当前位置:文档之家› 钢坯加热炉温度控制系统

钢坯加热炉温度控制系统

钢坯加热炉温度控制系统
钢坯加热炉温度控制系统

内蒙古科技大学

过程控制课程设计论文

题目:钢坯加热炉温度控制系统

学生姓名:

学号:

专业:

班级:

指导教师:

目录

钢坯加热炉温度控制系统设计摘要 (1)

第一章引言 (2)

1.1加热炉温度控制技术的发展 (2)

1.2 加热炉一般结构与控制原理 (3)

1.3加热炉生产工艺 (4)

第二章加热炉温度控制系统 (5)

2.1串级系统控制概述 (5)

2.2 温度控制系统概述 (6)

2.3 加热炉炉温基本控制方案 (6)

2.3.1 炉温基本控制方案一 (6)

2.3.2 炉温基本控制方案二 (7)

2.3.1 炉温控制改进方案 (8)

2.4调节器正反作用的确定 (9)

2.4.1副调节器作用方式的确定 (9)

2.4.2主调节器作用方式的确定 (9)

第三章仪器选型 (10)

3.1温度传感器的选择 (10)

3.2流量变送器的选择 (10)

3.3执行器选择 (11)

3.4调节器的选择 (11)

第四章总结 (13)

参考文献 (14)

钢坯加热炉温度控制系统设计

摘要

加热炉是冶金行业生产环节中重要的热工设备。加热的目的之一是提高钢的塑性。钢在冷态下可塑性很低,为了改善钢的热加工条件,必须提高钢的塑性。一般来说,钢的热加工温度越高,钢的可塑性越好。钢的加热温度越低,加工所消耗的能量越大,轧机的磨损也越快,而且温度过低时还容易发生断辊事故。加热的另外一个目的是使钢的内外温度均匀。由于板坯内外的温差,使得金属内部产生应力,这样经过轧制过程后容易造成质量缺陷和废品。通过加热炉的均热使断面上温差缩小,避免出现危险的温度应力。板坯的加热质量直接影响到钢材的质量、产量、能源消耗以及轧机寿命。正确的加热工艺可以提高钢的塑性,降低热加工时的变形抗力,及时为轧机提供加热质量优良的板坯,保证轧机生产顺利进行。反之,如加热工艺不当,例如加热温度过高,会发生板坯过热、过烧,轧制时就要造成废品。

加热炉的燃烧过程是受随机因素干扰的,具有大惯性、纯滞后的非线性分布参量的随机过程。对于这种复杂的控制对象,即使是经验丰富的操作人员,也很难全面考虑各种因素的影响,准确地控制燃烧过程,造成炉温经常偏高或偏低,这些都严重影响了加热炉加热质量和燃耗,甚至影响正常生产。

加热炉的生产任务是按轧机的轧制节奏将钢材加热到工艺要求的温度水平和加热质量,并在优质高产的前提下,尽可能地降低燃料消耗,减少氧化烧损。连续加热炉的操作水平直接影响产品的质量、产量和生产消耗指标,钢坯的出炉温度要求在 1 150~1 250℃,靠操作工人调节阀门来控制炉温的效果很差,粘钢和硬断轧辊的事故时有发生,而且能源消耗特别大,所以国内外关于加热炉自动控制的研究一直受到重视,发展得比较快,也取得了较为丰硕的成果。

关键字:加热炉、温度控制、过程控制

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

加热炉出口温度控制系统设计

吉林建筑大学城建学院课程设计报告 题目名称加热炉出口温度控制系统设计院(系)电气工程及其自动化 课程名称过程控制工程课程设计 班级电气13-1 学号 学生姓名 指导教师 起止日期2016.6.20-2016.7.1 成绩

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 第1章绪论 (1) 1.1 设计目的 (1) 1.2 设计任务 (1) 1.3加热炉温度控制系统简介 (1) 1.4加热炉温度控制系统的发展 (2) 第2章对象模型建立 (4) 2.1 建立数学模型 (4) 2.2控制系统分析 (5) 第3章系统设备选型 (6) 3.1 测量变送器和传感器的选择 (6) 3.2执行器的选择 (6) 3.3控制器的选择 (6) 第4章控制器参数整定及Simulink仿真 (9) 4.1控制器参数整定 (9) 4.2Simulink仿真 (11) 结论 (12) 致谢 (13) 参考文献 (14)

