当前位置:文档之家› 制冷4大部件制冷原理文档

制冷4大部件制冷原理文档

制冷4大部件制冷原理文档
制冷4大部件制冷原理文档

https://www.doczj.com/doc/584939917.html,/view/cb071618964bcf84b9d57b4e.html,四大原理百度地址

中央空调系统原理内的四大部件,压缩机,蒸发器,冷凝器,膨胀阀的主要功能

浏览次数:1863次悬赏分:0 |解决时间:2010-2-1 12:48 |提问者:太平门

制冷剂从膨胀阀到蒸发器和冷冻水热交换,制冷剂吸热,而后被压缩机,冷凝品处理放热又重新回到膨胀阀中,常温高压的状态进入下一轮循环,请问:这里压缩机的主要功能是什么?制冷剂在蒸发器里吸热之后为什么不直接用水进行降温放热处理,这样制冷剂也可以重新变回液态回到膨胀阀中啊?另外,为什么一定要保证制冷剂回到膨胀阀中的状态是液体的?制冷剂在蒸发器里吸热后为什么一定要经过压缩机冷凝器等一系列复杂处理?不能直接对制冷剂进行冷却降温吗?是否制冷剂的压力也有要求限定从而必须经过压缩机增压处理吗?压力和温度之间存在怎样的联系?温度越高压力也越高吗?那么,制冷剂从蒸发器出来已经吸热压力也增大了,为什么还要经过压缩机处理再增压呢?目的是什么?

问题补充:

谢谢楼下的回答,另外有几点疑问,看其他的资料,有些是这样的说法,第一,制冷剂经过冷凝器降温进入到膨胀阀降压后是低温低压的状态,而又有说是低温常压的状态,这里有没有歧议?第二,楼下所说的:“进入膨胀阀降压,使其变成低压常温的液化气”进入到膨胀阀不是应该是液态吗,为什么是液化气?第三,有些制冷剂循环图中所示的四大部件位置似乎有所不同,有点混淆,有的是从蒸发器里出来进入到单向阀,再进入冷凝器放热,再进入到压缩机,变成液态,再进入蒸发器,这个循环有点搞不懂,有这样的吗?到底从蒸发器里出来的制冷剂气态先进入压缩机增压再进入冷凝器降温的,还是先进入冷凝器降温再进入压缩机增压的呢?另外,从蒸发器里出来后到压缩机之间这个过程中是否应该还有个节流装置,不经过节流是不能直接进入压缩机的吗?

那从膨胀阀里出来的到底叫低温常压还是叫低温低压?还有截流是什么意思,为什么要截流?单向阀和膨胀阀和毛细血管有什么区别?

为什么要节流哎?节流这一步是必须的吗,也必须在膨胀阀里完成吗?

为什么要气液分离器让一部分液体气化呢?节流到底干嘛的

最佳答案

这里压缩机的主要功能是什么?

压缩增压,为制冷剂液化创造压力环境

制冷剂在蒸发器里吸热之后为什么不直接用水进行降温放热处理,这样制冷剂也可以重新变回液态回到膨胀阀中啊?

液化必须在临界温度以内,随着压力的升高液化程度将会更高,当然液化度是压力和温度的博弈,压力越高温度就越高,温度高了液化度就低了,所以每个系统都有一个最佳的温度和压力点。至于用水冷却压力过低液化量太小。

为什么一定要保证制冷剂回到膨胀阀中的状态是液体的?

只有当液体转化为气体时才会吸收热量,如果膨胀阀内是气体它又如何吸收热量呢?还有膨胀阀只是个降压截流的装置只是为了给汽化提供低压力化境。

制冷剂在蒸发器里吸热后为什么一定要经过压缩机冷凝器等一系列复杂处理?制冷剂从膨胀阀出来后吸热变态,由液态转化为气态,然后进入压缩机进行绝热压缩加压,使其变成高压高温的气体,然后再利用冷凝器降温,在相对较高的压力和相对较低的温度下气体开始液化变成液化气,再进入膨胀阀降压,使其变成低压常温的液化气,再进入蒸发器迅速吸热汽化,这便是一个制冷循环。所以这些是必不可少的。

压力和温度之间存在怎样的联系?

