ()0/

x f ≠0)

⑶如果点P(A,B)在曲线y=()x f 外,那么过P 点与曲线相切的切线有两条。

⑷若()0/

x f

=∞说明函数()x f 的曲线在点0x 处的切线与

x 轴垂直。若

()0/

x f

=0则说明()x f 的曲线在点0x 处的切线与x 轴平行。

三,导数的四则运算

如果函数()x u u =及()x v v =都在点x 具有导数,那么其和差积商(除分母为零的点外)都在点x 具有导数。

⑴()()[]()()x v x u x v x u /

//

±=±

⑵()()[]()()()()x v x u x v x u x v x u ///

+= ()[]()x ku x ku /

/

=

⑶()()()()()()()()()02

/

/

/

≠-=??

????x v x v x v x u x v x u x v x u ()()()()()02//

≠-=??????x v x v x kv x v k 解析:和差积可推广为有限项即:⑴

()()()[]()()()x u x u x u x u x u x u n n //2/1/21±±±=±±±K K

⑵()()()[]

()()()[]()()x u x u x u x u x u x u x u x u k

k

n

k n n /

121/

21∑≡=K K 四,几类函数的求导法则

1反函数的求导法则:如果函数()y f x =在区间y I 内单调且()0/

≠y f 则它的反函数

y=()x f

1

-在区间(){}y x I y y f x x I ∈==,内也可导,

且()[

]()

y f

x f /

/

1

1=

-或

dy

dx

dx dy 1

=即:y是x的函数反函数的导数等于直接函数导数的倒数。

解析:⑴()0/

≠y f

且()y f x =在点y 处连续。

⑵反函数求导法则的几何意义:由于()x f

/

是函数()x f 的曲线上点x 处的切线

与x 轴正向夹角α的正切。而反函数()y f x =与y=()x f 在同一坐标系中有相同的曲线,只不过反函数()y f x =的自变量是y 所以导数()y f

/

就是y=()x f 曲线上x 的对应点y 处

的同一条切线与y 轴正向夹角β的正切,因此:()()

x f

y f

/

/

1=

即:α

βtan 1

tan =

(α,β之和为

2

π) 2 复合函数的求导法则(链式求导):如果()x g u =在点x 可导,而y=()u f 在点()

x g u =

可导,则复合函数()[]x g f y =在点x 可导,且其导数为:

()()x g u f dx

dy

//=或

dx du du dy dx dy =。 解析:⑴复合函数整体在某点是否可导与()x g u =和()x g 在某点是否可导无关。 ⑵逐层分解为简单函数在求导,不重,不漏。

3 隐函数求导法则:对方程()0,=y x F 所确定的隐函数求导,要把方程()0,=y x F 的两边分别对x 求导即可。在求导过程中应注意y 是x 的函数,所以在对y 或y 的函数求导时应理解为复合函数的求导。

4 参数方程求导法则:由参数方程()()

()βαψ?≤≤??

?==t t y t x 所确定的y与x的函数的导数为:

()()()

t t x f ///

?ψ=。 解析:注意理解()()()()()()[]

3//////////

/

2t t t t t dt

dx dt x df y dt dx dt dy y x ??ψ?ψ-==?=。 5 对数求导法则:是求幂指数()

()x f

y x ?=型导数的有效方法即:对函数()()x f y x ?=的两

边同时取对数,然后根据对数的性质将作为指数的函数()x ?化为与()x f ln 相乘的一个因子,再利用上述方法求导。

6 两个结论:⑴可微分的周期函数其导数仍为具有相同周期的周期函数。

⑵可微分的偶函数的导函数为奇函数,而可微分的奇函数的导函数为偶函数。这个事实说明:凡对称于y 轴的图形其对称点的切线也关于y 轴对称。凡关于原点对称的图形,其对称点的切线互相平行。 五,常见函数的一阶导数 ⑴0/

=c (c为常数)⑵()