摘要 随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。随着网络技术的发展和整个工厂完全实现两级自动化管理,在过程级上通过相应的终端了解任何一个设备或任何一个装置的控制情况以及生产情况。过程控制系统在加热炉系统中得到广泛的应用,它是加热炉控制系统的重要部分,是对以及控制系统的一个总领和扩充。现代加热炉的生产过程可以实现高度的过程控制,以保证在加热过程中温度的准确控制,这就为工业生产提供了有利条件。加热炉是工业生产中的一个重要装置,它的任务是把原料加热到一定温度,以保证下道工序的顺利进行。因此加热炉的温度控制起着举足轻重的作用。 关键词:加热炉;过程控制系统;温度控制

电阻加热炉温度控制

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

蓄热式加热炉传热基本知识

蓄热式加热炉传热基础知识 一传热的基本方式 钢坯加热是通过炉内热交换过程进行的。只要有温度差存在 热量,热量总是由高温向低温传递,这种热量传递过程称为传热。传热是一种复杂的物理现象,根据其物理本质的不同,把传热过程分为三种基本方式:传导、对流和辐射。 1传导传热 没有质点相对位移情况下,物体内部或直接接触的不同物体因为温度差,将热量由高温部分依次传递给低温部分的现象,称为传导传热。 传导传热快慢主要影响因素有: (1)材料的导热系数。各种材料的导热系数都由实验测定。气体、液体和固体三种比较来看,气体的导热系统一般比较小(仅为 0.006—0.58W/(m·℃)),液体的导热系数一般比气体大(在 0.09—0.7W/(m?℃)之间),固体的导热系数一般比较大,其 中以金属的导热系数最大(在2.8--419W/(m?℃)之间,纯银的导热系数最高)。而且随着温度的变化,物体导热系数也随着变化。 (2)温度差。温度差越大,传导传热也越强烈,另外温差越大,传热不可逆损失越大。 2对流传热 依靠对流的各部分发生相对位移,把热量由一处传递到另一处的

现象,称为对流传热。

对流传热主要因素不仅有物体的温度差,而且与下列因素有关:(1)流体流动的情况。 (2)流体流动的性质。 (3)流体的物理性质。 (4)工体表面的形状、大小和位置。 3 辐射传热 依靠物体表面。对外界发蛇的电磁波(辐射能)来传递热量,当辐射能投射到另一物体时,能被另一物体吸收又变成热能。这种依靠电磁波来传递热能的过程叫辐射传热,辐射是一切物体固有的特征,辐射传热不需要任何中间介质或物体的直接接触,在真空中同样可以传播。 辐射传热主要影响因素: | (1)辐射传热量的大小与辐射体的温度的4次方成正比,因此,提高炉温对加热速度有决定性意义。蓄热式加热炉燃烧温度比常温燃烧高许多,因此烟气的辐射传热效果远远好于常温燃烧。 (2)辐射传热量的大小与辐射体的黑度成正比,因此,提高加热炉内壁和火焰黑度对提高加热速度和节能降耗有重要意义。 二蓄热式加热炉炉内综合传热 在加热炉的炉膛内,热的交换过程是辐射、对流和传导同时存在,我们把这种传热方式叫做炉内综合传热。

加热炉温度控制系统

目录 一、工艺介绍 (2) 二、功能的设计 (4) 三、实现的情况以及效果 (6)

一、工艺介绍 在钢厂中轧钢车间在对工件进行轧制前需要将工件加热到一定的温度,如图1表示其中一个加热段的温度控制系统。在图中采用了6台设有断偶报警的温度变送器、3台高值选择器、1台加法器、1台PID调节器和1台电器转换器组成系统。 利用阶跃响应便识的,以控制电流为输入、加热炉温度为输出的系统的传递函数为: 温度测量与变送器的传递函数为: 由于,因此,上式中可简化为: 在实际的设计控制系统时,首先采用了常规PID控制系统,但控制响应超调量较大,不能满足控制要求。