压力和温度的关系要看在什么环境中了,如果在正常的环境中则成正比。

制冷剂从蒸发器出来已经吸热压力也增大了,为什么还要经过压缩机处理再增压呢?目的是什么?

这个压力还不够高,液化量太小。我们要遵守能量守恒定律,整个系统中我们输出的能量永远不会大于我们输入的能量,只能无限的接近于输入的能量。

问题多多,分数少少!

制冷系统的压缩机,作用都是压缩,没增压这回事的!

第一,制冷剂经过冷凝器降温进入到膨胀阀降压后是低温低压的状态,而又有说是低温常压的状态,这里有没有歧议?

答:没歧议。膨胀阀降压后是低温低压和低温常压,常压和低压都是相对压缩机排气侧的高压而言。

第二制冷剂在蒸发器里吸热之后二,楼下所说的:“进入膨胀阀降压,使其变成低压常温的液化气”进入到膨胀阀不是应该是液态吗,为什么是液化气?

答:制冷剂在蒸发器里吸热之后应该叫气液混合物,只是大部分是液态。?

第三,制冷剂循环图中所示的,从蒸发器里出来进入到单向阀(毛细管/膨胀阀),再进入冷凝器吸热,再进入到压缩机,变成液态,再进入蒸发器,这个是制热工况!制冷工况是:压缩机排气-冷凝器放热-毛细管/膨胀阀截流-蒸发器吸热-压缩机吸气。

最后,从蒸发器出来后到压缩机之间这个过程中不需节流,直接进入压缩机(节流装置只是再需要调节入力和冷量的系统才加装的)

请参考:(里面有说明和图)

https://www.doczj.com/doc/584939917.html,/gzeasycool/blog/item/eeb952092b6a50ce3bc76384.html

在蒸发器的低温低压状态的, 制冷剂在蒸发器里是在低温低压的条件沸腾(沸腾需吸收外界的热量) 如制冷剂是R22 沸腾温度是0C 压力约为5Bar

制冷剂在冷凝器后是液态的,在经过膨胀阀节流后是汽液混合的,有一部分汽化了.

冷凝器和蒸发器统称为换热器,按照道理是可以互换使用的,就像我们的空调一样,既可以制冷又可以制热,就是把冷凝器与蒸发器互换。但是前提是,当蒸发器当冷凝器用的时候,首先要确定蒸发器所能承受的最大压力要大于制冷系统的高压压力。同样如果冷凝器与蒸发器的材质是一样的,是完全可以互换使用。

