当前位置:文档之家› 塞曼效应(含思考题答案)

塞曼效应(含思考题答案)

塞曼效应(含思考题答案)
塞曼效应(含思考题答案)

课程:

专业班号: 姓名: 学号: 同组者:

塞曼效应

一、实验目的

1、学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂;

2、观察分裂谱线的偏振情况以及裂距与磁场强度的关系;

3、 利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二、实验原理

1、谱线在磁场中的能级分裂

设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为

B Mg E E B μ+=0 (1)

其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m

hc

B πμ4=

);B 为磁感应强度。 对于S L -耦合 )

()

()()(121111++++-++

=J J S S L L J J g (2)

假设在无外磁场时,光源某条光谱线的波数为

)(010201~E E hc

-=γ (3)

式中 h 为普朗克常数;c 为光速。

而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为

hc B g M g M E E hc

B μγγγγγ)()(112201200~1

~~~~-+=?-?+=?+= L g M g M )(1

1220~-+=γ 所以,分裂后谱线与原谱线的频率差(波数形式)为

mc

Be g M g M L g M g M πγγγ4~~~1

12211220)()(-=-=-=? (4) 式中脚标1、2分别表示原子跃迁后和跃迁前所处在的能级,L 为洛伦兹单位

(B L 7.46=),外磁场的单位为T (特斯拉),波数L 的单位为 []

1

1--特斯拉

米。 1

2M M 、的选择定则是:0=?M 时为π 成分,是振动方向平行于磁场的线偏振光,只能在垂直于

磁场的方向上才能观察到,在平行于磁场方向上观察不到,但当0=?J 时,

0012==M M ,到的跃迁被禁止;1±=?M 时,为σ成分,垂直于磁场观察时为振动垂

直于磁场的线偏振光,沿磁场正方向观察时,1+=?M 为右旋偏振光, 1-=?M 为左旋偏振光。

若跃迁前后能级的自旋量子数S 都等于零,塞曼分裂发上在单重态间,此时,无磁场时的一条谱线在磁场作用下分裂成三条谱线,其中1+=?M 对应的仍然是σ态,0

=?M 对应的是π态,分裂后的谱线与原谱线的波数差mc

eB

L πγ

4~==?。这种效应叫做正常塞曼效应。

2. 法布里—珀罗标准具

塞曼分裂的波长差很小,波长和波数的关系为γλλ?=?2

,若波长m 7105-?=λ的

谱线在T B 1=的磁场中,分裂谱线的波长差约只有m 11

10

-。因此必须使用高分辨率的仪器

来观察。本实验采用法布里—珀罗(P F -)标准具。

P F -标准具是由平行放置的两块平面玻璃或石英玻璃板组成,在两板相对的平面上镀有高反射率的薄银膜,为了消除两平板背面反射光的干涉,每块板都作成楔形。由于两镀膜面平行,若使用扩展光源,则产生等倾干涉条纹。具有相同入射角的光线在垂直于观察方向的平面上的轨迹是一组同心圆。若在光路上放置透镜,则在透镜焦平面上得到一组同心圆环图样。如图2所示,

在透射光束中,相邻光束的 光程差为

?cos 2nd =? (5)

取1=n

?cos 2nd =? (6) 产生亮条纹的条件为

λ?K d =cos 2 (7)

式中K 为干涉级次;λ为入射光波长。

我们需要了解标准具的两个特征参量是

1、 自由光谱范围(标准具参数)FSR λ~

? 或FSR

γ~?,同一光源发出的具有微小波长差的单色光1λ和 2λ(21λλπ),入射后将形成各自的圆环系列。对同一干涉级,波长大的干涉环直径小,所示。如果1λ和2λ的波长差逐渐加大,使得1λ的第m 级亮环与2λ的第(1-m )级亮环重

合,则有

211cos 2λλθ)(-=

=m m d (8) P F -标准具等倾干涉图

得出 m

2

12λλλλ=

-=? (9)

由于大多数情况下,1cos ≈θ,(8)式变为 1

2λd

m ≈

并带入(9)式,得到

d

22

1λλλ=

? d

22

λ≈

(10)

它表明在P F -中,当给定两平面间隔d 后,入射光波长在λλ?—间所产生的干涉圆环不发生重叠。

2、 分辨本领

定义

λ

λ

?为光谱仪的分辨本领,对于P F -标准具,它的分辨本领为 KN =?λ

λ

(11)

K 为干涉级次,N 为精细度,它的物理意义是在相邻两个干涉级之间能分辨的最大条纹数。N 依赖于平板内表面反射膜的反射率R 。

R

R

N -=

1π (12)

反射率越高,精细度就越高,仪器能分辨开的条纹数就越多。

利用P F -标准具,通过测量干涉环的直径就可以测量各分裂谱线的波长或波长差。参见图2,出射角为θ的圆环直径D 与透镜焦距f 间的关系为f

D

2tan =θ ,对于近中心的圆环θ很小,可以认为θθθtan sin ≈≈,于是有

22

2

2

81212sin 21cos f

D -=-≈-=θθθ (13)

代入到(7)式中,得

λθK f

D d d =-=)(

22

812cos 2 (14) 由上式可推出同一波长λ相邻两级K 和)(1-K 级圆环直径的平方差为 d

f D D

D K

K λ

222

1

2

4=-=?- (15)

可以看出,2

D ?是与干涉级次无关的常数。