图1 对如图1所示的加热炉多点平均温度系统采用可变增益自适应纯滞后补偿进行仿真。 加入补偿环节后,PID调节器所控制的对象包括原来的对象和补偿环节两部分,于是等效对象的特性G(s)可以写成: 即补偿后的广义被控对象不在含有纯延迟环节,所以,采用纯滞后的对象特性比原来的对象容易控制的多。 但实际应用中发现,加热锅炉由于使用时间长短不同及处理工件数量不同,会引起特性变化,导致补偿模型精度降低,从而使纯滞后补偿特性变差,很难满足实际生产的稳定控制要求。

为改善调节效果,在控制线路中加入两个非线性单元——除法器与乘法器,构成如图所示的加热炉多点温度控制纯滞后自适应控制系统。 二、功能的设计 1、系统辨识 经辨识的被控对象模型为: 所以,带可变增益的自适应补偿控制结构框图如图

图2 加热炉多点温度控制纯滞后自适应补偿系统控制框图2、无调节器的开环系统稳定性分析 理想情况下,无调节器的开环传递函数为: 上式中所示广义被控对象的Bode图如下图所示。 图3

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

电阻加热炉温度控制

电阻加热炉温度控制精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:07001139

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID 控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

加热炉温度控制系统..

第1章绪论 1.1 综述 在人类的生活环境中,温度扮演着极其重要的角色。温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。 1.2 加热炉温度控制系统的研究现状 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。单片机温度控制系统是数控系统的一个简单应用,在冶金、化工、建材、机械、食品、石油等各类工业中,广泛使用于加热炉、热处理炉、反应炉等。 温度是工业对象中的一个重要的被控参数。由于炉子的种类不同,因而所使用的燃料和加热方法也不同,例如煤气、天然气、油、电等;由于工艺不同,所需要的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,控制温度的精度也不同,因而对数据采集的精度和所采用的控制算法也不同。 传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。不仅如此,传统的控制方式不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于它主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效

钢坯加热炉温度控制系统

内蒙古科技大学 过程控制课程设计论文 题目:钢坯加热炉温度控制系统 学生姓名: 学号: 专业: 班级: 指导教师:

目录 钢坯加热炉温度控制系统设计摘要 (1) 第一章引言 (2) 1.1加热炉温度控制技术的发展 (2) 1.2 加热炉一般结构与控制原理 (3) 1.3加热炉生产工艺 (4) 第二章加热炉温度控制系统 (5) 2.1串级系统控制概述 (5) 2.2 温度控制系统概述 (6) 2.3 加热炉炉温基本控制方案 (6) 2.3.1 炉温基本控制方案一 (6) 2.3.2 炉温基本控制方案二 (7) 2.3.1 炉温控制改进方案 (8) 2.4调节器正反作用的确定 (9) 2.4.1副调节器作用方式的确定 (9) 2.4.2主调节器作用方式的确定 (9) 第三章仪器选型 (10) 3.1温度传感器的选择 (10) 3.2流量变送器的选择 (10) 3.3执行器选择 (11) 3.4调节器的选择 (11) 第四章总结 (13) 参考文献 (14)