1/

-=a a ax x ⑶()

x x

a a a ?=ln /

⑷()

x x

e e =/

⑸()a

x x

a

ln 1

log /

= ⑹()x x 1ln /=

⑺()x x cos sin /=⑻()x x sin cos /-=⑼()x

x x 22

/cos 1sec tan == ⑽()x

x x 2

2

/sin 1csc cot -=-=⑾()x x x tan sec sec /=⑿()x x x cot csc csc /-= ⒀()2

/

11arcsin x x -=

⒁()2

/

11arccos x x --

=⒂()2

/

11

arctan x

x +=

⒃()2/11cot x x arc +-

=⒄()chx shx =/⒅()shx chx =/⒆()x

ch x h thx 22

/1sec ==

⒇()x

sh x h cthx 22

/

1csc ==(21)

()1

12

/

+=x arcshx (22)()1

12

/

-=

x archx

(23)()2

/

11

x arcthx -=

六,高阶导数 设()x f

/

是函数()x f 在I 上的导数,并且()x f /

也在I 上可导,则称()x f 在I 上二阶可导,

并称()x f

//

的导函数是()x f 在

I 上二阶导数,记为:()x f

//

()

()x f

2,一般地,设

()

()()21≥-n x f

n 是()x f 在区间I 上的()1-n 阶导函数并且()

()x f

n 1-也在

I 上可导则称

()x f 在I 上n阶可导,并称()

()x f n 1-的导函数是()x f 在区间

I 上的n阶导函数记为:

()

()x f

n 当函数由()x f y =给出时()x f 的n阶导数也可表示为:()

,,n n n dx

y d y ()

()x f

n 。若在

0x 点的n阶导数常记为:()

()()0000,,,x x dx x f d x x dx y d x x y x f

x

n n n n

n ===。 解析:⑴规定函数()x f 的零阶导数为函数()x f 的本身。

⑵该定义的给出具有数学归纳法的性质,因此在求某一函数的高阶导数时常用数学归

纳法。

⑶()x f 的n阶导数是由()x f 的()1-n 阶再一阶导而求得,所以其具有逐阶刻画的性质。

⑷高阶导数的常用求法:莱布尼茨(Leibniz)公式:

()

()

()()

k k n n

k k n n v u C uv -≡∑=0

[]b a v u ,,(∈上的n阶连续函数)其展开式为:()()()()n n n n n n uv v u C v u C v u ++++--K //

22/11 。

七,常见函数的高阶导数 ⑴()()

0=n C (C为常数)⑵()()()()()n

a n

a

x

n a a a a x -+---=121Λ

⑶()()()x

n

n

x

a a a ln =⑷()()()kx

n

n

kx

a

a k a ln =⑸()()kx

n n

kx

e k

e =⑹()()x

n

x

e

e =

⑺(

)()()(

)

()n

n n

x

a

x

a n ?--=-ln !

11log 1⑻()

()

()

()

()n

n n x

n x !11ln 1--=-⑼()()??

?

??+=2sin sin πn x x n

()()?

?

?

?

?+=2sin sin πn kx k kx n n ⑾

()()?

?

?

?

?+=2cos cos πn x x n ⑿

()()?

?

?

?

?+=2cos cos πn kx k kx n n ⒀

()

x g e y kx =且

()

b x g ae y kx +=/则有

()()

nb x g e a y kx n n +=⒁设

()

x g e y kx =且

()[]

c b x g ke y kx ++=/则有

()()[]nc nb x g e k y kx n n ++=(⒀,⒁用同一函数的思想求b,c)⒂

()

[]

()(

)

()?n c bx e b

a c bx e ax n n ax

+++=+sin sin 2

22

()

[]

()

(

)

()?n c bx e b a c bx e

ax n n ax

+++=+cos cos 2

22

2

22

2cos ,sin b

a a

b

a b

+=

+=

??)