设波长a λ和b λ的第K 级干涉圆环直径分别为a D 和b D ,由(14)式和(15)式得

K

D D D D D D K f d K K a b a b b a λλλ)()(2

212

22

224--=-=-- 得出

波长差 )(2

212

22

2K

K a

b D D D D d --=?-λλ (16) 波数差 )(2

212

221K

K a

b D D D D d --=?-γ (17) 3、 用塞曼效应计算电子荷质比

m

e 对于正常塞曼效应,分裂的波数差为

mc

eB

L πγ4=

=? 代入测量波数差公式(17),得

)(2

212

22K

K a

b D D D D dB

c m e --=-π (18) 若已知

d 和B ,从塞曼分裂中测量出各环直径,就可以计算出电子荷质比。 反之,可以利用电子荷质比

m

e

计算,所加磁场强度 222212()

b a K K D D m

c B e

d D D π--=- (19) 三、实验数据及数据分析

根据所测的塞曼分裂图,可以用直尺测得距离

OA=6.52cm OC=11.48cm OB=5.50cm OD=8.02cm D(k-1)^2-D(k)^2=(OC^-OA^2)/4=22.32cm^2. D(b)^2-D(a)^2=(OD^-OB^2)/4=8.5176cm^2.

191.610e C -=? 30

0.9110m kg -=? 8310/c m s =?

已知标准具厚度d=1.4mm

所以由公式(19)知

2222

12()b a K K D D m c B e d D D π--=-

从而B=2936Gs=0.29221T

而我们用特斯拉计测得磁场B0=0.289T 误差d=|B-B0|=0.003216T

相对误差Δ=d/B0=0.003216/0.289=1.1129%

四、思考题

1、标准具的间隔厚度为,该标准具的自由光谱范围是多少,观察的谱线分裂情况时,磁场强度的合理取值是多少,若磁场强度为多少时,分裂谱线中哪几条将会发生重叠。

标准具厚度d=1.4mm 自由光谱范围

d22

λ

λ=

?

d22

λ

≈,所用的Hg灯λ=546.1nm,故

Δλ=1.065A.

2、试举例塞曼效应在科学技术中的应用。

确定原子的总角动量量子数J值和朗德因子g值,进而去确定原子总轨道角动量量子数L

和总自旋量子数S的数值

测外磁场或电子荷质比

塞曼激光陀螺

(资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

塞曼效应

1-3 塞曼效应 实验目的和要求: 了解塞曼效应的重要意义和原理;学习调节光路,学习使用高分辨气压扫描式法布里- 珀罗标准具(F-P)和光谱测量技术;观测和研究Hg 放电灯的546.1nm 光谱线在外磁场作用下的塞曼分裂现象和谱线的超精细结构;根据实验结果研究原子能级结构,获得有关分裂能级的参量。 教学内容: 1.计算Hg 灯546.1nm 光谱线在磁场作用下分裂的各子谱线的条数、偏振方向、波数变化,和相对强度,作出能级分裂图和光谱分裂示意图。 2.调节光路的准直和共轴,调节F-P 标准具的平行度;观察F-P 标准具产生的等倾干涉圆 环随F-P 内空气折射率的变化;通过气压扫描,用光电倍增管扫描测量546.1nm 光谱 线的强度随气压的变化,要求达到高分辨率,观测到超精细结构。 3.加垂直观测方向的磁场,观察F-P 后干涉圆环的分裂、分裂环的相对强度和偏振状态;用气压扫描测量546.1nm 谱线分裂出的9 条光谱,测量不同偏振状态下的光谱。4.分析塞曼分裂谱,计算各分裂子谱线的波数差和相对强度,并与理论值作比较,求荷质比;从塞曼分裂谱中分析得到原子能级的J 量子数和g 因子。 实验过程中可能涉及的问题(有的问题可用于检查学生的预习情况,有的可放在实验室说明牌上作提示,有的可在实验过程中予以引导,有的可安排为报告中要回答的问题,有的可作为进一步探索的问题。不同的学生可有不同的要求。) 塞曼效应是如何产生的?原子在外磁场下的能级分裂由哪些因素决定?根据你的理 论计算,在1T 磁场的作用下,Hg546.1nm光谱线分裂成几条谱线?分裂谱线的偏振态为什么不同?分裂谱线的相对强度是多少?分裂谱线的波数差为多少cm-1? 本实验通过什么方法分辨测量这么窄的光谱分裂?F-P 的自由光谱范围如何定义,在实验中有什么作用?用气压扫描式F-P 标准具实现高分辨光谱测量的实验条件有哪些(光路,平行度,准直,光电倍增管前加小孔光阑… )?随着F-P 内气压即空气折射率的变化,为什么可以观测到分 裂谱线重复出现?如何把实验测量结果中光强随气压的变化,标定转化为,光强随谱线波数的变化?此种标定的前提条件是什么?如何尽量减少相邻谱线的互相影响?如果谱线的裂距和强度与理论计算有偏差,可能是什么原因造成的? 实验装置说明: 1.光源及磁场:Hg 灯与电源(注意Hg 灯上高压的安全),电磁铁与电源(注意电磁铁发热效应,Hg 灯为何需置于磁场中心?) 2.光谱测量:透镜、偏振片和干涉滤光片(各起什么作用?);气压扫描式F-P 标准具、成像透镜和带小孔光阑的光电倍增管(各起什么作用,如何调节,观察到的光学 现象?) 3.控制和数据采集:气压扫描控制器(注意在升压状态下测量), 光电倍增管电源系统(注意屏蔽背景光后加高压使用),计算机数据采集(实验测量的是什么物理量?) 实验的主要内容和问题: 1.Hg 灯置于电磁铁中央,在垂直磁场方向观测光谱(平行磁场方向的塞曼分裂光谱会有什么不同?测量方案上有何不同?) 2.调节整体光路,使Hg 灯像、等倾干涉圆环的中心、以及观测点的中心达到准直、共心、共轴。(为什么有这些要求?如何逐步调节并判断?)

西安交大《塞曼效应实验报告》