钢坯加热炉温度控制系统设计 摘要 加热炉是冶金行业生产环节中重要的热工设备。加热的目的之一是提高钢的塑性。钢在冷态下可塑性很低,为了改善钢的热加工条件,必须提高钢的塑性。一般来说,钢的热加工温度越高,钢的可塑性越好。钢的加热温度越低,加工所消耗的能量越大,轧机的磨损也越快,而且温度过低时还容易发生断辊事故。加热的另外一个目的是使钢的内外温度均匀。由于板坯内外的温差,使得金属内部产生应力,这样经过轧制过程后容易造成质量缺陷和废品。通过加热炉的均热使断面上温差缩小,避免出现危险的温度应力。板坯的加热质量直接影响到钢材的质量、产量、能源消耗以及轧机寿命。正确的加热工艺可以提高钢的塑性,降低热加工时的变形抗力,及时为轧机提供加热质量优良的板坯,保证轧机生产顺利进行。反之,如加热工艺不当,例如加热温度过高,会发生板坯过热、过烧,轧制时就要造成废品。 加热炉的燃烧过程是受随机因素干扰的,具有大惯性、纯滞后的非线性分布参量的随机过程。对于这种复杂的控制对象,即使是经验丰富的操作人员,也很难全面考虑各种因素的影响,准确地控制燃烧过程,造成炉温经常偏高或偏低,这些都严重影响了加热炉加热质量和燃耗,甚至影响正常生产。 加热炉的生产任务是按轧机的轧制节奏将钢材加热到工艺要求的温度水平和加热质量,并在优质高产的前提下,尽可能地降低燃料消耗,减少氧化烧损。连续加热炉的操作水平直接影响产品的质量、产量和生产消耗指标,钢坯的出炉温度要求在 1 150~1 250℃,靠操作工人调节阀门来控制炉温的效果很差,粘钢和硬断轧辊的事故时有发生,而且能源消耗特别大,所以国内外关于加热炉自动控制的研究一直受到重视,发展得比较快,也取得了较为丰硕的成果。 关键字:加热炉、温度控制、过程控制

蓄热式连续加热炉的基本结构组成

蓄热室连续加热炉的基本结构组成 连续式加热炉由以下几个基本部分组成:炉子基础和钢结构、炉膛与炉衬、燃料燃烧系统、排烟系统、余热利用装置、冷却系统、装出料设备、检测及调节装置、计算机控制系统等。 1炉子基础和钢结构 炉子基础将炉膛、钢结构和被加热钢坯的重量所构成的全部载荷传到地面上。一般采用混凝土基础。 炉子钢结构是由炉顶钢结构、炉墙钢结构和炉底钢结构的一个箱形框架结构,用以保护炉衬和安装烧嘴。水梁、立柱及各种炉子附件的固定主要由型钢和钢板组成。 (1)炉膛与炉衬 炉膛是由炉墙、炉顶和炉底围成的空间,是对钢坯进行加热的 地方。炉墙、炉顶和炉底通称为炉衬,炉衬是加热炉的一个关 键技术条件。再加热炉的运行过程中,不仅要求炉衬能够在高 温和载荷条件下保持足够的温度和稳定性,要求炉衬能够耐受 炉气的冲刷和炉渣的侵蚀,而且要求有足够的绝热保温和气密 性能。为此,炉衬通常耐火层、保温层、防护层和钢结构几部 分组成。其中耐火层直接承受炉膛内的高温气流冲刷和炉渣侵 蚀,通常采用各种耐火材料经砌筑、捣打或浇筑而成;保温层 通常采用各种多孔的保温材料经砌筑、敷设、充填或粘贴形成,其功能在于最大限度地减少炉衬的散热损失,改善现场操作条 件;防护层通常采用建筑砖或钢板,其功能在于保持炉衬的气

密性,保持多孔保温材料形成的保温层免于损坏。钢结构是位于炉衬最外层的由各种钢材拼焊、装配成的承载框架,其功能在于承担炉衬、燃烧设备、检测设施、检测仪器、炉门、炉前管道以及检测、操作人员所形成的载荷,提供有关设施的安装框架。 A炉墙 炉墙分为侧墙和端墙,沿炉子长度方向上的炉墙成为侧墙,炉子两端的炉墙。整体捣打、浇注的炉墙尺寸可以根据需要设计。炉墙采用可塑料或浇注料内衬和绝热层组成的复合砌体结构。为了使炉子具有一定的强度和良好的气密性,炉墙外壁为5mm或6mm厚的钢板外壳。 蓄热式连续加热炉的炉墙上除了设有炉门、窥视门、烧嘴孔、测温孔等孔洞,还有蓄热室和高温通道(蓄热式烧嘴的蓄热室一再少嘴里),所以炉墙要能够承受高温。为了防止砌体受损,炉墙应尽可能避免直接承受附加载荷,所以炉门,冷却水管等构件通常都直接安装在钢材上。 B炉顶 加热炉的炉顶按其结构分为拱顶和吊顶两种。现在大多采用可塑料或浇注料内衬和绝热层组成的符合砌体吊顶结构。这种吊顶结构不受炉子跨度的影响且使用寿命长。 C炉底 炉底一般采用砖砌复合结构,高温炉底还要承受炉渣的化学侵