第二讲 微分 一,微分的定义

设()x f 在点0x 的某个邻域()δ,0x U 中有定义如果存在常数

A 使

()()()()δ

()x f 在点0x 处的微分,记为:()()000,,x df x x x df x x dy ==其中称x A ?为函数增量y

?的线性主部。

解析:⑴给出了求函数值的改变量的近似计算方法(极限的无穷小判别法),简单地反映了函数增量与自变量增量的关系即:线性关系。这是一种局部线性逼近的思想。 ⑵令函数x y =则dx dy =这表明自变量的微分dx 就是它的增量x ?。

⑶导数与微分的关系:函数()x f 在点x处可微的充要条件是函数在该点可导,并且有()dx x f

dy /

=(一种常见求微分的方法),所以导数称为微商。

⑷ 函数()x f 的微分是关于x ?的线性函数,x A ?(其中()x f A /

=)且函数()x f 的

导数与x ?无关。

二,导数与微分几何意义的比较 三,微分的四则运算法则

设()()x v v x u u ==,均可微分则有:⑴()dv du v u d ±=±

⑵()vdu udv uv d += ()kdu ku d =(k为常数)⑶2

v

udv

vdu v u d -=

??

? ?? 2v kdv v k d -=??

?

??(k为常数)

四,复合函数一阶微分形式的不变性

设函数()u f y =,()x g u =均可导,则复合函数()[]x g f y =的导数为()[]()

x g x g f

y //

/

=

故其微分为:()[]()dx x g x g f dy //

=注意()[]()u f x g f //=,()()du x dg dx x g ==/因此

上式为:()du u f

dy /

=,无论u是自变量还是中间变量都保持形式的不变性。

解析:第一类积分换元法(凑微分)的理论基础。 五,微分的近似计算及误差估计

1 微分的近似计算:若函数()x f y =在点0x 处可微,则当0x x x -=?很小时,可用微分

dy

似代替增量

y

?即:

()()()()()()()()00/

000/

0x x x f

x f x f x x x f x f x f -+

≈?-≈-。

解析:⑴用微分进行近似计算的实质就是在微小局部将给定的函数线性化,将复杂函数简单化,从几何意义角度看就是用曲线()x f y =在点()()00,x f x 处的切线来近似代替该曲线(达到化曲为直的目的)。另一种理解就是寻求其等价无穷小量。 ⑵用函数微分()dx x f

dy /

=近似计算y ?时要注意:①dx 不一定是无穷小量但应比较

小。②dx 应是一个不依赖于x的增量。

⑶一般利用微分解决四个方面的问题:①计算函数增量y ?的近似值即:

()dx x f

dy y /

=≈?②计算函数的近似值即:()()()dx x f

x f x x f /

+

≈?+③求方程的近似

解即:()()()x a f a f x a f ?≈-?+/

④按照误差的精度要求进行近似计算。

2 微分在误差估计中的实际应用:设某量的测量值为a,精确值为A 如果δ≤-a A 则正数

δ称为测量的绝对误差。

A

δ称为测量的相对误差,而在实际应用中相对误差多用a δ

来计

算。

解析:分清精确值与测量值。 六,高阶微分

由于对自变量x 来说dx =x ?与x 无关,因此可微函数()x f y =的微分()dx x f

dy /

=仍是

x 的函数这样若dy 还可微,则把它的微分()()()()()2//

/

dx x f

dx x f

d dy d =

=叫做函数

()x f y =的二阶微分,并将()dy d 记作:y d 2,把()2

dx 记作:2dx ,于是二阶微分为

()2//

2dx x f

y d =由此可以更一般地若()x f y =的()1-n 阶微分()()()1

11---=

n n n dx x f y d 仍可微,则把它的微分:

()

()n n n

dx x f y d =叫做()x f y =的n阶微分,这时称函数()

x f y =n阶可微,二阶与二阶以上的微分称为高阶微分。

解析:⑴其描述过程具有数学归纳法的性质,所以求解高阶微分的一般方法为数学归纳法。 ⑵高阶微分没有微分形式不变性。 第三讲 导数的应用

一,函数的单调性:设函数()x f y =在[]b a ,上连续,在()b a ,内可导⑴如果在()b a ,内

()0/

≥x f

那么函数()x f y =在[]b a ,上单调增加⑵如果在()b a ,内

()0/

≤x f

那么函数

()x f y =在[]b a ,上单调减少。

解析:⑴区间[]b a ,具有任意性,无论开闭还是有穷,无穷均可。 ⑵若在()b a ,内()0/

>x f

则严格单增,若在()b a ,内()0/

⑶在该定理中我们研究的是导函数值域的性质,并不是某一点导函数值的性质,而是区间上任意点导函数值的性质。

⑷此定理为充要条件,所以结合定义域可求出某函数的单调增(减)区间,与此同时一定要针对函数的单调区间去谈函数的单调性。 ⑸几何意义:由函数()x f y =的导数()x f

