当前位置:文档之家› 电磁学复习考试计算题(附答案)

电磁学复习考试计算题(附答案)

电磁学复习考试计算题(附答案)
电磁学复习考试计算题(附答案)

《电磁学》计算题(附答案)

1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:

(1) 在它们的连线上电场强度0=E

的点与电荷为+q 的点电荷相距多远?

(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?

2. 一带有电荷q =3×10-

9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-

5 J ,粒子动能的增量为4.5×10-

5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?

3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.

4. 一半径为

R 的带电球体,其电荷体密度分布为

ρ =Ar (r ≤R ) , ρ =0 (r >R )

A 为一常量.试求球体内外的场强分布.

5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-

12C 2

/ N ·m 2 )

6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位

置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.

常量b =1000 N/(C ·m).试求通过该高斯面的电通量.

7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.

(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.

8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-

6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )

9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在

此区域有一静电场,场强为j i E

300200+= .试求穿过各面的电通量.

E

q

L

q

10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )

11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面

处为电势零点,试求带电平面周围空间的电势分布.

12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.

13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-

8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.

(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;

(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).

14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-

7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2

为0.5 m 处P 点的电场强度. (

41

επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -

2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )

16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.

17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.

A

B

R

Ⅱ Ⅲ d

b

a 45?c

E

σA

σB

A B

O

a θ0 q A

R ∞

∞ O

18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:

(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).

(2) 两带电直线上单位长度之间的相互吸引力.

19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量

εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电

势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -

2)

20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.

(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?

22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?

23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.

24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.

25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-

8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 10941

90

??=πε)

-λ +λ

26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出

x 轴上两导线之间区域]2

5

,21[a a 内磁感强度的分布.

27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2

T ,方向与a →b 的方向相一致的均匀磁场中,试求:

(1) 图中电流元I ?l 1和I ?l 2所受安培力1F ?和2F

?的方向和大小,设?l 1 =

?l 2 =0.10 mm ;

(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F

的大小和方向;

(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F

的大小和方向.

28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0

×10-

2 T 的均匀磁场中,B

方向沿x 轴正方向.试求:

(1) 图中电流元I ?l 1和I ?l 2所受安培力1F ?和2F

?的大小和方向,设?l 1 = ?l 2

=0.10 mm ;

(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F

的大小和方向;

(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F

的大小和方向.

29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -

2)

30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如

图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心

点O 处的磁感强度B

31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.

a b

c d

O R

R x y

I I 30° 45° I ?l 1

I ?l 2

a b

c d O R

R x

y

I I 30° 45° I ?l 1 I ?l 2

32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B

的大小及其

方向.

33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.

34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通

过该矩形平面的磁通量.

35. 质子和电子以相同的速度垂直飞入磁感强度为B

的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.

36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,

三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B

37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BC

R ,小圆弧DE 的半径为

R 2

1

,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两

段圆弧共面共心.求圆心O 处的磁感强度B

的大小.

39.

地球半径为R =6.37×106 m .μ0 =4π×10-

7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p

与电子轨道运动的动量矩

L 大小之比,并指出m p

和L 方向间的关系.(电子电荷为e ,电子质量为m )

41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8

Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8

Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)

42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-

7 T ·m/A ,铜的相对磁导率μr ≈1)

43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?

44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.

(1) 写出电流元11d l I 对电流元22d l I

的作用力的数学表达式;

(2) 推出载流导线单位长度上所受力的公式.

45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.

46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)

47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。若假想平面S 可在导线直径与轴OO '所确定的平面内离开OO '轴移动至远处.试求当通过S 面的磁通量最大时S 平面的位置(设直导线内电流分布是均匀的).

I

I

I 2

11d l I 22d l I

48. 带电粒子在均匀磁场中由静止开始下落,磁场方向与重力方向(x 轴方向)垂直,求粒子下落距离为y 时的速率v ,并叙述求解方法的理论依据. 49. 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线

段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且

闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.

50. 在一半径R =1.0 cm 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流I = 5.0 A 通过.试求圆柱轴线任一点的磁感强度.(μ0 =4π×10-

7 N/A 2)

51. 已知均匀磁场,其磁感强度B = 2.0 Wb ·m -2,方向沿x 轴正向,如图所示.试求:

(1) 通过图中abOc 面的磁通量; (2) 通过图中bedO 面的磁通量; (3) 通过图中acde 面的磁通量.

52. 如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.

53. 通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸

面的均匀磁场B

中,求整个导线所受的安培力(R 为已知).

54. 三根平行长直导线在同一平面内,1、2和2、3之间距离都是d =3cm ,其中电流21I I =,)(213I I I +-=,方向如图.试求在该平面内B =

0的直线的位置.

55. 均匀带电刚性细杆AB ,线电荷密度为λ,绕垂直于直线的轴O 以ω 角速度匀速转动(O 点在细杆AB 延长线上).求:

(1) O 点的磁感强度0B

(2) 系统的磁矩m p

; (3) 若a >> b ,求B 0及p m .

y O y x v B

×

× × × × ×

R 1 R 2

O I

B

x ? ⊙

⊙ 1

2

3

O

56. 在B = 0.1 T 的均匀磁场中,有一个速度大小为v =104

m/s 的电子沿垂直于B

的方向(如图)通过A 点,求电子的轨道半径和旋转频率.(基本电荷e = 1.60×10-19 C, 电子质量m e = 9.11×10-31 kg)

57. 两长直平行导线,每单位长度的质量为m =0.01 kg/m ,分别用l =0.04 m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2θ =10°,求电流I .(tg5°=0.087,μ0 =4π×10-

7 N ·A -2)

58. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点

的磁感强度B

59. 一面积为S 的单匝平面线圈,以恒定角速度ω在磁感强度k t B B

ωsin 0=的均匀外磁场中转动,

转轴与线圈共面且与B

垂直( k 为沿z 轴的单位矢量).设t =0时线圈的正法向与k 同方向,

求线圈中的感应电动势.

60. 在一无限长载有电流I 的直导线产生的磁场中,有一长度为b 的平行于导线的短铁棒,它们相距为a .若铁棒以速度v

垂直于导线与铁棒初始位置组成的平面匀速运动,求t 时刻铁棒两端的感应电动势 的大小.

61. 在细铁环上绕有N = 200匝的单层线圈,线圈中通以电流I =2.5 A ,穿过铁环截面的磁通量Φ =0.5 mWb ,求磁场的能量W .