加热炉的温度自动控制系统研究与设计

加热炉的温度自动控制系统研究与设计 1研究目的 目前,自动控制技术已经在生活中的很多方面得到了很好的应用,比如在我们生活中的加热设备就是一个很常见的自动化控制的实际应用,通过研究这一类系统的性能并给出一些切实可行的改进方案,使得系统的性能能进一步完备和优良也就有了很大实际意义。 2研究对象 基于前面的设计目的,本次设计通过对已有的加热装置——加热炉的研究来设计和完善这个系统的自动控制性能。下面是这个系统的原始系统框图: 图1 原系统框图 3系统的分析和研究 对于上述系统给定的数据计算其系统的开环和闭环传递函数分别是: G (s )=9.975 32.5 s^3 + 157.8 s^2 + 52.75 s + 4.5 H (s )=9.975 32.5 s^3 + 157.8 s^2 + 52.75 s + 31.45 由该系统的H(s)可以借助MATLAB 求出其闭环极点分别是:P 1=?4.52,P 2=?0.169+0.265j,P 3=?0.169?0.265j 显然,原系统是稳定的,下面再考察系统的稳定特性:由系统的开环传递函数G (s )= 9.975 32.5 s^3 + 157.8 s^2 + 52.75 s + 4.5 画出系统的伯德图如下:

图2 原系统的伯德图 由伯德图可以得到:ωc=0.2,γ=180°+(?101°)=79°,20lgk g=28dB.由此,对比于一般良好的系统的幅值裕度和相位裕度的要求(γ=40°~60°,20lgk g=6dB~10dB)可知,该系统的幅值裕度和相位裕度都有可以调节的余地。 下面再分析该系统的动态特性。系统的单位阶跃响应曲线如下: 图3 原系统的单位阶跃响应 可以方便地由该曲线得出有关的动态参数:t r=5.48s,t p=12.1s,ts=18.7s,δ%= 13.5%,可见,该系统的响应速度很慢,所以其动态性能有很大的改进的余地。

蓄热式加热炉

一、引言蓄热式加热炉是用于轧钢厂的一种新型的加热炉,具有高效燃烧、回收利用烟气及低二氧化碳排放等优点。在工业企业中广泛应用,对节能减排工作起着重要的促进作用。 二、蓄热式加热炉的工作原理及其特点蓄热式加热炉的高效蓄热式燃烧系统主要由蓄热式烧嘴和换向系统组成。它分为预热段、加热段和均热段三个主体。其原理是采用蓄热室预蓄热全,达到在最大程度上回收调温烟气的湿热,提高助燃空气温度的效果。新型蓄热式加热炉的蓄热室现在普遍采用陶瓷小球或蜂窝体作为蓄热体,其表面积大,极大的提高了传热系统,使蓄热室内的体积大大缩小。再加上新型可靠的自动控制技术及预热介质预热温度高,废气预热得到接近极限的回收。是一种新型的高效、节能的加热炉。参与控制的主要现场设备有:各段炉温测量热电偶;煤气预热器前后烟气温度测量热电偶;各段烟气及排烟机前烟气温度测量热电偶;各段煤气、空气及烟气流量测量孔板及差压变送器;各段煤气、空气及烟气流量调节阀;各段两侧烧嘴前煤气切断阀及空气/烟气三通换向阀;炉压测量微差压变送器及用于炉压调节的烟道闸板;用于风压调节的风机入口进风阀;煤气总管切断阀及压力调节阀;其它安全保护连锁设备等。三、换向原理换向装置是加热炉的重要部件,整个燃烧过程都是靠抽象向装置完成的。可以说它是整个加热炉的心脏。它的