/

的正负来判断曲线的升降,进而判断其

单调性。

⑹该定理具有逐层描述的特性,即:二阶导函数的正负决定一阶导函数的增减性,可推广到n阶。 二,函数的极值

1函数极值的定义:设函数()x f y =在点0x 的某邻域内有定义,如果对于其去心邻域内的任一x有()()0x f x f <(()()0x f x f >)则称()0x f 是函数()x f y =的一个极大值(或极小值)函数的极大值与极小值统称为函数的极值。使函数取得极值的点称为极值点。 解析:⑴在研究函数在点0x 处的极值时,一般要求函数是连续函数即:应考察函数在点0x 及其附近是否有定义。

⑵极值是一个局部性定义,它只与一点及其附近的函数值有关,而与整个定义域或定义域内某个区间上的一切函数值无关,因此对于同一个函数来说在一点的极大值也可能小于另一点的极小值。在一个区间内可能取得多个极值。(极值与最值的区别)

⑶极值点处函数曲线的切线平行于x轴,即:导数为0,但导数为0的点(或称稳定点,临界点,驻点)不一定是极值点。换句话说,费马(Fermat)引理只是可导函数极值的必要条件。

⑷函数极值与方程根的个数有一定的关系。

2 常用两种极值的判别法(两个充分条件):⑴第一判别法:设函数()x f 在0x 连续在

()δ,00x U 上可导①若当()00,x x x δ-∈时()0/

≥x f

,当()δ+∈00,x x x 时()0/≤x f 则

()x f 在0x 取得极大值②若当()00,x x x δ-∈时()0/

≤x f

,当()δ+∈00,x x x 时

函数与导数知识点总结

函数与导数 1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性; ⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数分解为基本函数:内函数与外函数; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 注意:外函数的定义域是内函数的值域。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件; ⑵是奇函数; ⑶是偶函数; ⑷奇函数在原点有定义,则; ⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; (6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义: ①在区间上是增函数当时有; ②在区间上是减函数当时有; ⑵单调性的判定 1 定义法: 注意:一般要将式子化为几个因式作积或作商的形式,以利于判断符号; ②导数法(见导数部分); ③复合函数法(见2 (2)); ④图像法。 注:证明单调性主要用定义法和导数法。 7.函数的周期性 (1)周期性的定义: 对定义域内的任意,若有(其中为非零常数),则称函数为周期函数,为它的一个周期。 所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周(2)三角函数的周期: ⑶函数周期的判定 ①定义法(试值)②图像法③公式法(利用(2)中结论) ⑷与周期有关的结论

高等数学考研知识点总结

高等数学考研知识点总结 一、考试要求 1、理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形,了解初等函数的概念。 5、理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。 6、掌握(了解)极限的性质,掌握四则运算法则。 7、掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。 8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。1

1、掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系、(2)复合函数: y=f(u), u=,重点:确定复合关系并会求复合函数的定义域、(3)分段函数: 注意,为分段函数、(4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。(5)函数的特性:单调性、有界性、奇偶性和周期性* 注: 1、可导奇(偶)函数的导函数为偶(奇)函数。特别:若为偶函数且存在,则 2、若为偶函数,则为奇函数;若为奇函数,则为偶函数; 3、可导周期函数的导函数为周期函数。特别:设以为周期且存在,则。 4、若f(x+T)=f(x), 且,则仍为以T为周期的周期函数、 5、设是以为周期的连续函数,则, 6、若为奇函数,则;若为偶函数,则 7、设在内连续且存在,则在内有界。 2、极限 (1) 数列的极限: (2) 函数在一点的极限的定义: (3)

第3章-微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便于 直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