62. 一个密绕的探测线圈面积为4 cm 2,匝数N =160,电阻R =50 Ω.线圈与一个内阻r =30 Ω的冲击电流计相连.今把探测线圈放入一均匀磁场中,线圈法线与磁场方向平行.当把线圈法线转到垂直磁场的方向时,电流计指示通过的电荷为 4×10-

5 C .问磁场的磁感强度为多少? 63. 两同轴长直螺线管,大管套着小管,半径分别为a 和b ,长为L (L >>a ;a >b ),匝数分别为N 1和N 2,求互感系数M .

64. 均匀磁场B

被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸

面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,

已知π=3

1

θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小

和方向.

c

A

B

v

65. 如图所示,有一中心挖空的水平金属圆盘,内圆半径为R 1,外圆半径为R 2.圆盘绕竖直中心轴O ′O ″以角速度ω匀速转动.均匀磁场B

的方向

为竖直向上.求圆盘的内圆边缘处C 点与外圆边缘A 点之间的动生电动势的大小及指向.

66. 将一宽度为l 的薄铜片,卷成一个半径为R 的细圆筒,设 l >> R ,电流I 均匀分布通过此铜片(如图).

(1) 忽略边缘效应,求管内磁感强度B

的大小;

(2) 不考虑两个伸展面部份(见图),求这一螺线管的自感系数.

67. 一螺绕环单位长度上的线圈匝数为n =10匝/cm .环心材料的磁导率μ =μ0.求在电流强度I 为多大时,线圈中磁场的能量密度w =1 J / m 3? (μ0 =4π×10-

7 T ·m/A )

68. 一边长为a 和b 的矩形线圈,以角速度ω 绕平行某边的对称轴OO '

转动.线圈放在一个随时间变化的均匀磁场t B B ωsin 0 =中,(0B 为

常矢量. ) 磁场方向垂直于转轴, 且时间t =0时,线圈平面垂直于B

,如图所示.求线圈内的感应电动势 ,并证明 的变化频率f '是B

变化频率的二倍.

69. 如图所示,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v 沿垂直于导线的

方向离开导线.设t =0时,线圈位于图示位置,求 (1) 在任意时刻t 通过矩形线圈的磁通量Φ. (2) 在图示位置时矩形线圈中的电动势 .

70. 一环形螺线管,截面半径为a ,环中心线的半径为R ,R >>a .在环上用表面绝缘的导线均匀地密绕了两个线圈,一个N 1匝,另一个N 2匝,求两个线圈的互感系数M .

71. 设一同轴电缆由半径分别为r 1和r 2的两个同轴薄壁长直圆筒组成,两长圆筒通有等值反向电流I ,如图所示.两筒间介质的相对磁导率μr = 1,求同轴电缆 (1) 单位长度的自感系数. (2) 单位长度内所储存的磁能.

A

0B

? I

I

72. 在图示回路中,导线ab 可以在相距为0.10 m 的两平行光滑导线LL '和MM '上水平地滑动.整个回路放在磁感强度为0.50 T 的均匀磁场中,磁场方向竖直向上,回路中电流为 4.0 A .如要保持导线作匀速运动,求须加外力的大小和方向.

73. 两根很长的平行长直导线,其间距离为d ,导线横截面半径为r ( r << d ),它们与电源组成回路如图.若忽略导线内部的磁通,试计算此两导线组成的回路单位长度的自感系数L .

74. 如图,一无净电荷的金属块,是一扁长方体.三边长分别为a 、b 、c 且a 、b 都远大于c .金属块在磁感强度为B

的磁场中,

以速度v

运动.求

(1) 金属块中的电场强度. (2) 金属块上的面电荷密度.

75. 两根平行放置相距2a 的无限长直导线在无限远处相连,形成闭合回路.在两根长直导线之间有一与其共面的矩形线圈,线圈的边长分别为l 和2b ,l 边与长直导线平行 (如图所示) .求:线圈在两导线的中心位置(即线圈的中心线与两根导线距离均为a )时,长直导线所形成的闭合回路与线圈间的互感系数.

L '

x

y

z

v

《电磁学》习题答案

1.

解:设点电荷q 所在处为坐标原点O ,x 轴沿两点电荷的连线.

(1) 设0=E

的点的坐标为x ',则

()

04342

02

0=-'π-

'π=

i d x q

i x q E εε 可得 0222

2

=-'+'d x d x 解出 ()

d x 312

1

+-

=' 另有一解(

)

d x 132

1

2

-=''不符合题意,舍去.

(2) 设坐标x 处U =0,则

()

x d q

x q U -π-π=

00434εε

()0440=??

????--π=

x d x x d q ε 得 d - 4x = 0, x = d /4 2.

解:(1) 设外力作功为A F 电场力作功为A e , 由动能定理:

A F + A e = ? E K

则 A e =? E K -A F =-1.5×10-

5 J

(2) qES S F S F A e e e -=-=?=

()=-=qS A E e /105 N/C

3.

解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直

杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:

()204d d x d L q E -+π=

ε()

2

04d x d L L x

q -+π=ε 总场强为 ?+π=L

x d L x

L q E 0

2

0)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.

+O

4.

解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为

r r Ar V q d 4d d 2π?==ρ

在半径为r 的球面内包含的总电荷为

40

3d 4Ar r Ar dV q r

V

π=π==??ρ (r ≤R)

以该球面为高斯面,按高斯定理有 04

21/4εAr r E π=π?

得到

()0214/εAr E =, (r ≤R )

方向沿径向,A >0时向外, A <0时向里.

在球体外作一半径为r 的同心高斯球面,按高斯定理有

04

22/4εAR r E π=π? 得到 ()

2

0424/r AR E ε=, (r >R )

方向沿径向,A >0时向外,A <0时向里. 5.

解:球心处总电势应为两个球面电荷分别在球心处产生的电势叠加,即

?

??? ??+π=

22110

41r q r q U ε???

? ??π+ππ=22212104441r

r r r σσε()210r r +=εσ

故得 92

101085.8-?=+=r r U

εσ C/m 2

6.

解:通过x =a 处平面1的电场强度通量

Φ1 = -E 1 S 1= -b a 3

通过x = 2a 处平面2的电场强度通量

Φ2 = E 2 S 2 = 2b a 3

其它平面的电场强度通量都为零.因而通过该高斯面的总电场强度通量为

Φ = Φ1+ Φ2 = 2b a 3-b a 3 = b a 3 =1 N ·m 2/C

3分

7.

解:(1) 电偶极子在均匀电场中所受力矩为

E p M

?=

其大小 M = pE sin θ = qlE sin θ 当θ =π/2 时,所受力矩最大,

M max =qlE =2×10-

3 N ·m

-q

θ

+q

p

E

(2) 电偶极子在力矩作用下,从受最大力矩的位置转到平衡位置(θ=0)过程中,电场力所作的功为

qlE qlE M A =-=-=??0

2

02

//d sin d ππθθθ=2×10-3 N ·m

8.