换向原理是:初始状态下,换向装置处于某一固定状态时,向炉子一侧的燃烧器输送煤气、空气,在炉内实现混合燃烧,同时从炉子另一侧的燃烧器排出烟气,经过一个周期(120s-180s)改变方向,实现周期换向。换向装置一般采用双气缸、二位四通换向阀,它内有四个通道,每次动作开启两具通道,同时关闭两个通道以实现供气和排水气的周期性换向。四、自动控制系统蓄热式加热炉控制系统一般有:⑴换向控制系统;⑵炉温控制系统;⑶炉内压力控制系统;⑷安全保护控制系统;⑸烟空比控制;⑹HMI人机对话界面的功能。1、换向控制系统设备的选型换向控制是整个加热炉燃烧、控制系统的重中之重,是燃烧控制的关键控制系统。也就是说换向控制系统的正常运行决定着整个加热炉的正常燃烧和炉温的控制。所以在控制系统上采用计算机控制系统,由传感器采集各种变量PLC,再由PLC根据设定控制方式和目标值,分别驱动相应的换向装置和相应的执行机构,调节过程变量,实现对温度、压力、流量的调节控制。操作人员可通过键盘和鼠标经工控机HMI界面来设定炉子的各项热工参数,计算机根据设定的参数送上工控机处理,并在HMI上显示.同时随时可查看各种历史参数和打印各种生产报表。声光报警系统可即时对故障进行报警,并向操作者提示处理方法是目前较先进、实用的计算机控制系统。2、换向控制换向控制系统设有自动、手动控制两部分。在正常的运行过程中

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

最新加热炉温度控制系统_毕业

摘要 温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。加热炉温度控制在许多领域中得到广泛的应用。这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 然而PLC 在这方面却是公认的最佳选择。 加热炉温度是一个大惯性系统,一般采用PID调节进行控制。随着PLC 功能的扩充在许多PLC 控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。本设计是利用西门子S7-200PLC控制加热炉温度的控制系统。首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-200PLC和系统硬件及软件的具体设计过程。 关键词:温度控制;PID;温度传感器;可控硅电压调整器 仅供学习与交流,如有侵权请联系网站删除谢谢

Abstract Temperature control system has been widely used in the industry controlled field,as the temperature control system of boilers and welding machines in steel works、chemical plant、heat-engine plant etc. Heating-stove temperature control has also been applied widely in all kinds of fields .The application of this aspect is based on SCM which is making the PID control, yet the hardware and software design of DDC system controlled by SCM is somewhat complicated , it’s not an advantage especially related to logic control, however it is accepted as the best choice when mentioned to PLC. The furnace temperature of heating-stove is a large inertia system,so generally using PID adjusting to control. With the expanding of PLC function, the control function in many PLC controllers has been expanded. Therefore it is more reasonable to apply PLC controlling in the applicable fields where logical control and PID control blend together. The design has utilized the control system with which Siemens S7-200 PLC control the temperature heating-stove. In the first place this paper presents the working principles of the temperature control system and the elements of this system. Then it introduces Siemens S7-200 PLC and the specific design procedures of the hardware and the software. Keywords Temperature control PID temperature pickup SCR V oltage Converter 仅供学习与交流,如有侵权请联系网站删除谢谢I