高数第二章导数与微分知识点与习题

高数第二章导数与微分知识点总结 第一节 导数 1.基本概念 (1)定义 0000000000 ()()()()()|(|)'()lim lim lim x x x x x x x f x x f x f x f x dy df x y f x dx dx x x x x ==?→?→→+?--?====??-或 注:可导必连续,连续不一定可导. 注:分段函数分界点处的导数一定要用导数的定义求. (2)左、右导数 0'00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x - --?→→+?--==?-. 0 '00000 0()()()()()lim lim x x x f x x f x f x f x f x x x x + ++?→→+?--==?-. 0'()f x 存在''00()()f x f x -+?=. (3)导数的几何应用 曲线()y f x =在点00(,())x f x 处的切线方程:000()'()()y f x f x x x -=-. 法线方程:0001 ()()'() y f x x x f x -=- -. 2.基本公式 (1)'0C = (2)' 1 ()a a x ax -= (3)()'ln x x a a a =(特例()'x x e e =)(4)1 (log )'(0,1)ln a x a a x a = >≠

(5)(sin )'cos x x = (6)(cos )'sin x x =- (7)2(tan )'sec x x = (8)2 (cot )'csc x x =- (9)(sec )'sec tan x x x = (10)(csc )'csc cot x x x =- (11)2 1(arcsin )'1x x = - (12)2 1(arccos )'1x x =- - (13)21(arctan )'1x x = + (14)2 1 (arccot )'1x x =-+ (15222 2 1[ln()]'x x a x a + += + 3.函数的求导法则 (1)四则运算的求导法则 ()'''u v u v ±=± ()'''uv u v uv =+ 2 '' ()'u u v uv v v -= (2)复合函数求导法则--链式法则 设(),()y f u u x ?==,则(())y f x ?=的导数为:[(())]''(())'()f x f x x ???=. 例5 求函数2 1 sin x y e =的导数. (3)反函数的求导法则 设()y f x =的反函数为()x g y =,两者均可导,且'()0f x ≠,则 11 '()'()'(()) g y f x f g y = =. (4)隐函数求导 设函数()y f x =由方程(,)0F x y =所确定,求'y 的方法有两种:直接求导法和公式法' ''x y F y F =-. (5)对数求导法:适用于若干因子连乘及幂指函数 4.高阶导数

考研数学知识点总结

考研数学考点与题型归类分析总结 1高数部分 1.1高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小; 2.利用洛必达法则 型和 ∞ ∞ 型直接用洛必达法则 ∞ 0、0∞、∞1型先转化为 型或 ∞ ∞ 型,再使用洛比达法则; 3.利用重要极限,包括1 sin lim = → x x x 、e x x x = + → 1 ) 1( lim、e x x x = + ∞ → ) 1(1 lim; 4.夹逼定理。 1.2高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第三章《不定积分》提醒:不定积分?+ =C x F dx x f) ( ) (中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样加深印象:定积分?dx x f) (的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+ =C x F dx x f) ( ) (中的那个C,漏掉了C也就漏掉了这1分。 第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章: 对于?-a a dx x f) (型定积分,若f(x)是奇函数则有?-a a dx x f) (=0; 若f(x)为偶函数则有?-a a dx x f) (=2?a dx x f ) (; 对于?20)( π dx x f型积分,f(x)一般含三角函数,此时用x t- = 2 π 的代换是常用方法。 所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质0 = ?-a a奇函数、? ?= - a a a0 2偶函数 偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3高数第五章《中值定理的证明技巧》 用以下逻辑公式来作模型:假如有逻辑推导公式A?E、(A B)?C、(C D E)?F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。 正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的A?E就可能有A?H、A?(I K)、(A B) ?M等等公式同时存在,

第2章导数与微分总结

1、极限的实质是:动而不达 导数的实质是:一个有规律商的极限。规律就是: 2、导数的多种变式定义: lim 丄一x) f °)是描述趋近任意 x 时的斜率。而 x 0 3、I 若x 没趋近到x0,那么除法得到的值是这段的平均斜率, 如果趋近到了 x0,得到 的就是这点的斜率一一导数。 4、可导与连续的关系: 1基础总结 lim -= lim x 0 x x 0 f(x X)f(x) x lim x x o f(x ) f (x o ) X o 叫 号严可以刻画趋近具体 x0 时的斜率。 li m o 要注意细心观察发现,