解: 2

0114d

q E επ=

, 2

0224d

q E επ=

∵ 212q q = , ∴ 212E E = 由余弦定理:

1212

221360cos 2E E E E E E =-+=

2

0143

d

q επ== 3.11×106 V/m

由正弦定理得:

αsin 60

sin 1E E =

, 2160sin sin 1== E E α α = 30°

∴E

的方向与中垂线的夹角β=60°,如图所示.

9.

解:由题意知

E x =200 N/C , E y =300 N/C ,E z =0

平行于xOy 平面的两个面的电场强度通量

01=±==?S E S E z e

Φ

平行于yOz 平面的两个面的电场强度通量

2002±=±==?S E S E x e

Φ b 2N ·m 2/C

“+”,“-”分别对应于右侧和左侧平面的电场强度通量 平行于xOz 平面的两个面的电场强度通量

3003±=±==?S E S E y e

Φ b 2 N ·m 2/C

“+”,“-”分别对应于上和下平面的电场强度通量. 10.

解:设闭合面内包含净电荷为Q .因场强只有x 分量不为零,故只是二个垂直于x 轴的平面上电场

强度通量不为零.由高斯定理得:

-E 1S 1+ E 2S 2=Q / ε0 ( S 1 = S 2 =S )

则 Q = ε0S (E 2- E 1) = ε0Sb (x 2- x 1)

= ε0ba 2(2a -a ) =ε0ba 3 = 8.85×10-

12 C

2

q 2

q

x

11.

解:选坐标原点在带电平面所在处,x 轴垂直于平面.由高斯定理可得场强分布为

E =±σ / (2ε0)

(式中“+”对x >0区域,“-”对x <0区域) . 平面外任意点x 处电势: 在x ≤0区域

00

2d 2d εσεσx

x x E U x

x

=-=

=

?

?

在x ≥0区域

00

2d 2d εσεσx

x x E U x

x

-==

=

?

?

12.

解:用电势叠加原理可导出电偶极子在空间任意点的电势

()304/r r p U επ=?

式中r

为从电偶极子中心到场点的矢径.于是知A 、B 两点电势分别为

()204/R p U A επ-=

()204/R p U B επ= ()p p

=

q 从A 移到B 电场力作功(与路径无关)为

()()202/R qp U U q A B A επ-=-=

13.

解:(1) 090cos d o 1===

?

?ab qE S F A b

a

(2) o 2180cos d ac qE S F A c

a ==??

=-1×10-3 J (3) o 345sin d ad qE S F A d

a

==?

?

=2.3×10-3 J

14.

解:如图所示,P 点场强为

21E E E P +=

建坐标系Oxy ,则P E

在x 、y 轴方向的分量为

αsin 0221E E E E x x Px +=+=

αεsin 41

22

20r q ?π=

αcos 2121E E E E E y y Py -=+=αεεcos 41

4122

202110r q r q ?π-?π=

q

r y E

代入数值得 E Px = 0.432×104 N ·C -1, E Py = 0.549×104 N ·C -

1 合场强大小 2

2Py

Px P E E E +=

= 0.699×104 N ·C -1 方向:P E

与x 轴正向夹角 ()

x y E E /arctg =β = 51.8° 15.

解:两带电平面各自产生的场强分别为:

()02/εσA A E = 方向如图示

()02/εσB B E = 方向如图示

由叠加原理两面间电场强度为

()()02/εσσB A B A E E E +=+=

=3×104 N/C 方向沿x 轴负方向

两面外左侧()()02/εσσ

A B

A B E E E -=

-='

=1×104 N/C 方向沿x 轴负方向

两面外右侧 E ''= 1×104 N/C 方向沿x 轴正方向 16.

解:取坐标xOy 如图,由对称性可知:0d ==?

x x E E

θελθεcos 4d cos 4d d 2020a l

a q E y π-=π-=

θθελd cos 42

0a a

?π-= θθελ

θθd cos 400212

10?

-π-=a

E y

2sin 22sin 2002000θθεθελa q

a π-=π-= j a q E 2

sin 2002

0θθεπ-= 17.

解:以O 点作坐标原点,建立坐标如图所示.半无限长直线A ∞在O 点产生的场强1E

()j i R

E --π=

014ελ

半无限长直线B ∞在O 点产生的场强2E

()j i R

E +-π=

024ελ

半圆弧线段在O 点产生的场强3E ,

B

E

i R

E

032ελπ=

由场强叠加原理,O 点合场强为

0321=++=E E E E

18.

解:(1) 一根无限长均匀带电直线在线外离直线距离r处的场强为:

E =λ / (2πε0r )

根据上式及场强叠加原理得两直线间的场强为

????

?

??????????

??++??? ??-π=+=x a x a E E E 21212021ελ ()

2

2042x a a -π=

ελ

, 方向沿x 轴的负方向 (2) 两直线间单位长度的相互吸引力

F =λE =λ2 / (2πε0a )

19.

解:设空气中和介质中的电位移矢量和电场强度矢量分别为1D 、2D

和1E 、2E ,则

U = E 1d = E 2d (1) D 1 = ε0E 1 (2) D 2 = ε0εr E 2 (3) 联立解得 100021==

=d

U

E E V/m 29101C/m 1085.8-?==E D ε 28202C/m 1085.8-?==E D r εε

方向均相同,由正极板垂直指向负极板. 20.

解:设小水滴半径为r 、电荷q ;大水滴半径为R 、电荷为Q =27 q .27个小水滴聚成大水滴,其体

积相等

27×(4 / 3)πr 3=(4 / 3) πR 3

得 R = 3r 小水滴电势 U 0 = q / (4πε0r ) 大水滴电势 ()000094934274U r

q

r q R Q U =π=π=π=

εεε

1 2 U

-

21.

解:(1) 令无限远处电势为零,则带电荷为q 的导体球,其电势为

R

q

U 04επ=

将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能

q R

q

W A d 4d d 0επ=

=

(2) 带电球体的电荷从零增加到Q 的过程中,外力作功为

??==Q

R q q A A 0

04d d πεR Q 02

8επ=

22.

解:因为所带电荷保持不变,故电场中各点的电位移矢量D

保持不变, 又 r

r r w D D DE w εεεεε0200202112121====

因为介质均匀,∴电场总能量 r W W ε/0= 23.

解:未插导体片时,极板A 、B 间场强为:

E 1=V / d

插入带电荷q 的导体片后,电荷q 在C 、B 间产生的场强为:

E 2=q / (2ε0S )

则C 、B 间合场强为:

E =E 1+E 2=(V / d )+q / (2ε0S )

因而C 板电势为:

U =Ed / 2=[V +qd / (2ε0S )] / 2

24.