应物31 吕博成学号:10

塞曼效应 1896年,荷兰物理学家塞曼()在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。

塞曼效应实验报告完整版

塞曼效应实验报告完整版 学生姓名: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1(观察塞曼效应现象,把实验结果与理论结果进行比较。 2(学习观测塞曼效应的实验方法。 3(计算电子核质比。 二、实验仪器 WPZ—?型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级 ,,产生分裂。垂直于磁场观察时,产生线偏振光(线和线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m,电量为的电子e绕原子核转动,因此,原子具B,E有一定的磁矩,它在外磁场中会获得一定的磁相互作用能,由于原子的磁,P矩与总角动量的关系为 JJ e,,gP (1) JJ2m 其中为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整g 个原子态的角动量密切相关。因此, e,,,,,,,,coscosEBgPB (2) JJ2m

,其中是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, h (3) ,,,,,cos,,1,,,?PMMJJJJ2, 学生姓名: 刘惠文学号: 5502210039 专业班级:应物101班实验时间: 教师编号:T017 成绩: heJhM,,式中是普朗克常量,是电子的总角动量,是磁量子数。设:,B4m,称为玻尔磁子,为未加磁场时原子的能量,则原子在外在磁场中的总能量为 E0 (4) EEEEMgB,,,,,,00B 由于朗德因子与原子中所有电子角动量的耦合有关,因此,不同的角动g LS,量耦合方式其表达式和数值完全不同。在耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为、、和、、,P,PLLLSSS,它们的关系为 eeh,,,,(1),PLL (5) LL222mm, eeh,,,,(1),PSS (6) SS2mm, PPP,,设与和的夹角分别为和,根据矢量合成原理,只要将二者JLSLJSJ ,在方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关J 系: ,,,,,,,coscosJLLJSSJ ePP,,(cos2cos),,LLJSSJ2m 222222PPPPPP,,,,eJLSJLS (7) ,,(2)222mPPJJ 222PPP,,eJLSP,,(1)J2Pm22J

法拉第效应实验报告

法拉第效应 【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁 场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 关键词:法拉第旋光、旋光角、倍频法、消光法。 引言 法拉第效应1845年由法拉第发现。法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。由于法拉第效应的其他性质,他还有其他更多的应用。 法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。 法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。 原理 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质 对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移: (2) (3)

塞曼效应实验报告

塞曼效应实验报告 一、实验目的与实验仪器 1. 实验目的 (1)学习观察塞曼效应的方法,通过塞曼效应测量磁感应强度的大小。 (2)学习一种测量电子荷质比的方法。 2.实验仪器 笔形汞灯+电磁铁装置,聚光透镜,偏振片,546nm滤光片,F-P标准具,标准具间距(d=2mm),成像物镜与测微目镜组合而成的测量望远镜。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1.塞曼效应 (1)原子磁矩和角动量关系 用角动量来描述电子的轨道运动和自旋运动,原子中各电子轨道运动角动量的矢量和即原子的轨道角动量L,考虑L-S耦合(轨道-自旋耦合),原子的角动量J =L +S。量子力学理论给出各磁矩与角动量的关系: L = - L,L = S = - S,S = 由上式可知,原子总磁矩和总角动量不共线。则原子总磁矩在总角动量方向上的分量 为: J = g J,J = J L为表示原子的轨道角量子数,取值:0,1,2… S为原子的自旋角量子数,取值:0,1/2,1,3/2,2,5/2… J为原子的总角量子数,取值:0,1/2,1,3/2… 式中,g=1+为朗德因子。 (2)原子在外磁场中的能级分裂 外磁场存在时,与角动量平行的磁矩分量J与磁场有相互作用,与角动量垂直的磁矩分量与磁场无相互作用。由于角动量的取向是量子化的,J在任意方向的投影(如z方向)为: = M,M=-J,-(J-1),-(J-2),…,J-2,J-1,J 因此,原子磁矩也是量子化的,在任意方向的投影(如z方向)为: =-Mg 式中,玻尔磁子μB =,M为磁量子数。