导航

?首页

?日志

?相册

?音乐

?收藏

?博友

?关于我

日志

goaction

加博友关注他

最新日志

该作者的其他文章

博主推荐

相关日志

随机阅读

首页推荐

更多>>

对“推广广告”提建议

制冷空调测控技术复习提纲

全国注册公用设备工程师(暖通空调、给排水、动力)执业资格考试

制冷班单位专业面试题

2009-01-09 22:51:21| 分类:默认分类阅读550 评论0 字号:大中小订阅

制冷051班单位专业面试题

中海物业有限公司

1、冷凝器和蒸发器各有什么作用

2、活塞压缩机四个工作过程

3、怎样判断压缩机的三个端

4、制冷系统不制冷原因,举例说明

5、摄氏度与华氏度的单位转换

6、20 kg 的空气进入空调房间,从30 0 C变为20 0 C,问它吸收了多少千焦的热量

太古可口可乐有限公司

1、制冷系统有哪四大部件

2、当制冷系统发生故障,该如何处理

3、高低压保护器有什么作用

4、过载保护器有什么作用

5、温控器有哪几种,它们又是如何进行工作的

6、温度探头传感器应放在哪个位置

7、更换压缩机后,要不要更换干燥过滤器

8、当压缩机的制冷量不够时,在原有的基础上如何增大制冷量,热力膨胀阀是开大还是关小

广州广钢气体有限公司

1、在热工学中,h 是什么意思,用公式或实例说明

2、画出焓—熵图,1-2,2-3,3-4,4-1各是什么过程

3、1-2过程为什么是等熵绝热过程

4、熵是什么东西,请说明

5、节流过程后,为什么是降温降压过程,试举例说明

6、常见的换热设备有哪些

广州柏诚(佛冈)有限公司

1、试用英语说出你所读的专业全程

2、温控器的工作原理

3、中央空调的VRV 是什么意思

4、整个中央空调系统的工作原理

力优(广大)有限公司

1、谈谈你对暖通空调的理解

2、如何对一家餐厅进行空调选型,选型原则是什么

大金空调有限公司

1、常用的制冷剂有哪些

工程部分

1、装风管时,直角连接用_________________________________________

2、中央空调总风管风速为____________,支风管风速为____________

3、空调房间风口风速为____________

4、消声器用什么材料做________________________

5、消声器安装前要考虑________________________________________________

6、风管常用保温材料____________________________________

7、风系统分为____________________________________

8、厨房与房间风管安装要装些什么________________________

9、风管排烟用什么方法____________________________________

10、中央空调防火措施____________________________________

11、画出中央空调的基本原理图

12、给出一些参数了,求送风量

13、给出一些风机盘管,怎样选连接管的直径

14、现有一套中央空调,有一定的温度,湿度之类的,要你改装为另外的温度,湿度之类的,要怎

么改,要换什么部件?

深圳大族激光有限公司

1、热力学的四大定律及第零定律

2、热电偶与热电阻的区别

3、制冷四大部件

4、画出制冷系统的压—焓图

5、画出二级压缩制冷无过冷流程图

6、摄氏度与华氏度的单位转换

7、制冷空调不制冷常见故障以及判断方法

8、R22的空调工况与标准工况是多少

9、W、QH、QC的关系

10、制冷剂在管道的流速为多少m/s

11、R22的蒸发温度

12、溴化锂的的制冷剂和吸收剂各是什么?