导数的实质是定义在某点的左右极限。 既然定义在了某点上,该点自然存在,而 且还得等于左右极限。因此,可导一定是连续的。反之,如果连续,不一定可导。 不多说。同理,如果不连续,肯定某点要么无定义,要么定义点跳跃跑了,肯定 极限有可能存在,但是导数绝不会存在。 同理要注意左右导数的问题。如果存在左或者右导数,那么在左侧该点一定是存 在的。如: f(x) x,x 0 这个函数,在0点就不存在左导数,只存在右导数。为什么嫩?看定义: 万不要以为导数是一种简单的极限,极限是可以在某点无定义的,而导数却是该 点必须存在! 由此引发了一些容易误判的血案: 例如: A 旦主^謎I C m F 左电鼓 pg 总生戟乞 f ( x) f (x) -中的f(x))至u 底是神马。比如求上图 lim f(x x) f(x) x 0 x lim f(X X)f(0) 。 x 0 定义里面需要用到f(0)啊!因此,千 中 iim f (x )论) x 1 x x 0 ,这个f(x0)千万要等于2/3,而不是1 ! 定义解决时候一定要注意问。 X X o

导数与微分重点知识归纳

导数的概念 例:设一质点沿x轴运动时,其位置x是时间t的函数,,求质点在t0的瞬时速 度? 我们知道时间从t0有增量△t时,质点的位置有增量 这就是质点在时间段△t的位移。因此,在此段时间内质点的平均速度为: 若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。 我们认为当时间段△t无限地接近于0时,此平均速度会无限地接近于质点t0时的瞬时速度, 即:质点在t0时的瞬时速度= 为此就产生了导数的定义,如下 导数的定义 设函数在点x0的某一邻域内有定义,当自变量x在x0处有增量△x(x+△x也在该邻域内)时,相应地 函数有增量 , 若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。 记为:还可记为:, 函数在点x0处存在导数简称函数在点x0处可导,否则不可导。 若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数 对于区 间(a,b)内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数, 我们就称这个函数为原来函数的导函数。 注:导数也就是差商的极限左、右导数 前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的

概念。 若极限存在,我们就称它为函数在x=x0处的左导数。 若极限存在,我们就称它为函数在x=x0处的右导数。 注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差). 用公式可写为:。其中u、v为可导函数。 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成: 函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 复合函数的求导法则 例题:求=? 解答:由于,故这个解答正确吗? 这个解答是错误的,正确的解答应该如下: 我们发生错误的原因是是对自变量x求导,而不是对2x求导。 下面我们给出复合函数的求导法则

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

函数与导数知识点

函数与导数知识点 【重点知识整合】 1.导数的定义:设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数()y f x =相 应地有增量)()(00x f x x f y -?+=?, 如果0→?x 时,y ?与x ?的比x y ??(也叫函数的平均变化率)有极限即x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在 0x x →处的导数,记作0 x x y =',即 0000 ()() ()lim x f x x f x f x x ?→+?-'=?. 注意:在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写 成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.导数的几何意义: 导数 0000 ()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处 变化的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00 x f x )处的切线的斜率.因此,如果)(x f y =在点0 x 可导,则曲线)(x f y =在点()(,00 x f x )处的切线方程为 000()()()y f x f x x x -='- 注意:“过点A 的曲线的切线方程”与“在点A 处的切线方程”是不相同的,后者A 必为切点,前者未必是切点. 3.导数的物理意义: 函数()s s t =在点 0t 处的导数0(),s t '就是物体的运动方程()s s t =在点0t 时刻的瞬时速度v ,即0().v s t '= 4.几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=; 1(ln )x x '= ; 1 (log )log a a x e x '=; ()x x e e '= ; ()ln x x a a a '=. 5.求导法则: 法则1: [()()]()()u x v x u x v x ±'='±'; 法则2: [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '=; 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ???.