解:内球壳的外表面上极化电荷面密度为:

110111

E P P e n χεσ==='2121141141R

Q

R Q r r r π???? ??-=π-=εεε 外球壳的内表面上极化电荷面密度为:

220222

E P P e n χεσ-=-=='22222π411π41R

Q

R Q r r r ???? ??--=--=εεε 两层介质分界面净极化电荷面密度为:

d /2 d /2

E 1 E 2

E 2

E 1

C B

A

???

? ??-='+'='122

21

11π4r r R Q

εεσσσ 25.

解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,

导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q ,则两球电势分别是

10114r q U επ=

, 2

02

24r q U επ=

两球相连后电势相等, 21U U =,则有

2

1212122112r r q r r q q r q r q +=++== 由此得到 92

1111067.62-?=+=

r r q

r q C

92

122103.132-?=+=

r r q

r q C

两球电势 31

01

21100.64?=π==r q U U ε V

26.

解:应用安培环路定理和磁场叠加原理可得磁场分布为,

)

3(2200x a I

x

I

B -π+

π=

μμ )2

52(

a x a ≤≤ B

的方向垂直x 轴及图面向里.

27.

解:当磁场B

方向与Ox 轴成45°时如图所示.

(1) 4

111055.1105sin -?=?=??B l I F N

方向垂直纸面向外.

42210

60.190sin -?=?=??B l I F N

方向为垂直纸面向内.

(2) 因为ab 与cd 均与B

平行,因此0==cd ab F F (3) 如图所示.

453.02d )45sin(2

/0

==

+?=

?πIRB IRB F bc θθN

方向垂直纸面向外,同理 =da F 0.453 N ,方向垂直纸面向里.

y x O

b

c

I

θ

45° θ

B

28.

解:由安培公式B l I F ?=d d ,当B

的方向沿x 轴正方向时

(1) 4

111039.160sin -?=?=??B l I F N 方向垂直纸面向外(沿z 轴正方向),

4

221013.1135sin -?=?=??B l I F N

方向垂直纸面向里(沿z 轴反方向).

(2) ?

=b

a

ab F F d =?=45sin B ab I ??

45sin 45sin B R

I

32.0==IRB N ,方向为垂直纸面向里.

同理 32.0==IRB F cd N ,方向垂直纸面向外.

(3) 在bc 圆弧上取一电流元I d l = IR d θ,如图所示.这段电流元在磁场中所受力

θθθd sin sin d d IRB lB I F ==

方向垂直纸面向外,所以圆弧bc 上所受的力

?π=

2

/0

d sin θ

θIRB F bc 32.0==IRB N

方向垂直纸面向外,同理32.0=da F N ,方向垂直纸面向里. 29.

解:AA '线圈在O 点所产生的磁感强度 002502μμ==

A

A

A A r I N

B (方向垂直AA '平面)

CC '线圈在O 点所产生的磁感强度 005002μμ==

C

C

C C r I N B (方向垂直CC '平面)

O 点的合磁感强度 42

/1221002.7)

(-?=+=C A B B B T B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角

?==-4.63tg 1

A

C

B B θ 30.

解:令1B 、2B

、ab B 和acb B 分别代表长直导线1、2和通电三角框的 ab 、ac 和cb 边在O 点产生

的磁感强度.则 ab acb B B B B B

+++=21 1B

:对O 点,直导线1为半无限长通电导线,有

C

C

A '

O

A B C B

A

θ

y

x O

b

c

l I d θ

θ

B

)

(401Oa I

B π=

μ, 1B

的方向垂直纸面向里.

2B

:由毕奥-萨伐尔定律,有 )

(402Oe I

B π=

μ)60sin 90(sin ?-?

方向垂直纸面向里.

ab B 和acb B :由于ab 和acb 并联,有 )(cb ac I ab I acb ab +?=?

根据毕奥-萨伐尔定律可求得 ab B =acb B 且方向相反. 所以 21B B B

+=

3/3l Oa =,6/3l Oe =代入B 1、B 2,

则B

的大小为 )13(43)23

1(346343000-π=-

π+

π=

l

I l

I l

I B μμμ B

的方向:垂直纸面向里.

31.

解:将i

分解为沿圆周和沿轴的两个分量,轴线上的磁场只由前者产生.和导线绕制之螺线管相比

较,沿轴方向单位长度螺线管表面之电流i 的沿圆周分量i sin α就相当于螺线管的nI . 利用长直螺线管轴线上磁场的公式 B = μ0nI 便可得到本题的结果 B = μ0 i sin α 32.

解: λωR I =

2

/322

30)

(2y R R B B y +=

=λω

μ

B

的方向与y 轴正向一致.

33.

解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得

NI r B μ=π?2, )2/(r NI B π=μ

在r 处取微小截面d S = b d r , 通过此小截面的磁通量

r b r

NI

S B d 2d d π=

=μΦ

穿过截面的磁通量

?=S

S B d Φr b r

NI

d 2π=

μ1

2

ln

2R R NIb

π

=

μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于

0=∑i

I

电磁学期末考试试题

电磁学期末考试 一、选择题。 1. 设源电荷与试探电荷分别为Q 、q ,则定义式q F E =对Q 、q 的要求为:[ ] (A)二者必须是点电荷。 (B)Q 为任意电荷,q 必须为正电荷。 (C)Q 为任意电荷,q 是点电荷,且可正可负。 (D)Q 为任意电荷,q 必须是单位正点电荷。 2. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度:[ ] (A)处处为零。 (B)不一定都为零。 (C)处处不为零。 (D)无法判定 3. 当一个带电体达到静电平衡时:[ ] (A)表面上电荷密度较大处电势较高。 (B)表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ ] (A)R qQ 06πε,R qQ 06πε-。 (B)R qQ 04πε,R qQ 04πε-。 (C)R qQ 04πε-,R qQ 04πε。 (D)R qQ 06πε-,R qQ 06πε。 5. 相距为1r 的两个电子,在重力可忽略的情况下由静止开始运动到相距为2r ,从相距1r 到相距2r 期间,两电子系统的下列哪一个量是不变的:[ ] (A)动能总和; (B)电势能总和; (C)动量总和; (D)电相互作用力

6. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面。今以该圆周为边线,作一半球面s ,则通过s 面的磁通量的大小为: [ ] (A)B r 22π。 (B)B r 2π。 (C)0。 (D)无法确定的量。 7. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ ] (A)位移电流是由变化电场产生的。 (B)位移电流是由线性变化磁场产生的。 (C)位移电流的热效应服从焦耳—楞次定律。 (D)位移电流的磁效应不服从安培环路定理。 8.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。问那个区域中有些点的磁感应强度可能为零:[ ] A .仅在象限1 B .仅在象限2 C .仅在象限1、3 D .仅在象限2、4 9.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为:[ ] A .P B >Q B >O B B .Q B >P B >O B C . Q B >O B >P B D .O B >Q B >P B