13、目前常用的制冷方法

14、高压过高是什么原因,应如何排除

15、R22与R134A的性能相比,各有什么特点

16、压缩机不运行有哪些原因

17、气密性试验,充氮气的压力是多少

18、毛细管的故障有哪些,就如何排除

19、制冷系统的检测方法

20、制冷的守恒定律

21、蒸发器到压缩机的制冷剂是什么状态

22、如何判断压缩机的好坏

23、压缩机的最高排气压力、温度多少

24、室外机组中,风扇不转是什么原因

其他

1、室外、室内是用什么风扇,它们又有什么特点

2、常用的阀门有哪些及其作用

3、评价制冷的性能有哪些指标

4、冰箱、空调充注制冷剂的高低压力各是多少

5、管道的连接方法有哪些

6、常用干燥剂有哪些

7、管道结霜是什么原因引起的,应如何排除

8、各种制冷剂的正常排气温度、排气压力、冷凝温度是多少

9、压力单位的转换

10、系统中有空气会有什么不良效果,应如果排掉不凝性气体

11、说说充注制冷剂的步骤及其注意事项

12、如何正确使用扩管器

13、人体感觉到舒适的温度、温度各为多少

14、螺杆机组和活塞机组各有什么优缺点

15、常用的载冷剂有哪些

16、画出压—焓图的各个参数

17、氨、氟利昂的管道是用什么管材

18、毛细管是用什么工具进行剪切

19、制冷系统中,高压、低压各有什么部件

20、检漏的方法有哪些

预祝各位师弟师妹们能顺利就业,找到一份好工作

太阳能固体吸附式制冷空调原理及前景

太阳能固体吸附式制冷空调原理及前景 一.前言 随着人们生活水平的大幅提高,空调器已逐渐成为家庭必备的家用电器,另一方面,大范围地使用传统制冷方式已经给环境造成了极大的破坏。首先是臭氧层空洞问题。传统制冷机广泛采用氯氟烃类制冷剂简称CFC,HCFC,它们会催化分解臭氧,削弱对紫外线的阻挡,威胁人类健康;其次,每年常规高能耗的制冷需求占用国家电力消耗的比例迅速增加,引起电力紧张,各地兴建各类发电站,火力占主要,大量烧煤增排CO2增强温室效应,引起全球升温;再次,能源短缺已然成为世界性的问题,普通空调器的普及显然是不利与于能源节约的,近几年来夏季我国各地特别是沿海停电现象严重,拉电限电十分普遍。 基于以上的问题,人们已经逐渐认识到可持续发展的重要性,同时也积极开发对能源有效利用和保护环境的新技术。太阳能固体吸附式制冷技术作为一种以太阳能为能源并且对环境无破坏作用的新型技术备受关注。 国外于二十世纪六七十年代就开始了对吸附式循环的研究。国内的研究开始于八十年代初,严爱珍等人曾在1982年对吸附式制冷作过研究,使用的工质是沸石分子筛-水和沸石分子筛-乙醇。1992年巴黎国际吸附式制冷会议带动了该技术的研究,在接下来的国际会议上均有上百篇论文发表,该项技术得到不断发展。 二. 工作原理 固体吸附式制冷技术的原理包括吸附和脱附两个过程。 1.脱附. 左图是脱附过程的简单模型图。吸附床 内充满了吸附剂,吸附有制冷剂,冷凝 器与冷却系统相连,一般冷却介质为水。 工作时,太阳能集热器对吸附床加热, 制冷剂获得能量克服吸附剂的吸引力从 吸附剂表面脱附,进入右边管道,系统 压力增加,C1导通,C2关闭。当压力与 冷凝器中对应温度下的饱和压力相等 时,制冷剂开始液化冷凝,最终制冷剂 凝结在蒸发器中,脱附过程结束。在这个过程中,太阳能集热器供能Q1,冷凝器放热Q4由冷却水排除到系统之外。 2.吸附. 右图是吸附过程的简单模型图。冷却系统对吸附 床进行冷却,温度下降,吸附剂开始吸附制冷剂, 左边管道内压力降低,C2导通,C1关闭,蒸发 器中的制冷剂因压力瞬间降低而蒸发吸热,达到 制冷效果,制冷剂达到吸附床,吸附过程结束。 在此过程中,吸附床放热Q2,被冷却水排除到 系统之外,蒸发器从环境中吸收Q3的热量。 以上只是最简单的模型图,由上可知单台吸 附床工作时制冷是间歇式的,不能连续制冷,要达到连续制冷的效果,必须使用两台或两台以上的吸附床,交错运行,制冷的循环就连续了。 三. 优点和缺点

溴化锂吸收式制冷机的工作原理最详细的讲解

溴化锂吸收式制冷机的工作原理是: https://www.doczj.com/doc/584939917.html,/showProduct.asp?f_id=737 冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。以上循环如此反复进行,最终达到制取低温冷水的目的。 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 工作原理与循环 溶液的蒸气压力是对平衡状态而言的。如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。 图1 吸收制冷的原理