考研数学知识点总结(不看后悔)

考研英语作文万能模板考研英语作文万能模板函数 极限数列的极限特殊——函数的极限一般 极限的本质是通过已知某一个量自变量的变化趋势去研究和探索另外一个量因变量的变化趋势 由极限可以推得的一些性质局部有界性、局部保号性……应当注意到由极限所得到的性质通常都是只在局部范围内成立 在提出极限概念的时候并未涉及到函数在该点的具体情况所以函数在某点的极限与函数在该点的取值并无必然联系连续函数在某点的极限等于函数在该点的取值 连续的本质自变量无限接近因变量无限接近导数的概念 本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限更简单的说法是变化率 微分的概念函数增量的线性主要部分这个说法有两层意思一、微分是一个线性近似二、这个线性近似带来的误差是足够小的实际上任何函数的增量我们都可以线性关系去近似它但是当误差不够小时近似的程度就不够好这时就不能说该函数可微分了不定积分导数的逆运算什么样的函数有不定积分 定积分由具体例子引出本质是先分割、再综合其中分割的作用是把不规则的整体划作规则的许多个小的部分然后再综合最后求极限当极限存在时近似成为精确 什么样的函数有定积分 求不定积分定积分的若干典型方法换元、分部分部积分中考虑放到积分号后面的部分不同类型的函数有不同的优先级别按反对幂三指的顺序来记忆 定积分的几何应用和物理应用高等数学里最重要的数学思想方法微元法 微分和导数的应用判断函数的单调性和凹凸性 微分中值定理可从几何意义去加深理解 泰勒定理本质是用多项式来逼近连续函数。要学好这部分内容需要考虑两个问题一、这些多项式的系数如何求二、即使求出了这些多项式的系数如何去评估这个多项式逼近连续函数的精确程度即还需要求出误差余项当余项随着项数的增多趋向于零时这种近似的精确度就是足够好的考研英语作文万能模板考研英语作文万能模板多元函数的微积分将上册的一元函数微积分的概念拓展到多元函数 最典型的是二元函数 极限二元函数与一元函数要注意的区别二元函数中两点无限接近的方式有无限多种一元函数只能沿直线接近所以二元函数存在的要求更高即自变量无论以任何方式接近于一定点函数值都要有确定的变化趋势 连续二元函数和一元函数一样同样是考虑在某点的极限和在某点的函数值是否相等导数上册中已经说过导数反映的是函数在某点处的变化率变化情况在二元函数中一点处函数的变化情况与从该点出发所选择的方向有关有可能沿不同方向会有不同的变化率这样引出方向导数的概念 沿坐标轴方向的导数若存?诔浦际?通过研究发现方向导数与偏导数存在一定关系可用偏导数和所选定的方向来表示即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续则求导次序可交换 微分微分是函数增量的线性主要部分这一本质对一元函数或多元函数来说都一样。只不过若是二元函数所选取的线性近似部分应该是两个方向自变量增量的线性组合然后再考虑误差是否是自变量增量的高阶无穷小若是则微分存在 仅仅有偏导数存在不能推出用线性关系近似表示函数增量后带来的误差足够小即偏导数存在不一定有微分存在若偏导数存在且连续则微分一定存在 极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂 极值若函数在一点取极值且在该点导数偏导数存在则此导数偏导数必为零

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

电大【高等数学基础】 导数与微分

2) 导数与微分 070713.设 )(x f 在0x 可导,则=--→h x f h x f h ) ()2(lim 000 ( ). A )(0x f ' B )(20x f ' C )(0x f '- D )(20x f '- 070113.设 )(x f 在0x 可导,则=--→h x f h x f h 2) ()2(lim 000 ( ). (A) )(0x f ' (B) )(20x f ' (C) )(0x f '- (D) )(20x f '- 060113.设 x x f e )(=,则=?-?+→?x f x f x )1()1(lim ( ).A e 2 B e C 080713.下列等式中正确的是( ) A dx x x d 1 )1(2-= B dx x 2)x 1d(= C dx d x x 2)ln22(= D 050713.下列等式中正确的是( ). A.xdx d arctan )1( 2= B. 2 )1(dx d -= C.dx d x x 2)2ln 2 (= D.xdx x d cot )(tan = A 先单调下降再单调上升 B 单调下降 C 先单调上升再单调下降 D 单调上升 060713. 函数 622+-=x x y 在区间)5,2(内满足( ) . A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升 080724.函数 2)2(2+-=x y 的单调减少区间是 .