中考物理电学综合计算题汇总含答案

=P 1 +P 2 =+=+=1100W+200W=1300W。(2019·河南中考模拟) 44Ω242Ω R R+R 中考物理电学综合计算题汇总含答案 一、电磁学综合题 1.(3)水龙头放热水时,R 1 与R 2 并联,因并联电路中各支路两端的电压相等,且电路的 总功率等于各用电器功率之和,电路消耗的总电功率:P 热 U2U2(220V)2(220V)2 R R 12 物理实验室用的电加热器恒温箱工作原理如图甲所示。控制电路电压为U 1 =9V的电源、开 关、电磁继电器(线圈电阻不计)、电阻箱R 和热敏电阻R 1 组成;工作电路由电压为 U 2 =220V的电源和电阻为R 2 =48.4Ω的电热丝组成.其中,电磁继电器只有当线圈中电流达 到0.05A时,衔铁才吸合,切断工作电路;热敏电阻R 1 的阻值随温度变化关系如图乙所示.解答以下问题: (1)电磁继电器实质是一个控制工作电路的___________; (2)求电热丝工作时的功率__________; (3)如果恒温箱的温度设定为80℃,求电阻箱R 应接入电路的阻值__________. (4)若要恒温箱的设定温度低于80℃,电阻箱R 接入电路的阻值应调大还是调小?简述理由。_____ 【答案】自动开关1000W110Ω调小详见解析 【解析】 【详解】 (1)电磁继电器的主要部件就是一个电磁铁,它是利用电磁铁磁性的有无来产生作用力,从而控制工作电路的,其实质就是一个电路来控制另一个电路的间接开关; (2)电热丝工作时的功率:P= U2(220V)2 ==1000W; 48.4Ω 2 (3)如果恒温箱的温度设定为80℃,由图乙可知,热敏电阻的阻值R 1 =70Ω, 由题知,此时控制电路的电流I=0.05A,根据电阻的串联和欧姆定律,I= U 1,即: 1 0.05A= 9V R+70Ω,电阻箱R应接入电路的阻值:R=110Ω;

中考物理电学计算题专题

电学计算题强化 1.在图10所示的电路中,电源电压为6伏,电阻R 1的 阻值为10欧,滑动变阻器R 2上标有“20Ω 1A ”字样。求: (1)将滑片P 移至最左端后,闭合电键S ,此时电流表的示数为 多少? (2) 当滑片P 从最左端向右移动时,R 2连入电路的电阻是它最大阻值的一半,所以通过 R 2的电流也是滑片P 位过程中,小明同学发现:电流表的示数在增大。为此,他认为“当滑片位于中点于最左端时电流值的一半”。 ①请判断:小明的结论是 的。(选填:“正确”或“错误”) ②请说明你判断的理由并计算出这时电压表的示数。 2、在图12所示的电路中,电源电压保持不变。电阻R 1的阻值 为20欧,滑动变阻器R 2上标有 “20Ω,2A ”字样。闭合电键S 后,当滑动变阻器的滑片P 在中点位置时,电压表V 1的示数为4伏。求: (1)电流表的示数; (2)电压表V 的示数; (3)在电表量程可以改变的情况下,是否存在某种可能, 改变滑片P 的位置,使两电压表指针偏离零刻度的角度恰好相同?如果不可能,请说明理由;如果可能,请计算出电路中的总电阻。 3.在图11所示的电路中,电源电压为12伏且不变,电阻R 1的阻值为22欧,滑动变阻器R 2上标有“10 1A ”字样。闭合电键S ,电流表的示数为0.5安。求: (1)电阻R 1两端的电压。 (2)滑动变阻器R 2接入电路的阻值。 (3)现设想用定值电阻R 0来替换电阻R 1,要求:在移动滑动变阻器滑片P 的过程中,两电表的指针分别能达到满刻度处,且电路能正常工作。 ①现有阻值为16欧的定值电阻,若用它替换电阻R 1,请判断:________满足题目要求(选填“能”或“不能”)。若能满足题目要求,通过计算求出替换后滑动变阻器的使用范围;若不能满足题目要求,通过计算说明理由。 图10 图12 R 2 P A R 1 S V V 1 图11 A R 1 P V R 2 S

电磁学综合练习题三

四川省什邡中学高二物理 《电磁学》综合练习(三) 命题人:王树斌 班级: 姓名: 一、不定项选择题:(每题4分,多项选择题少选得2分,多选不给分,共40分) 1、有关洛仑兹力和安培力的描述,正确的是 ( ) A .通电直导线处于匀强磁场中一定受到安培力的作用 B .安培力是大量运动电荷所受洛仑兹力的宏观表现 C .带电粒子在匀强磁场中运动受到洛仑兹力做正功 D .通电直导线在磁场中受到的安培力方向与磁场方向平行 2、如图所示,该图是一正弦式交流电的电压随时间变化的图象,下列说法正确的是( ) A 、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 0 02s D、电压的瞬时表达式是u=311 sin314t v 3、如图,水平放置的平行板电容器两极板间距为d ,它从上极板的边缘以初速度v 0射入,沿直线从下极板N 的边缘射出,则( ) A .微粒的加速度不为零 B .微粒的电势能减少了mgd C .两极板的电势差为mgd/q D .M 板的电势低于N 板的电势 4、如图所示电路中,当电键S 断开瞬间( ). A .流经R 2的电流方向向右,流经L 的电流方向向左 B .流经R 2的电流方向向左,流经L 的电流方向向右 C .流经R 2和L 的电流方向都向右 D .流经R 2和L 的电流方向都向左 5、1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D 形盒D 1、D 2构成,其间留有空隙,下列说法正确的是 ( ) A .离子由加速器的中心附近进入加速器 B .离子由加速器的边缘进入加速器 C .离子从磁场中获得能量 D .离子从电场中获得能量

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势 为零,则球内距离球心为r 的P 点处的电场强度的大小与电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ=. (C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,R Q U 04επ=. [ ] 2、一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O + 2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ] 3、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为α ,则通过半球面S 的磁通量(取弯面 向外为正)为 (A) πr 2B . 、 (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 4、一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的 霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5、两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以 自由运动,则载流I 2的导线开始运动的趋势就是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ] y z x I 1 I 2

2020电学综合计算题大全(附答案)