压缩机是怎么制冷的工作原理是什么

压缩机是怎么制冷的工作原理是什么 我们日常使用的电冰箱,正好由这四要件加上箱体组成,箱体就好像冷库。不过电冰箱上的③节流阀在技术上由相同作用的毛细管替代。首先讲讲什么叫制冷。制冷两字只能说是技术上的术语,严格讲是错误的,世界上没有那国的科学家能制造出“冷”来。那到底什么是冷,例:在寒冬腊月,气温降到-5℃,我们说今天天气真冷,可东北人说不冷;在大伏天,气温在+32℃时,我们会说不算热,但气温突然降到+25℃,我们会说太冷了;这冷是随着人的常识来定的,在物理学中没有冷的定义。在工程中冷是跟着生产需要而定的。如老总问,冷库打冷了吗?你说打冷了,这个冷是指-18℃;老总问,水果库温度稳定吗?你说很稳定,这回答的含义是水果库温度稳定在±0℃了,这是我们这个行业对冷的定义。但是我们还是把这种利用机械设备把降温对象降到所需温度的方法叫制冷,这就是术语。什么叫制冷,比如我们将装有一公斤20℃冷水的水壶放到一块烧到500℃的铁板上,没有多久水就开了,如果不拿开水壶,不多久水就干了。大家和说钢板在对水加热,反过来也可以说水在对钢板降温。而且,降了多少度,都可计算出来,因为一公斤水从20℃升到100℃,它需要外界提供它80大卡热量,水从100℃到烧干,它需要外界提供539大卡热量,也就是说一公斤20℃冷水烧到干,要外界提供619大卡热量。如果按制冷的角度它从外界或钢板中提取了619大卡热量而变成了水蒸汽,使钢板降温了,这就是制冷,是利用水对钢板制冷。如果将水倒在钢板上,那就更直观了。 在上述的制冷过程中,如果钢板的大小一定,并排除外界空气的降温因素,那么钢板降了多少度,是可以精确计算出来的。在这里所述及到的‘热量’、‘温度’、‘大卡’、‘℃’等物理量,我想学过物理的人都能理解。初中物理就讲到,热量总是通过传导、对流、辐射,从温度高的物体转移到温度低的物体,绝不可能反过来进行。一个物体失去一些热量后,它的温度也会降低一些。我们的目的就是通过制冷系统,将商品中和空气中的热量向比商品温度更低的制冷剂传递,达到降低商品温度的目的。 我们的制冷系统与锅炉的制热系统在热力学上来讲是完全一样的,它们的热传导公式也完全一样,我们先以锅炉作比拟,进一步讲讲制冷剂在制冷时的作用。上面讲的烧水壶也可算是一只锅炉,不过水烧开了,我们就灌热水瓶了,如果我们在壶嘴上套根管子,通到浴室,那就可以洗桑拿了,水壶就成小锅炉了。要注意的是这时水壶中的水永远是100℃,水壶出口处的蒸汽温度也是100℃,为什么不是110℃,不是90℃?这是因为在一个大气压下水的沸腾温度是100℃,这是水的物理性能所决定了的。在青藏高原,大气压力较低,水70℃左右就开了,没有高压锅就只能吃夹生饭,而在高压锅里,温度可达到110℃,因为高压锅排气阀的重量,刚好使锅内压力保持在1Kg/CM2表压力(实际是2个大气压)。一般小型锅炉可烧4Kg/CM2表压力蒸汽,蒸汽温度也接近140℃,锅炉中的水温也与蒸汽温度一样也是140℃。煤气炉的火头温度可达1000℃左右,火头将热量传递给水,使水的温度上升直达沸点,一公斤水从沸点到烧干(全部变成蒸汽),将从煤气火头中带走的热量与上面所讲水壶给钢板降温是一样的,接近壶底的火焰是一个降温过程。锅炉中的煤燃烧温度在1200℃左右,没有锅炉中水的降温,锅炉中的排管将被烧塌。