加热炉内钢坯的在线温度测试与结果分析

加热炉内钢坯的在线温度测试与结果分析 刘占增!蒋扬虎!曾汉生!丁翠娇 武汉钢铁 集团 公司技术中心 湖北武汉430080 摘要!介绍了钢坯在加热炉内加热过程实际温度测试的设备和方法 对测试结果进行了分析 并提出 了优化加热制度的建议 关键词!加热炉 温度测试 黑匣子中图分类号!TG 156.1文献标识码!A 文章编号!1001-1447 Z 006 06-00Z 1-04 An On-li ne m easure m ent Of billet te m p erat ure i n reheati n g f urnace and anal y s is Of m easured results LI U Zhan-zen g JI ANG Yan g -hu ZENG ~an-shen g D I NG Cui- i ao T echnol o gy Cent er W uhan Ir on and S t eel Cor p . W uhan 430080Chi na Abstract The devi ce and m et hod f or m easuri n g t he o p erati n g t e m p erat ure of bill et i nsi de t he reheati n g f ur nace are i ntr oduced i n t hi s p a p er .Based on anal y si s of m easured results so m e p r o p osal s t o o p ti m i ze heati n g t echnol o gy are p ut f or war d . Ke y wOrds reheati n g f ur nace t e m p erat ure m easure m ent bl ack box 作者简介!刘占增 1977- 男 河北献县人 工程师 主要从事热工工艺研究. 对现代热轧加热炉而言 人们所追求的是高效 优质 低耗 这就必须有更加先进的热工制度 来指导生产操作 加热炉加热过程的数学模型最优化控制可以在最大程度上节约燃料消耗和提高加热质量 但是由于加热炉内钢坯表面和中心温度在线连续测量的困难 加热炉数学模型控制系统只能通过炉温来实现 再由数学模型计算得出钢坯的温度分布 因而需要对计算结果进行验证 本文采用俗称 黑匣子 的耐热记录仪测试设备对加热炉内钢坯加热温度进行在线测试 克服了长期以来存在的加热炉内钢坯断面温度在线测试的困难 研究炉内钢坯的温度规律 为加热炉控制数学模型验证或提取参数 加热炉故障诊断和功能考核以及优化加热工艺制度 以达到提高加热质量 降低燃料消耗和提高产品质量的目的 测试设备及方法1.1测试设备 测试设备为Ther mo p hil STOR 测试系统 黑匣子 它是一个动态测量数据的记录系统 随被 测物体一起运动 可测量物体在运动过程中的温度变化情况 根据预设的运行程序记录数据 并能对数据进行有效处理 黑匣子测试系统由STOR 记录仪和隔热箱组成 STOR 记录仪承担测量数据的检测 信号处理及数据储存 其技术参数见表1 隔热箱是承载记录仪和对记录仪起隔热保护作用的箱子 由耐热不锈钢制成 测试时将记录仪放入隔热 表1STOR 记录仪技术参数 项目 内容或数据 测量数据输入 测量通道数目 1Z 个 测量值输入N i C r-N i K 型 t Rh- t S 型测量范围 K 型 0 1400 S 型 0 1750 测量精确度 测量值分辨率8 10 1Z 或13位测量误差< 0.Z 测量范围 数据记录 测量间隔 0.1s Z 4h 测量数据记录容量 65536次测量间隔数据 Z 006年1Z 月第34卷第6期钢铁研究 Research on Ir on S t eel D ec .Z 006 Vol .34No .6

基于PID电加热炉温度控制系统设计

基于PID 电加热炉温度控制系统设计 1概述 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、 机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地 位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的 控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法 很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在 工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温 控制,可以提高控制质量和自动化水平。 在本控制对象电阻加热炉功率为800W ,由220V 交流电供电,采用双向可 控硅进行控制。本设计针对一个温度区进行温度控制,要求控制温度范围 50~350C ,保温阶段温度控制精度为正负1度。选择合适的传感器,计算机输出 信号经转换后通过双向可控硅控制器控制加热电阻两端的电压。其对象问温控数 学模型为: 1 )(+=-s T e K s G d s d τ 其中:时间常数Td=350秒 放大系数Kd=50 滞后时间τ=10秒 控制算法选用改PID 控制

2系统硬件的设计 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、 热电偶传感器、温度变送器以及被控对象组成。 系统硬件结构框图如下: 图2-1 系统硬件结构框图 看门狗 报警提醒 通信接口 LED 显示 键盘 微 型 控 制 机 AT89S52 温度检测PT100 驱动执行机构 8路D/A 转换器DAC0832 测量变送 8路A/D 转换器ADC0809 加热电阻 温度