具有磁矩为J的原子,在外磁场中具有的势能(原子在外磁场中获得的附加能量): ΔE = -J·=Mg B 则根据M的取值规律,磁矩在空间有几个量子化取值,则在外场中每一个能级都分裂为等间隔的(2J+1)个塞曼子能级。原子发光过程中,原来两能级之间电子跃迁产生的一条光谱线也分裂成几条光谱线。这个现象叫塞曼效应。 2.塞曼子能级跃迁选择定则 (1)选择定则 未加磁场前,能级E2和E1之间跃迁光谱满足: hν = E2 - E1 加上磁场后,新谱线频率与能级之间关系满足: hν’= (E2+ΔE2) – (E1+ΔE1) 则频率差:hΔν= ΔE2-ΔE1= M2g2 B -M1g1B= (M2g2- M1g1)B 跃迁选择定则必须满足: ΔM = 0,±1 (2)偏振定则 当△M=0时,产生π线,为振动方向平行于磁场的线偏振光,可在垂直磁场方向看到。 当△M=±1时,产生σ谱线,为圆偏振光。迎着磁场方向观察时,△M=1的σ线为左旋圆偏振光,△M=-1的σ线为右旋圆偏振光。在垂直于磁场方向观察σ线时,为振动方向垂直于磁场的线偏振光。 3. 能级3S13P2 L01 S11 J12 g23/2 M10-1210-1-2 Mg20-233/20-3/2-3汞原子的绿光谱线波长为,是由高能级{6s7s}S1到低能级{6s6p}P2能级之间的跃迁,其上下能级有关的量子数值列在表1。3S1、3P2表示汞的原子态,S、P分别表示原子轨道量子数L=0和1,左上角数字由自旋量子数S决定,为(2S+1),右下角数字表示原子的总角动量量子数J。 在外磁场中能级分裂如图所示。外磁场为0时,只有的一条谱线。在外场的作用下,上能级分裂为3条,下能级分裂为5条。在外磁场中,跃迁的选择定则对磁量子数M的要求为:△M=0,±1,因此,原先的一条谱线,在外磁场中分裂为9条谱线。 9条谱线的偏振态,量子力学理论可以给出:在垂直于磁场方向观察,9条分裂谱线的强度(以中心谱线的强度为100)随频率增加分别为,,75,75,100,75,75,,. 标准具 本实验通过干涉装置进行塞曼效应的观察。我们选择法布里-珀罗标准具(F-P标准具)作为干涉元件。F-P标准具基本组成:两块平行玻璃板,在两板相对的表面镀有较高反射率的薄膜。 多光束干涉条纹的形成

塞曼效应实验资料报告材料完整版

学生: 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产 生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时, 产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具 有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁 矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个 原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这 种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反, 因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ-==--(3)

学生: 惠文 学号: 5502210039 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道 运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、 S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

塞曼效应实验

塞曼效应实验 作者杨桥英 指导老师杨建荣 绪论 塞曼效应实验是近代物理中的一个重要实验,它证实了原子具有磁矩和空间量子化,可由实验结果确定有关原子能级的几个量子数如M,J和g因子的值,有力地证明了电子自旋理论。对于教学和学习来说本文所讨论的实验方案的结合使用,不但可以使我们对塞曼实验的原理有更深层次的触动,加深我们对于塞曼效应原理的理解,而且可以使我们对计算机及相应的软件开发在实验中的应用有所了解。 塞曼效应是原子的光谱线在外磁场中出现分裂的现象。塞曼效应是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学、电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场[]1。 1.实验原理 1.1原子的总磁矩与总角动量的关系 原子的总磁矩由电子磁矩和核磁矩两部分组成,由于核磁矩比电子磁矩小三个数量级以上,所以可只考虑电子的磁矩这一部分。原子中的电子做轨道运动时产生轨道磁矩,做自旋运动时产生自旋磁矩。根据量子力学的结果,电子轨道角动量P L 和轨 道磁矩μ L 以及自旋角动量P S 和自旋磁矩μ S 在数值上有下列关系:

塞曼效应实验报告

1、前言和实验目的 1.了解和掌握WPZ-Ⅲ型塞曼效应仪和利用其研究谱线的精细结构。 2.了解法布里-珀罗干涉仪的的结构和原理及利用它测量微小波长差值。 3.观察汞546.1nm (绿色)光谱线的塞曼效应,测量它分裂的波长差,并计算电子的荷质比的实验值和标准值比较。 2、实验原理 处于磁场中的原子,由于电子的j m 不同而引起能级的分裂,导致跃迁时发出的光子的频率产生分裂的现象就成为塞曼效应。下面具体给出公式推导处于弱磁场作用下的电子跃迁所带来的能级分裂大小。 总磁矩为 J μ 的原子体系,在外磁场为B 中具有的附加能为: E ?= -J μ *B 由于我们考虑的是反常塞曼效应,即磁场为弱磁场,认为不足以破坏电子的轨道-自旋耦合。则我们有: E ?