080124.函数 1)(2-=x x f 的单调减少区间是 . 070724. 函数2 x e y -=的单调减少区间是 . 070124.函数x y arctan =的单调增加区间是 . 060724.函数1)1(2++=x y 的单调增加区间是 . 060124.函数1)1(2++=x y 的单调减少区间是 . 050724.函数 )1ln(2x y +=的单调增加区间是 . 080732.设 2sin sin x e y x +=,求y ' 解:2sin 2sin cos 2cos )(sin )(x x x e x e y x x +='+'=' 080132.设2 x xe y =,求 y ' 解:2 22222)()(x x x x e x e e x e x y +='+'=' 070732.设2sin x e y x -=,求'y 解:x xe x x e y x x 2cos )().(sin sin 2sin -='-'=' 070132.设x x y e cos ln +=,求'y 解:x x x y e sin )(ln -'=' 060732.设 x x e y x ln tan -=,求y '. x x x x x 12- 解:由导数四则运算法则得 x x x x x x x x x y ++= '+'+'='ln 2cos 1 )(ln ln )()(tan 222 050733.设 2cos ln x y =,求d y .

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

考研数学备考:概率论各章节知识点梳理.doc

考研数学备考:概率论各章节知识点梳理考研备考时间已然快要过半,还在为了备考方法焦灼?不用担心!老司机带你上车,下面由我为你精心准备了“考研数学备考:概率论各章节知识点梳理”,持续关注本站将可以持续获取更多的考试资讯! 考研数学备考:概率论各章节知识点梳理 众所周知,概率论的知识点又多又杂,需要我们系统的归类并掌握,这样才能获得高分。为此我整理了相关内容,希望对大家有所帮助。 第一部分:随机事件和概率 (1)样本空间与随机事件 (2)概率的定义与性质(含古典概型、几何概型、加法公式) (3)条件概率与概率的乘法公式 (4)事件之间的关系与运算(含事件的独立性) (5)全概公式与贝叶斯公式 (6)伯努利概型 其中:条件概率和独立为本章的重点,这也是后续章节的难点之一,请各位研友务必重视起来。 第二部分:随机变量及其概率分布 (1)随机变量的概念及分类 (2)离散型随机变量概率分布及其性质 (3)连续型随机变量概率密度及其性质 (4)随机变量分布函数及其性质 (5)常见分布 (6)随机变量函数的分布

其中:要理解分布函数的定义,还有就是常见分布的分布律抑或密度函数必须记好且熟练。 第三部分:二维随机变量及其概率分布 (1)多维随机变量的概念及分类 (2)二维离散型随机变量联合概率分布及其性质 (3)二维连续型随机变量联合概率密度及其性质 (4)二维随机变量联合分布函数及其性质 (5)二维随机变量的边缘分布和条件分布 (6)随机变量的独立性 (7)两个随机变量的简单函数的分布 其中:本章是概率的重中之重,每年的解答题定会有一道与此知识点有关,每个知识点都是重点,务必重视! 第四部分:随机变量的数字特征 (1)随机变量的数字期望的概念与性质 (2)随机变量的方差的概念与性质 (3)常见分布的数字期望与方差 (4)随机变量矩、协方差和相关系数 其中:本章只要清楚概念和运算性质,其实就会显得很简单,关键在于计算。 第五部分:大数定律和中心极限定理 (1)切比雪夫不等式 (2)大数定律 (3)中心极限定理

高等数学考研大总结之四导数与微分

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()() 00,x f x f y x x x -=?-=?则()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量 增量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极 限不存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0 x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

高中数学导数与定积分知识点

高中数学知识点—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x 的导数; ②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数; ③会使用导数公式表。 (3)导数在研究函数中的应用 ①结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积

分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f ’(x 0)或y ’|0x x =。 即f (x 0)=0 lim →?x x y ??=0 lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

相关主题
文本预览
相关文档 最新文档