蓄热式推钢加热炉操作作业指导书

2号加热炉操作作业指导书 宽板技[2008]第22号 1 目的 通过建立2号加热炉操作作业指导书,规范2号蓄热式推钢加热炉的操作,防止因操作不正确而引发事故,同时满足加热质量要求。 2 适用范围 本作业指导书适用于本厂2号蓄热式推钢加热炉。 3 实施步骤 3.1 加热炉主要设计参数 3.1.1加热炉主要尺寸如下 炉内过钢线标高: +800 mm 炉子有效长度:26800 mm 炉子全长:28000 mm 炉子内宽:8100 mm 炉子外宽:10100 mm 上加热炉膛高度: 800 mm 下炉膛高度:2400 mm 炉坑底面标高:-3940 mm 3.1.2 各段供热比例分配情况 均热段: 20% 二加热段:28% 一加热段:30% 预热段:22% 3.2 2号蓄热式推钢加热炉点炉操作 3.2.1 点炉前的检查及准备 3.2.1.1点炉前看火工应与当班相关的运行人员一起对燃烧系统、控制系统、4个固定式CO检测报警仪器和风机系统、冷却系统、炉体等进行彻底检查,发现问题应立即处理好后才能进行下一步操作;

3.2.1.2检查各气动调节阀、换向阀压力表,压力为0.4~0.6 MPa,否则,通过稳压阀将其调整到此范围内。检查电磁阀、气缸及气动件尼龙管快插头是否漏气,发现异常立即处理; 3.2.1.3检查并清理炉内、烧嘴砖及点火孔内杂物; 3.2.1.4高炉煤气烧嘴前的所有阀门是否处于关闭状态;所有排水阀(差压变送器、压力变送器等)是否处于关闭状态;煤气操作平台总管上的密封蝶阀、盲板阀及烘炉总管道上的密封蝶阀、盲板阀是否处于关闭状态。 3.2.1.5 CO检测仪探头已进行标定,发现探头误差应该立即调整,若误差较大或探头失效应立即更换; 3.2.1.6 检查煤气管道系统,各支管、放散、取样阀是否灵活,各处冷却水是否流畅和开启; 3.2.1.7 对换向系统、煤气快速切断阀、鼓风机及引风机等进行彻底检查与保养。检查所有气控系统油雾器油位,并将其加满,按上面标明的位置加入10#机油或变压器油,然后拧紧加油口,检查气动系统有无漏气部位,发现问题及隐患立即处理; 3.2.1.8 检查各快切阀连接螺母有无松动,并将转动部位注油; 3.2.1.9 分别用手扳动换向系统主气缸电磁阀手动开关,检查换向系统是否正常换向,然后扳动其他电磁阀手动开关检查气缸和电磁阀是否动作自如,发现异常立即处理。检查完毕,必须将电磁阀手动开关扳动下方,即电动位置,否则会因电动工作无效而无法工作; 3.2.1.10接通仪表及控制系统电源后,检查HMI上的显示画面。系统未启动时应显示煤气总管快切阀应为关闭状态,其他各处显示应无异常; 3.2.1.11 检查水冷系统是否运行正常,各回水口是否流动稳定,出水量是否稳定、均匀,否则调整各回路进水阀门; 3.2.1.12准备好点火用工具; 3.2.2点燃烘炉煤气烧嘴 接到车间调度停炉通知后,执行点炉操作。通知煤气站人员到操作现场。 3.2.2.1启动鼓风机,阀门开度50%;启动空侧引风机,开度50%;启动换向控制系统,启动水冷系统。 3.2.2.2打开进料炉门,打开出料炉门。 3.2.2.3打开烘炉煤气放散总管上的阀门(日常此阀应处于常开状态),打开六个烘炉烧嘴前的放散管上的旋塞阀,打开烘炉煤气总管道上的闸阀,连接氮气吹扫管道,打开氮气吹扫管道上的阀门,吹扫烘炉煤气管道30分钟。 3.2.2.4关闭氮气吹扫管道上的阀门,打开烘炉总管上的盲板阀,打开烘炉总管上的密封蝶阀。用煤气吹扫烘炉煤气管道10分钟。取样化验合格,方可点火。否则继续吹扫,直至取样化验合格为止。

相关主题
文本预览
相关文档 最新文档