= -z μB =B g m B J J μ 其中z μ为J μ 在z 方向投影,J m 为角动量J 在z 方向投影的磁量子数,有12+J 个值,B μ= e m eh π4称为玻尔磁子,J g 为朗德因子,其值为 J g =) 1(2) 1()1()1(1++++-++ J J S S L L J J 由于J m 有12+J 个值,所以处于磁场中将分裂为12+J 个能级,能级间隔为B g B J μ。当没有磁场时,能级处于简并态,电子的态由n,l,j (n,l,s )确定,跃迁的选择定则为Δs=0, Δl=1±.而处于磁场中时,电子的态由n,l,j,J m ,选择定则为Δs=0,Δl=1±,1±=?j m 。 磁场作用下能级之间的跃迁发出的谱线频率变为: )()(1122' E E E E hv ?+-?+==h ν+(1122g m g m -)B μB 分裂的谱线与原谱线的频率差ν?为: ν?=' ν-ν=h B g m g m B /)(1122μ-、 λ?= c ν λ?2 =2λ (1122g m g m -)B μB /hc =2 λ (1122g m g m -)L ~

塞曼效应

塞曼效应 摘要:本实验使用微机化的塞曼效应实验仪观察了汞光灯谱线在外加磁场时产生的分裂,即其塞曼效应,并由此计算了电子的荷质比。 关键词:塞曼效应;法布里-珀罗标准具;荷质比 1. 引言 19世纪伟大的物理学家法拉第研究电磁场对光的影响时,发现了磁场能够改变偏振光的偏振方向。1896年荷兰物理学家塞曼(Pieter Zeeman)根据法拉第的想法,探测磁场对谱线的影响,发现钠双线在强磁场中的分裂。洛伦兹根据经典电子论解释了分裂为三条谱线的正常塞曼效应。由于研究这个效应,塞曼和洛伦兹共同获得了1902年的诺贝尔物理学奖。他们这一重要研究成就,有力地支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有了更多的了解。 2. 实验目的 1.掌握塞曼效应理论,测定电子的荷质比,确定能级的量子数和朗德因子,绘出跃迁的能级图。 2.掌握法布里—珀罗标准具的原理和使用。 3.观察塞曼效应现象,并把实验结果和理论结果进行比较,同时了解使用CCD及多媒体计算进行实验图像测量的方法。 3.实验原理 3.1 塞曼效应简介 当光源放在足够强的磁场中时,所发出的光谱线都分裂成几条,条数随能级的类别而不同,而分裂后的谱线是偏振的,这种现象被称为塞曼效应。塞曼效应证实了原子具有磁距和空间取向量子化的现象。 塞曼效应分为正常塞曼效应和反常塞曼效应。正常塞曼效应是指那些谱线分裂为三条,

而且两边的两条与中间的频率差正好等于 4eB mc π,对于这种现象,经典理论可以给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂距是4eB mc π的简单分数倍,这种 现象被称为反常塞曼效应。下面具体讨论塞曼效应中外磁场对原子能级的作用。 3.2原子的总磁矩与总动量矩的关系 因为原子中的电子同时具有轨道角动量P L 和自旋角动量P S 。相应的,它也同时具有轨道磁矩轨道微矩 L μ和自旋磁矩S μ,并且它们有如下关系。 2L L S s e P m e P m μμ?=??? ?=?? (1) 其中 L s P P ? =??? ?=?? (2) (2)式中 L,S 分别表示轨道量子数和自旋量子数。 原子核也有磁矩,但它比一个电子的磁矩要小三个数量级,故在计算单电子原子的磁矩时可以把原予核的磁矩忽略,只计算电子的磁矩。 对于多电子原,考虑到原子总角动量和总磁矩为零,故只对其原子外层价电子进行累加。磁矩的计算可用图1的矢量图来进行。 图1电子磁矩与角动量关系 由于μS 与Ps 的比值比μL 与P L 的比值大一倍,所以合成的原子总磁矩不在总动量矩P J 的方向上。但由于μ绕P J 运动,只有μ在P J 方向的投影μJ 对外平均效果不为零。根据图5-2可计算出有μJ 与 P J 的关系如下。 2J J e g P m μ= (3) 上式中的g 就是郎德因子。它表征了原子的总磁矩与总角动量的关系,而且决定了能级在磁场中分裂的大小。在考虑LS 耦合的情况下,郎德因子可按下式计算。

塞曼效应实验报告

近代物理实验报告 塞曼效应实验 学院 班级 姓名 学号 时间 2014年3月16日

塞曼效应实验实验报告 【摘要】: 本实验通过塞曼效应仪与一些观察装置观察汞(Hg)546.1nm谱线(3S1→3P2跃迁)的塞曼分裂,从理论上解释、分析实验现象,而后给出横效应塞满分裂线的波数增量,最后得出荷质比。 【关键词】:塞曼效应、汞546.1nm、横效应、塞满分裂线、荷质比 【引言】: 塞曼效应是原子的光谱线在外磁场中出现分裂的现象,是1896年由荷兰物理学家塞曼发现的。首先他发现,原子光谱线在外磁场发生了分裂;随后洛仑兹在理论上解释了谱线分裂成3条的原因,这种现象称为“塞曼效应”。在后来进一步研究发现,很多原子的光谱在磁场中的分裂情况有别于前面的分裂情况,更为复杂,称为反常塞曼效应。 塞曼效应的发现使人们对物质光谱、原子、分子有更多了解,塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。本实验采取Fabry-Perot(以下简称F-P)标准具观察Hg的546.1nm谱线的塞曼效应,同时利用塞满效应测量电子的荷质比。 【正文】: 一、塞曼分裂谱线与原谱线关系 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(P J)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能:

由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下: 其中: L为总轨道角动量量子数 S为总自旋角动量量子数 J为总角动量量子数 M只能取J,J-1,J-2 …… -J(共2J+1)个值,即ΔE有(2J+1)个可能值。 无外磁场时的一个能级,在外磁场作用下将分裂成(2J+1)个能级,其分裂的能级是等间隔的,且能级间隔 2、塞曼分裂谱线与原谱线关系: (1) 基本出发点:

西安交大《塞曼效应实验报告》(资料参考)

塞 曼 效 应 实 验 报 告 应物31 吕博成学号:2120903010

塞曼效应 1896年,荷兰物理学家塞曼(P.Zeeman )在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。这种效应被称为塞曼效应。 需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位 mc eB L π4=)。而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可 以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。反常塞曼效应是电子自旋假设的有力证据之一。通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。 塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。 一.实验目的 1.学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2.观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3.利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二.实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为

塞曼效应实验报告

塞曼效应实验 实验原理 1、磁矩在外磁场中受到的作用 (1)原子总磁矩在外磁场中受到力矩的作用: 其效果是磁矩绕磁场方向旋进,也就是总角动量(PJ)绕磁场方向旋进。 (2)磁矩在外磁场中的磁能: 由于或在磁场中的取向量子化,所以其在磁场方向分量也量子化: ∴原子受磁场作用而旋进引起的附加能量 M为磁量子数 g为朗道因子,表征原子总磁矩和总角动量的关系,g随耦合类型不同(LS耦合和jj耦合)有两种解法。在LS耦合下:

2、塞曼分裂谱线与原谱线关系: (1) 基本出发点: ∴分裂后谱线与原谱线频率差 由于 定义为洛仑兹单位: 3、谱线的偏振特征: 塞曼跃迁的选择定则为:ΔM=0 时为π成份(π型偏振)是振动方向平行于磁场的线偏振光,只有在垂直于磁场方向才能观察到,平行于磁场方向观察不到;但当ΔJ=0时,M2=0到M1=0的跃迁被禁止。

当ΔM=±1时,为σ成份,σ型偏振垂直于磁场,观察时为振动垂直于磁场的线偏振光。 平行于磁场观察时,其偏振性与磁场方向及观察方向都有关:沿磁场正向观察时(即磁场方向离开观察者:) ΔM= +1为右旋圆偏振光(σ+偏振) ΔM= -1为左旋圆偏振光(σ-偏振) 也即,磁场指向观察者时:⊙ ΔM= +1为左旋圆偏振光 ΔM= -1为右旋圆偏振光 分析的总思路和总原则: 在辐射的过程中,原子和发出的光子作为整体的角动量是守恒的。 原子在磁场方向角动量为 ∴在磁场指向观察者时:⊙B 当ΔM= +1时,光子角动量为,与同向 电磁波电矢量绕逆时针方向转动,在光学上称为左旋圆偏振光。 ΔM= -1时,光子角动量为,与反向 电磁波电矢量绕顺时针方向转动,在光学上称为右旋圆偏振光。

塞曼效应实验

塞曼效应实验 【实验目的】 1.掌握观测塞曼效应的方法,加深对原子磁矩及空间量子化等原子物理学概念的理解。 2.观察汞原子546.1nm 谱线的分裂现象及它们偏振状态,由塞曼裂距计算电子荷质比。 3.学习法布里-珀罗标准具的调节方法。 4.学习CCD 器件在光谱测量中的应用以及通过计算机自动处理光谱数据的实验方法。 【实验原理】 1.背景简介 1896年,荷兰物理学家塞曼(P.Zeeman(1865-1943))发现当光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同,后人称此现象为塞曼效应。塞曼效应是继英国物理学家法拉第(M.Faraday(1791-1863))1845年发现磁致旋光效应,克尔(John Kerr)1876年发现磁光克尔效应之后,发现的又一个磁光效应。 法拉第旋光效应和克尔效应的发现在当时引起了众多物理学家的兴趣。1862年法拉第出于"磁力和光波彼此有联系"的信念,曾试图探测磁场对钠黄光的作用,但因仪器精度欠佳未果。 塞曼在法拉第的信念的激励下,经过多次的失败,最后用当时分辨本领最高的罗兰凹面光栅和强大的电磁铁,终于在1896年发现了钠黄线在磁场中变宽的现 象,后来又观察到了镉蓝线在磁场中的分裂。 塞曼在洛仑兹的指点及其经典电子论的指导下,解释了正常塞曼 效应和分裂后的谱线的偏振特性,并且估算出的电子的荷质比与几个 月后汤姆逊从阴极射线得到的电子荷质比相同。 塞曼效应不仅证实了洛仑兹电子论的准确性,而且为汤姆逊发现 电子提供了证据。还证实了原子具有磁矩并且空间取向是量子化的。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖。直到 今日,塞曼效应仍旧是研究原子能级结构的重要方法。 早年把那些谱线分裂为三条,而裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位mc eB L π4/=)。正常塞曼效应用经典理论就能给予解释。实际上 P.Zeeman(1865-1943)

塞曼效应实验讲义