吸附式制冷

吸附式制冷 一、吸附式制冷工作原理 吸附式制冷是通过吸附剂在较低的温度下(一般为当地气温)吸附制冷剂,在较高的温度下脱附制冷剂,通过吸附脱附循环来实现。通常是固体对气体的吸附,它的主要装置由吸附器、冷凝器、蒸发器、节流阀等组成,见图1。 吸附式制冷的工质对大致可分为沸石分子筛系、硅胶系、活性炭系等。 沸石分子筛系由于它的脱附温度较高,通常在280?,300?,所以,一般用于高温余热回收。例如:回收汽车高温排气余热,用于汽车空调。 硅胶系的脱附温度较低,一般从50?左右开始脱附至120?,可以完全脱水,但不耐高温(不超过120?)。因此,硅胶系很适合以低品位热源为动力的吸附式制冷。例如:回收发动机系统70?"-'80?冷却废热,制取空调用水。 活性炭系能够吸附水、甲醇、乙醇等许多制冷剂蒸汽,活性炭——水在0?以下很难使用,且会结冰;活性炭——甲醇有剧毒,能导致失明。因次,从安全和实用角度考虑,活性炭——乙醇比较适宜在低品位热能种的应用。 三、传统汽车空调的缺点 (1)汽车空调系统降低了发动机动力性能,增加整车负载。汽车空调系统绝大部分采用压缩式制冷循环,如图l所示,并分为直连式和独立式两大类。采用直连式驱动时,压缩机动力来自汽车发动机,因此空调系统工作时必然降低发动机动力性能。由于压缩机转速随车速变化,汽车制动时会停止制冷。对于独立式汽车空调,增设专用发动机不仅减少汽车空间,而且增加整车负载,增大燃油消耗。

(2)汽车空调系统制冷剂污染环境。目前,汽车空调系统制冷剂主要采用 R134a。1996年以前的汽车空调制冷剂多用R12,该制冷剂对臭氧层破坏严重,我国已于2010年全面完成了CFc类工质的替代。R134作为R12的替代产物,虽然不破坏臭氧层但其全球变暖潜值为1300。到2017年,欧盟将禁止新生产的汽车空调使用G形P值大于150的制冷剂。 因此,研究开发利用汽车余热和可再生能源驱动的汽车空调系统,是汽车空调技术发展与进步的必然要求。

吸收式制冷分析

第七章 吸收式制冷 吸收式制冷是液体气化制冷的另一种形式,它和蒸气压缩式制冷一样,是利用液态制冷剂在低温低压下气化以达到制冷目的的。所不同的是:蒸气压缩式制冷是靠消耗机械功(或电能)使热量从低温物体向高温物体转移,而吸收式制冷则依靠消耗热能来完成这种非自发过程。 第一节 吸收式制冷的基本原理 一、基本原理 对于吸收剂循环而言,可以将吸收器、发生器和溶液泵看作是一个“热力压缩机”,吸收器相当于压缩机的吸入侧,发生器相当于压缩机的压出侧。吸收剂可视为将已产生制冷效应的制冷剂蒸气从循环的低压侧输送到高压侧的运载液体。 二、吸收式制冷机的热力系数 蒸气压缩式制冷机用制冷系数ε评价其经济性,由于吸收式制冷机所消耗的能量主要是热能,故常以“热力系数”作为其经济性评价指标。热力系数ζ是吸收式制冷机所获得的制冷量0φ与消耗的热量g φ之比。 g φζφ= (7-1) 图7-1 吸收式与蒸气压缩式制冷循环的比较 (a )蒸气压缩式制冷循环 (b )吸收式制冷循环 (b ) (a )

0g a k e P φφφφφ++=+= (7-2) 00g e S S S S ?=?+?+?≥ (7-3) 0g e g e S T T T φφφ?=- - + ≥ (7-4) g e e g g T T T T P T T φφ--≥- (7-5) ) () (000T T T T T T e g e g g --≤ =φφζ (7-6) 最大热力系数ζmax 为 c c 0 max εηζ=--= T T T T T T e g e g (7-6a) 热力系数ζ与最大热力系数ζmax 之比称为热力完善度ηa ,即 max a ζηζ= (7-7) 第二节 二元溶液的特性 一、二元溶液的基本特性 B A v v V )1(1ξξ-+= (7-8) 两种液体混合前的比焓 k 蒸发器冷媒 环境 发生器热媒 图7-2 吸收式制冷系统与外界 的能量交换 图7-3 可逆吸收式制冷循环