2020电学综合计算题大全 电学综合计算题1 一、计算题 1.图甲是某电吹风的工作原理图。电吹风工作时,可以分别吹出热风和凉风。为了防止温度过高,用一 个PTC电阻R0与电阻为100Ω的电热丝R串联,R0的阻值随温度的变化如图乙所示。 (1)当开关S指向1位置时,电吹风吹______风; (2)该电吹风吹热风时,其温度基本恒定在200℃左右,当它的温度继续升高时,R0的电阻将______, 电热丝的发热功率将______;(两空均选填“增大”、“不变”或“减小”) (3)该电热丝的最大发热功率是多少? 2.图甲是小明家安装的即热式热水器,其具有高、低温两档加热功能,低温档功率为5500W,内部等效 电路如图乙所示,R1和R2是两个电热丝。某次小眀用高温档淋浴时,水的初温是20℃,淋浴头的出水温度为40°C,淋浴20min共用水100L.假设热水器电热 丝正常工作且产生的热量全部被水吸收【c水= 4.2×103J/(kg?°C)】求: (1)电热丝R1的阻值。 (2)该热水器高温档功率。 1

3.小谦根据如图甲所示的电路组装成调光灯,并进行测试。电源电压保持不变,小灯泡的额定电压是6V, 小灯泡的I?U图象如图乙所示。 求: (1)小灯泡正常发光时的电阻。 (2)小灯泡正常发光10min消耗的电能。 (3)经测算,小灯泡正常发光时的功率占电路总功率50%,如果把灯光调暗,使小灯泡两端电压为3V, 小灯泡的实际功率占电路总功率的百分比是多少? (4)小谦认为这个调光灯使用时,小灯泡的功率占电路总功率的百分比太低,请写出一种出现这种情况 的原因。 4.如图,电源电压恒定,R1、R2是定值电阻,R1=20Ω,滑动变阻器R3标有“40Ω0.5A”字样。只闭合 开关S1,电流表的示数为1.2A;再闭合开关S2、S3,电流表的示数变为1.5A.求: (1)电源电压; (2)开关S1、S2、S3都闭合时,R2在20s内产生的热量; (3)只闭合开关S3,移动变阻器滑片时,R1的电功率变化范围。 2

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场 力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两 电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电 场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和 xOz 平面.盒子的一角在坐标原点处.在此区域 有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷 之间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41 επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若 E ? q L q Ⅱ d a σA σB A B q ∞ ∞

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

电磁学试题(含答案)

一、单选题 1、如果通过闭合面S的电通量 e 为零,则可以肯定 A、面S内没有电荷 B 、面S内没有净电荷 C、面S上每一点的场强都等于零 D 、面S上每一点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线方向电势逐渐降低B、沿电场线方向电势逐渐升高 C、沿电场线方向场强逐渐减小 D、沿电场线方向场强逐渐增大 3、载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向v 左匀速运动时,在线圈中 A 、有顺时针方向的感应电流 B、有逆时针方向的感应电 C、没有感应电流 D、条件不足,无法判断 4、两个平行的无限大均匀带电平面,其面电荷密度分别为和, 则 P 点处的场强为 A、 B 、 C 、2 D、 0 P 2000 5、一束粒子、质子、电子的混合粒子流以同样的速度垂直进 入磁场,其运动轨迹如图所示,则其中质子的轨迹是 12 A、曲线 1 B、曲线 23 C、曲线 3 D、无法判断 6、一个电偶极子以如图所示的方式放置在匀强电场 E 中,则在 电场力作用下,该电偶极子将 A 、保持静止B、顺时针转动C、逆时针转动D、条件不足,无法判断 7q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为 、点电荷 A 、0 B 、q q D 、 q C、 6 0400 8、长直导线通有电流I 3 A ,另有一个矩形线圈与其共面,如图所I 示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流? A 、线圈向左运动B、线圈向右运动 C、线圈向上运动 D、线圈向下运动 9、关于真空中静电场的高斯定理 E dS q i,下述说法正确的是: S0 A.该定理只对有某种对称性的静电场才成立; B.q i是空间所有电荷的代数和; C. 积分式中的 E 一定是电荷q i激发的;

电学计算题分类.docx

电学计算题分类 一、串联电路 1.如图所示,电阻R1=12 欧。电键 SA断开时,通过的电流为安;电键SA 闭合时,电流表的示数为安。问:电源电压为多大电阻R2的阻值为多大 2.如图所示,滑动变阻器上标有“ 20Ω 2A”字样,当滑片 P 在中点时,电流表读数为安,电压表读数为伏,求: (1)电阻 R1和电源电压 (2)滑动变阻器移到右端时,电流表和电压表的读数。 3.在如图所示的电路中,电源电压为 6 伏且不变。电阻上标有“ 20Ω 2A”字样,两电表均为常用电表。闭合电键R1的阻值为10 欧,滑动变阻器 S,电流表示数为安。 R2 P R1 R2 V A S 求:( 1)电压表的示数; (2)电阻 R2连入电路的阻值; (3)若移动滑动变阻器滑片 P 到某一位置时,发现电压表和电流表中有一个已达满刻度, 此时电压表和电流表的示数。 二、并联电路 1、两个灯泡并联在电路中,电源电压为 12 伏特,总电阻为欧姆,灯泡 L1的电阻为 10 欧姆,求: 1)泡 L2的电阻 2)灯泡 L1和 L2中通过的电流 3)干路电流 2、如图 2 所示电路 , 当 K 断开时电压表的示数为 6 伏 ,电流表的示数为1A;K 闭合时, R1 S R2 A 图 2 电流表的读数为安,求: ⑴灯泡 L1的电阻 ⑵灯泡 L2的电阻

3.阻值为 10 欧的用电器,正常工作时的电流为安,现要把它接入到电流为安的电路中,应怎样连接一个多大的电阻 三、取值范围 1、如图 5 所示的电路中,电流表使用0.6A 量程,电压表使用15V 量程,电源电压为36V, R 为定值电阻, R 为滑动变阻器,当R 接入电路的电阻是时,电流表的示数是0.5A ,122 现通过调节R2来改变通过 R1的电流,但必须保证电流表不超过其量程,问:(1)R1的阻值是多大 (2)R2接入电路的阻值最小不能小于多少 (3)R2取最小值时,电压表的读数是多大 2、如右图所示的电路中, R1=5Ω,滑动变阻器的规格为“ 1A、20Ω”,电源电压为并保持不 变。电流表量程为 0~0.6A ,电压表的量程为 0~3V。 求:①为保护电表,则滑动变阻器的变化范围为多少 ②当滑动变阻器R2为 8Ω时,电流表、电压表的示数分别为多少 四、电路变化题 1、如图 2 所示的电路中,电源电压是12V 且保持不变,R1=R3 =4Ω,R2=6Ω. 试求: (1)当开关 S1、 S2断开时,电流表和电压表示数各是多少 (2)当开关 S1、 S2均闭合时,电流表和电压表示数各是多少 图2 2、如图所示,电源电压保持不变。当开关S1 S1、 S2都闭合时,电流表的示数为。则电阻闭合、 R1与 S2断开时,电流表的示数为;当开 关 R2的比值为 3.如图甲所示电路,滑动变阻器的最大阻值为R1=40Ω,电源电压及灯L 的电阻保持不变。当 S1、S2均闭合且滑片滑到 b 端时,电流表A1、A2的示数分别为如图23 乙、丙所示;当S1、S2均断开且滑片P 置于变阻器的中点时,电流表A1的示数为 0.4A ,