塞曼效应讲义 教学方式及时间安排 讲解与实际操作,讲解35-45分钟,操作指导20分钟,学生动手操作120分钟,共200 分钟,4个学时。 一、实验的目的: 1.过观查塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁 场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结 构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图 象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏 振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线 的影响,发现钠双线在磁场中的分裂。 洛仑兹跟据经典电子论解释了分裂为三条的正常塞 曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这 一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有 了更多的了解。至今塞曼效应仍是研究能级结构的重要方法之一。 一、塞曼效应的原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很 靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于eB/4πmc ,可用经 典理论给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是eB/4πmc 的 简单分数倍,称反常塞曼效应,它不能用经典理论解释,只有量子理论才能得到满意的解释。 1.原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在 忽略核磁矩的情况下,原子中电子的轨道磁矩μL 和自旋磁矩μS 合成原子的总磁矩μ,与电子 的轨道角动量P L ,自旋角动量P S 合成总角动量P J 之间的关系,可用矢量图1来计算。 已知: μL =(e /2m )P L P L = π 2h )1(+L L (1) μS =(e/m )p s P S =π2h )1(+S S (2) 式中L, S 分别表示轨道量子数和自旋量子数,e, m 分别为电子的电荷和质量。 由于μL 和P L 的比值不同于μS 和P S 的比值,因此,原子的总磁矩μ不在总角动量P J 的延 长线上,因此μ绕P J 的延线旋进。μ只在P J 方向上分量μJ 对外的平均效果不为零,在进行矢 量迭加运算后,得到有效μJ 为: J μ=g m e 2P J (3) 其中g 为朗德因子,对于LS 耦合情况下 g=1+ )1(2)1()1()1(++++-+J J S S L L J J (4)

塞曼效应(含思考题答案)

课程: 专业班号: 姓名: 学号: 同组者: 塞曼效应 一、实验目的 1、学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂; 2、观察分裂谱线的偏振情况以及裂距与磁场强度的关系; 3、 利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。 二、实验原理 1、谱线在磁场中的能级分裂 设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。各层能量为 B Mg E E B μ+=0 (1) 其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(m hc B πμ4= );B 为磁感应强度。 对于S L -耦合 ) () ()()(121111++++-++ =J J S S L L J J g (2) 假设在无外磁场时,光源某条光谱线的波数为 )(010201~E E hc -=γ (3) 式中 h 为普朗克常数;c 为光速。 而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为 hc B g M g M E E hc B μγγγγγ)()(112201200~1 ~~~~-+=?-?+=?+= L g M g M )(1 1220~-+=γ 所以,分裂后谱线与原谱线的频率差(波数形式)为 mc Be g M g M L g M g M πγγγ4~~~1 12211220)()(-=-=-=? (4) 式中脚标1、2分别表示原子跃迁后和跃迁前所处在的能级,L 为洛伦兹单位 (B L 7.46=),外磁场的单位为T (特斯拉),波数L 的单位为 [] 1 1--特斯拉 米。 1 2M M 、的选择定则是:0=?M 时为π 成分,是振动方向平行于磁场的线偏振光,只能在垂直于

塞曼效应实验报告精选doc

实验题目:塞曼效应 实验目的:研究塞曼分裂谱的特征,学习应用塞曼效应测量电子的荷质比和研究原子能级结构的方法。 实验仪器:塞曼效应实验平台仪器,磁感应强度测量仪,底片,秒表等。 实验原理:(点击跳过实验原理) 1. 谱线在磁场中的能级分裂 对于多电子原子,角动量之间的相互作用有LS 耦合模型和JJ 耦合某型。对于LS 耦合,电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个电子的轨道与自旋角动量耦合作用弱。 原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。总磁矩在磁场中受到力矩的作用而绕磁场方向旋进,可以证明旋进所引起的附加能量为 B Mg E B μ=? (1) 其中M 为磁量子数,μB 为玻尔磁子,B 为磁感应强度,g 是朗德因子。朗德因子g 表征原子的总磁矩和总角动量的关系,定义为 ) 1(2)1()1()1(1++++-++=J J S S L L J J g (2) 其中L 为总轨道角动量量子数,S 为总自旋角动量量子数,J 为总角动量量子数。磁量子数M 只能取J ,J-1,J-2,…,-J ,共(2J+1)个值,也即E ?有(2J+1)个可能值。这就是说,无磁场时的一个能级,在外磁场的作用下将分裂成(2J+1)个能级。由式(1)还可以看到,分裂的能级是等间隔的,且能级间隔正比于外磁场B 以及朗德因子g 。 能级E 1和E 2之间的跃迁产生频率为v 的光, 12E E hv -= 在磁场中,若上、下能级都发生分裂,新谱线的频率v ’与能级的关系为 B g M g M hv E E E E E E E E hv B μ)()()()()('112212121122-+=?-?+-=?+-?+= 分裂后谱线与原谱线的频率差为