电冰箱的制冷原理及其发展

绿色电冰箱的制冷原理及其发展走向 院系:机械与动力工程学院 专业:过程装备与控制工程 每人制作任务: 查找资料,写论文 查找资,修改论文 查找资料,制作PPT

绿色电冰箱的制冷原理及其发展走向 摘要:随着现实生活的需要,各种新技术渐渐浮出水面,以满足人类更好的生存物质需要和精神需要。盛夏之际,最具诱惑的当属从冰箱中取出一罐冰冻的饮料一饮而尽,瞬间进入清凉世界,所以电冰箱作为我国电器用品核心,其工作原理及其发展,不管在日常生活,甚至是企业发展,我国高科技新技术方面都是举足轻重。此次论文的目的,是在了解现有的电冰箱基础上,对其需要进行创新,提出新的改进方向,使电冰箱符合当代需要,更加智能化,更加具有实用性。所以我们就电冰箱查阅了大量的资料,全面的了解了电冰箱的制冷原理及其发展,更结合现在的一些问题,提出可以改进的方面。比较明确的得到了电冰箱的发展趋势的改进方向。 关键词:制冷原理绿色实用发展趋势 前言:依据我们提出的问题,我们了解了电冰箱的发展史,其制冷原理和基本工作的原理,讨论了当下电冰箱的使用性能,以及在实际生活中存在的一些问题和有待改进的工作点。比如使用寿命短,清洁不方便,电冰箱制作环节零散等问题,还有怎样改进技术让冰箱更绿色环保,从而得出了一些结论。 电冰箱的发明:让人难以相信的是,在中国古代早期就已经有了电冰箱的前身。虽然其实际功效与现代的电冰箱相比,相差甚远。但是其创造原因都是一样的——给食物保鲜。在原来如此落后的时代,能制造出如此精美,实用的东西,真心对我国古代的巧匠和发明家们感到由衷的敬佩之情。《周礼·天官·凌人》:“祭祀供冰鉴。”可见周代当时已有原始的冰箱,只是冰并不是一年里时时都有,特别是在炎热的夏季,冰可谓弥足珍贵。传世有不少清代晚期的木胎冰箱,多用红木、花梨、柏木等较为细腻的木料制成,此件为红木制品,仿竹编式样,制作精致。在看古代剧的时候我们可能常常看到这样的一幕,遥远的边疆,各个藩国为了向中原示好,经常会给皇帝们,或者他的嫔妃们进贡珍宝,或在炎热的夏天,用非常精美的特制的盒子装上容易腐坏的新鲜水果,例如荔枝,相信大家都不会陌生吧,那可能就是我们最容易理解的,可谓见识过的实实在在的“冰鉴”了。形制为大口小底,外观如斗形,铅叶镶里,底部有泄水小孔,结构类似木桶。冰