电磁学试题单项选择题

注:共120分钟,总分100分 。 一、单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1、两电容器的电容之比为C 1:C 2 =1:2,把它们串联后接到电源上充电,则其静电能之比W 1:W 2 =( B ) A . 1:2 B . 2:1 C . 1:1 D . 不 确定 C Q CU W 2212 2= = CU Q = 并联呢? 2、如图所示,一半径为R 的均匀带电圆环, 电荷总量为q ,则在轴线上离环中心O 为x 处的场强E 为 ( A )

A . ;)(42 3 220R x i xq +πε B . ;)(4220R x i xq +πε C . ;) (42 3 2 20R x i q +πε D . .)(42 20R x i q +πε 3、边长为a 的正方体中心处放置一电量为Q 的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为( B ) A. a Q 04πε B. a Q 02πε C. a Q 0πε D. a Q 022πε r Q U 04πε= 4、一带电体可作为点电荷处理的条件是( C ) A.电荷必须呈球形分布 B.带电体的线度很小 C.带电体的线度与其它有关长度相比可忽略不计

D.电量很小 5、当一个带电导体达到静电平衡时( D ) A.表面上电荷密度较大处电势较高 B.表面曲率较大处电势较高 C.导体内部的电势比导体表面的电势高 D.导体内任一点与其表面上任一点的电势差等于零 *6、有两块面积均为S 的金属板,间距为d (d 与板的 大小比起来为很少),其中一块板带电荷q ,另一块板带电荷2q ,则两板间的电位差为 ( C ) A . ; 230εs qd B . ; 0εs qd C . ; 20εs qd D . .20εs qd (无穷大平面:0 2εσ =E ) 一块板带电荷q : S q =1σ 另一块板带电荷2q :S q 22= σ 两板间的电场:0 1 0222εσεσ-=E

电磁学复习计算题附答案.doc

《电磁学》计算题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? d -3q +q 2. 一带有电荷q =3×10- 9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10- 5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体内外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位 置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在 此区域有一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. E ? q L d q P O x z y a a a a

(完整版)电磁学练习题及答案

P r λ2 λ1 R 1 R 2 1.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强 度为E ρ 。现在,另外有一个负电荷-2Q ,试问应将它放在什么 位置才能使P 点的电场强度等于零? (A) x 轴上x >1。 (B) x 轴上00。 (E) y 轴上y <0。 [ C ] 2.个未带电的空腔导体球壳,内半径为R 。在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B) d q 04επ (C) R q 04επ- (D) )11(40R d q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为: (A) r 0212ελλπ+ (B) ()()202 10122R r R r -π+-πελελ (C) ()202 12R r -π+ελλ (D) 2 02 10122R R ελελπ+π [ A ] 4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ] 5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A) a q 04επ (B) a q 08επ (C) a q 04επ- (D) a q 08επ- [ D ] y x O +Q P (1,0) R O d +q +a a O -σ +σ O -a +a x U (A) O -a +a x U O -a +a x U (C) O -a +a x U (D) a a +q P M

电磁学选择题1Word版

1) 边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O处的场强值和电势值都等于零,则: (A)顶点a、b、c、d处都是正电荷. (B)顶点a、b处是正电荷,c、d处是负电荷. (C)顶点a、c处是正电荷,b、d处是负电荷. (D)顶点a、b、c、d处都是负电荷. 答案:(C) 2) 一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变? (A)电容器的电容量. (B)两极板间的场强. (C)两极板间的电势差. (D)电容器储存的能量. 答案:(B) (3) 在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A)向下偏. (B)向上偏. (C)向纸外偏. (D)向纸内偏. 答案:(B) (4) 关于高斯定理,下列说法中哪一个是正确的? (A)高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B)高斯面上处处D 为零,则面内必不存在自由电荷. (C)高斯面的D 通量仅与面内自由电荷有关.

(D)以上说法都不正确. 答案:(C) (5) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C)该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直. (D)该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. 答案:(A) (6) 关于电场强度与电势之间的关系,下列说法中,哪一种是正确的? (A)在电场中,场强为零的点,电势必为零. (B)在电场中,电势为零的点,电场强度必为零. (C)在电势不变的空间,场强处处为零. (D)在场强不变的空间,电势处处相等. 答案:(C) (7) 在边长为a的正方体中心处放置一电量为Q的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为: (A) a Q 4πε.(B)a Q 2πε. (C) a Q πε.(D)a Q 2 2πε. 答案:(B) (8) 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?

2020年中考物理电学综合计算题汇总及答案

2020年中考物理电学综合计算题汇总及答案 一、电磁学综合题 1.(5)由P 损=I 2R 知,P 损和I 、R 有关,为保证用户的电器正常工作,I 不能改变,只能 减小R ,两地输电线的电阻R 和输电线的长度、粗细、材料有关,因两地的距离不变,只有通过改变输电线的材料,即用电阻率更小的导体材料,或者换用较粗导线来减小R 达到减小输电线的损失。(2019·江苏省锡山高级中学实验学校中考模拟)药壶主要用于煎煮药草,炖煮补品、汤料、咖啡等,其有不同档位设置,适合炖煮煎药文武火之需。如图为一款陶瓷电煎药壶,其工作电路简化为如图所示,它在工作时,有高火加热、文火萃取和小功率保温三个过程,已知正常工作时,电源电压为220V ,高火加热功率为500W ,文火萃取功率为100W ,若壶中药液的总质量为1kg ,且在额定电压下煎药时,药液的温度与工作时间的关系如图所示。 (1)观察图像中高火加热过程可知:电煎药壶在后半段时间的加热效率比前半段的加热效率____________。上述高火加热过程中,1kg 药液所吸收的热量是多少_______?(()3 c 4.210J /kg =?药℃) (2)分析电路可知:当a S 接2,同时b S 断开时,电路处于文火萃取阶段,则电煎药壶在保温状态时a S 应接____________,同时b S ____________(填“闭合”或“断开”),此时电煎药壶的额定保温功率是多少瓦_________? 【答案】高 3.36510?J 1 断开 80W 【解析】 【详解】 (1)在高火加热的前、后半段时间内,功率不变、时间相同,由W=Pt 可知消耗的电能相同;由图3可知前半段药液温度升高的温度值小、后半段温度升高的温度值大,而药液的质量不变、比热容不变,由Q =cm t,可知前半段药液吸收的热量少,由ηQ W =吸可知,后前半段的加热效率比前半段的加热效率高; 1kg 药液所吸收的热量:Q=c 药液m t =4.2310?J/(kg ℃) ?1kg ?(9818-℃℃)=3.36510?J. 当接1,同时断开时,电路中、串联,电路中电阻最大,由可知此时电功率较小,处于小功率保温状态;