塞曼效应实验报告完整版

学生姓名: 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 塞曼效应 一、实验目的 1.观察塞曼效应现象,把实验结果与理论结果进行比较。 2.学习观测塞曼效应的实验方法。 3.计算电子核质比。 二、实验仪器 WPZ —Ⅲ型塞曼效应实验仪 三、实验原理 塞曼效应:在外磁场作用下,由于原子磁矩与磁场相互作用,使原子能级产生分裂。垂直于磁场观察时,产生线偏振光(π线和σ线);平行于磁场观察时,产生圆偏振光(左旋、右旋)。 按照半经典模型,质量为m ,电量为e 的电子绕原子核转动,因此,原子具有一定的磁矩,它在外磁场B 中会获得一定的磁相互作用能E ?,由于原子的磁矩J μ与总角动量J P 的关系为 2J J e g P m μ=(1) 其中g 为朗德因子,与原子中所有电子德轨道和自旋角动量如何耦合成整个原子态的角动量密切相关。因此, cos cos 2J J e E B g P B m μαα?=-=-(2) 其中α是磁矩与外加磁场的夹角。又由于电子角动量空间取向的量子化,这种磁相互作用能只能取有限个分立的值,且电子的磁矩与总角动量的方向相反,因此在外磁场方向上, cos ,,1,,2J h P M M J J J απ -==--L (3)

学生姓名: 刘惠文 学号: 39 专业班级:应物101班 实验时间: 教师编号:T017 成绩: 式中h 是普朗克常量,J 是电子的总角动量,M 是磁量子数。设:4B he m μπ=,称为玻尔磁子,0E 为未加磁场时原子的能量,则原子在外在磁场中的总能量为 00B E E E E Mg B μ=+?=+(4) 由于朗德因子g 与原子中所有电子角动量的耦合有关,因此,不同的角动量 耦合方式其表达式和数值完全不同。在L S -耦合的情况下,设原子中电子轨道运动和自旋运动的总磁矩、总角动量及其量子数分别为L μ、L P 、L 和S μ、S P 、S ,它们的关系为 2L L e P m μ==(5) S S e P m μ==(6) 设J P 与L P 和S P 的夹角分别为LJ α和SJ α,根据矢量合成原理,只要将二者在 J μ方向的投影相加即可得到形如(1)式的总电子磁矩和总轨道角动量的关系: 2222222222cos cos (cos 2cos )2(2)222(1)222J L LJ S SJ L LJ S SJ J L S J L S J J J L S J J J e P P m P P P P P P e m P P P P P e P P m e g P m μμαμααα=+= ++--+=+-+=+=(7) 其中朗德因子为 (1)(1)(1)1.2(1) J J L L S S g J J +-+++=++(8) 由(*)式中可以看出,由于M 共有(2J +1)个值,所以原子的这个能级在

塞曼效应参考版

塞曼效应 学号:********* 姓名:*** 实验日期:2010/10/18 指导老师:*** 【摘要】本实验采用光栅摄谱仪摄谱的方法,观察了汞原子光谱在磁场中分裂情况和分 裂后各分支谱线的偏振特性,测量了各分支谱分裂前后的波长差,与理论值做比较,从而验证了塞曼效应。 【关键词】塞曼效应选择定则洛伦兹常量光栅摄谱仪 1.引言 1896年,荷兰物理学家塞曼(Peter Zeeman)发现,当把光源放在足够强的磁场内时,光源发出的光谱线变宽了。再仔细观察后才发现,每一条谱线分裂成几条谱线,而不是任何谱线的变宽,分裂的条数随能级的类别而不同。这种现象被称为塞曼效应。 塞曼效应一被发现,洛伦兹即根据“电子论”的半经典理论对此进行了解释,他认为这是由于原子内带电粒子在外磁场中受磁场力的作用,使粒子的振荡频率发生变化。这种变化取决于相对磁场的取向,而使辐射谱线分裂成三条线(横向塞曼效应)或二条线(纵向塞曼效应)。洛伦兹的这种理论很好的解释了这种后来被称为“正常塞曼效应”的现象。因此两人在1902年获得了诺贝尔物理学奖。 随着对塞曼效应更进一步研究,1898年普列斯顿提出谱线还可为4重分裂和6重分裂这样反常塞曼效应,洛伦兹的半经典理论此时无法完全解释这些分裂了。以后,很多物理学家纷纷试图创立新的理论来解释这个问题。直到1916年索未非与德拜应用玻尔的量子理论对正常的塞曼效应作出了解释。1921年,朗德在他的《论反常塞曼效应》一文中,首次引人了著名的朗德g因子,用于表示原子总磁矩与原子总角动量的比值,来反映原子能级在磁场作用下的能量改变。1925年乌伦贝克和古兹米特提出了电子自旋的概念,说明了在外磁场作用下,电子自旋同轨道运动相互作用引起旋进运动,产生附加能量,使谱线分裂,而反常塞曼效应则恰是从实验上证实了电子自旋的存在。至此,塞曼效应才有了一个完满的理论解释。1926年,海森堡和约旦引进电子自旋S,从量子力学的角度对反常塞曼效应作出了正确的定量计算。 本实验采用光栅摄谱仪的方法来研究塞曼效应。

相关主题
文本预览
相关文档 最新文档