中考复习《电学》计算题带答案

电学计算题 姓名:___________班级:___________ 一、计算题 1.有一种由酒精气体传感器制成的呼气酒精测试仪被广泛用来检测酒驾,传感器R1的阻值随酒精气体浓度的变化如图甲,工作电路如图乙,电源电压恒为12V,定值电阻 R2=30Ω.求: (1)被检测者未喝酒时,R1阻值; (2)被检测者酒精气体浓度为0.8mg/mL时,电流表的 示数; (3)现在公认的酒驾标准为0.2mg/mL≤酒精气体浓度 ≤0.8mg/mL,当电压表示数为4.8V时,通过计算说明 被检测司机是否酒驾? 2.从2011年5月11日起,执行酒驾重罚新规定.交警使用的某型号酒精测试仪的工作原理相当于如图所示.电源电压恒为9V,传感器电阻R2的电阻值随酒精气体浓度的增大而减小,当酒精气体的浓度为0时,R2的电阻为80Ω.使用前要通过调零旋钮(即滑动变阻器R1的滑片)对测试仪进行调零,此时电压表的示数为8V.求: (1)电压表的示数为8V时,电流表的示数为多少? (2)电压表的示数为8V时,滑动变阻器R1的电阻值为多少? (3)调零后,R1的电阻保持不变.某驾驶员对着测试仪吹气10s,若电流表的示数达到 0.3A,表明驾驶员醉驾,此时电压表的示数为多少?

3.如图是一款有煮洗功能的洗衣机的简化电路图及相关参数.此款洗衣机有两个档位,当开关置于位置1时为加热状态,当开关置于位置2时为保湿洗涤状态.其中电阻R1的阻值为22Ω,求: (1)在洗衣机内按“加水量”加入20℃的冷水加热到90℃时水吸收的热量; (2)R2的阻值; (3)洗衣机在保湿洗涤状态下工作时,电动机的功率为200W,则此时通过电动机的电流为多少? 4.灯L标有“6V 3W”字样,滑动变阻器R2的最大电阻为12Ω,R1=12Ω,当开关S1闭合,S2、S3断开,滑片P滑至滑动变阻器a端时,灯L恰好正常发光.试求: (1)电源电压是多少? (2)灯L正常发光时的电流和电阻各是多少? (3)当S1、S2、S3都闭合且滑动变阻器滑片P滑到R2中点时,电流表的示数和此时电 路消耗的总功率各是多少?

电磁学试题大集合(含答案)

长沙理工大学考试试卷 一、选择题:(每题3分,共30分) 1. 关于高斯定理的理解有下面几种说法,其中正确的是: (A)如果高斯面上E 处处为零,则该面内必无电荷。 (B)如果高斯面内无电荷,则高斯面上E 处处为零。 (C)如果高斯面上E 处处不为零,则该面内必有电荷。 (D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。 [ ] 2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于: (A)1P 和2P 两点的位置。 (B)1P 和2P 两点处的电场强度的大小和方向。 (C)试验电荷所带电荷的正负。 (D)试验电荷的电荷量。 [ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出: (A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U << (D)C B A E E E <<,C B A U U U >> [ ] 4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质, 则两种介质内: (A)场强不等,电位移相等。 (B)场强相等,电位移相等。 (C)场强相等,电位移不等。 (D)场强、电位移均不等。 [ ] 5. 图中,Ua-Ub 为: (A)IR -ε (B)ε+IR (C)IR +-ε (D)ε--IR [ ] 6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A) BI a 221 (B)BI a 234 1 (C)BI a 2 (D)0 [ ]

(电磁学)计算题

必须要会做作业题 1、(10分)载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直。半圆环的半径为b ,环心O 与导线相距a 。设半圆环以速度 v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N 。 解:动生电动势 ???=MN d )v (l B MeN ε 为计算简单,可引入一条辅助线MN ,构成闭合回 路MeNM , 闭合回路总电动势 0=+=NM MeN εεε总 MN NM MeN εεε=-= 2分 x x I l B b a b a MN d 2v d )v (0MN ???+-π-=?=με b a b a I -+π-=ln 20v μ N

负号表示MN ε的方向(N →M ) 4分 b a b a I MeN -+π-=ln 2v 0με方向N →M 2分 b a b a I U U MN N M -+π = -=-ln 2v 0με 2分 2、(10分)两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为1 λ和2 λ,则场强等 于零的点与直线1相距为多少? 解: (1) 作以带正电直线为中心轴、横截面半径为r 、高为l 的封闭圆柱形高斯面。由高斯定理 00 εq S d E s = ??? 得: 02ελπl l r E =?? 故无限长均匀带电直线的场强为 5分 (2) 设场强等于零的点与直线1的相距为x ,则 0) (2202 01=--=x d x E πελπελ r E 02πελ=

211λλλ+= d x 5分 4、(10分)如图,一半径为R 的均匀带电圆环,电荷总量为q 。 (1)求轴线上离环中心O 为x 处的场强E (已知q 、R 、 x) (2)轴线上什么地方的场强最大?其值是多少?(已知q 、R) 解: (1)设圆环轴线为 x 轴, 2 04r dq dE πε= dl R q dl dq πλ2== 由于对称性整个圆环在P 点处的电场沿x 方向, ?αcos E d E =2122)(cos x R r r x +==ααππεπcos 2412 20r l d R q E R ???=1 qx απεcos 4120r q =

电磁学经典练习题与答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[] 图3-1 A.图①B.图②C.图③D.图④ 2.下列关于静电场的说法中正确的是[] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 B.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]A.a点的电势一定高于b点的电势 B.带电粒子的电势能一定减少 C.电场强度一定等于ΔE/dq D.a、b两点间的电势差大小一定等于ΔE/q 4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]A.它们的相互作用力不断减少 B.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说确的是[] 图3-2

A.它们所需要的向心力不相等 B.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[] 图3-3 A.b点场强B.c点场强 C.b点电势D.c点电势 7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说确的是[] 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动 D.若剪断悬线,则小球做匀加速直线运动 9.将一个6V、6W的小灯甲连接在阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]A.小灯乙可能正常发光 B.小灯乙可能因电压过高而烧毁 C.小灯乙可能因电压较低而不能正常发光 D.小灯乙一定正常发光 10.用三个电动势均为1.5V、阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[] 图3-6 11.如图3-10所示的电路中,R 1、R 2 、R 3 、R 4 、R 5 为阻值固定的 电阻,R 6 为可变电阻,A为阻可忽略的电流表,V为阻很大的电压表,电源的

相关主题
文本预览
相关文档 最新文档