制冷机的原理

制冷机的原理 冰箱并不是“制造冷气的机器”,而是一种用来吸收食品中的热量的装置。它利用称为“制冷剂”的液体,将食品中的热量“抽取”出来并转移到冰箱外面。致冷剂通过冰箱的一系列装置流动,主要包括3 个基本的部件: 压缩机、冷凝器和蒸发器,并不断重复同一个制冷循环(近似卡诺循环)。 除少数环保冰箱外,现在普通家用冰箱的制冷剂大多还是氟利昂,它储存在冰箱的专用容器中。当冰箱开始运转时,电动机带动压缩机开始工作,吸入处于低压和常温状态下的氟利昂蒸气,将其压缩成为高温高压的蒸气。 这些处于高温高压状态下的氟利昂蒸气离开压缩机后被送往冷凝器。冷凝器是一种被多次弯曲的管子,称为“蛇形管”,一般是被安装在冰箱背后。由于进入冷凝器的氟利昂蒸气的温度比室温要高,热量就通过蛇形管的管壁向外散发,这样氟利昂蒸气的温度就降低了并从气态冷凝为液态,随后它离开冷凝器流向蒸发器。蒸发器由另一个蛇形管构成,同冰箱的内部接触。这个蛇形管比冷凝器的蛇形管要细一些,因此氟利昂的流动速度就加快了,随之而来的就是压力骤然下降这符合所谓的伯努利原理。 由于在蒸发器中压力急剧降低,氟利昂便剧烈蒸发,从液态变为气态,伴随这一过程的是温度降低。由于热量总是从较热的物体向较冷的物体上转移,所以冰箱中较热的食物就将热量转移到流动着氟利昂气体的蛇形管上,从而达到制冷的目的。 目前所有制冷的几个典型方法: 1、液体汽化制冷: 利用液体气化吸热原理。如: 蒸汽压缩式制冷、吸收式制冷、蒸汽喷射式、吸附式制冷。 2、气体膨胀制冷: 将高压气体做绝热膨胀,使其压力、温度下降,利用降温后的气来吸取被冷却物体的热量从而制冷。 3、热电制冷:

溴化锂吸收式制冷原理

溴化锂吸收式制冷原理 溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。 溴化锂的性质与食盐相似,属盐类。它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。 溴化锂吸收式制冷原理同蒸汽压缩式制冷原理有相同之处,都是利用液态制冷剂在低温、低压条件下,蒸发、气化吸收载冷剂(冷水)的热负荷,产生制冷效应。所不同的是,溴化锂吸收式制冷是利用“溴化 锂一水”组成的二元溶液为工质对,完成制冷循环的。 在溴化锂吸收式制冷机内循环的二元工质对中,水是制冷剂。在真空(绝对压力:870Pa)状态下蒸发,具有较低的蒸发温度(5℃),从而吸收载冷剂热负荷,使之温度降低,源源不断地输出低温冷水。 工质对中溴化锂水溶液则是吸收剂,可在常温和低温下强烈地吸收水蒸气,但在高温下又能将其吸收的水分释放出来。制冷剂在二元溶液工质对中,不断地被吸收或释放出来。吸收与释放周而复始,不断循环,因此,蒸发制冷循环也连续不断。制冷过程所需的热能可为蒸汽,也可利用废热,废汽,以及地下热水(75'C以上)。在燃油或天然气充足的地方,还可采用直燃型溴化锂吸收式制冷机制取低温水。这 些特征充分表现出溴化锂吸收式制冷机良好的经济性能,促进了溴化锂吸收式制冷机的发展。 因为溴化锂吸收式制冷机的制冷剂是水,制冷温度只能在o℃以上,一般不低于5℃,故溴化锂吸收式制冷机多用于空气调节工程作低温冷源,特别适用于大、中型空调工程中使用。溴化锂吸收式制冷机在某些生产工艺中也可用作低温冷却水。 第一节吸收式制冷的基本原理 一、吸收式制冷机基本工作原理 从热力学原理知道,任何液体工质在由液态向气态转化过程必然向周围吸收热量。在汽化时会吸收汽化热。水在一定压力下汽化,而又必然是相应的温度。而且汽化压力愈低,汽化温度也愈低。如一个大气压下水的汽化温度为100~C,而在o.05大气压时汽化温度为33℃等。如果我们能创造一个 压力很低的条件,让水在这个压力条件下汽化吸热,就可以得到相应的低温。 一定温度和浓度的溴化锂溶液的饱和压力比同温度的水的饱和蒸汽压力低得多。由于溴化锂溶液和水之间存在蒸汽压力差,溴化锂溶液即吸收水的蒸汽,使水的蒸汽压力降低,水则进一步蒸发并吸收热量,而使本身的温度降低到对应的较低蒸汽压力的蒸发温度,从而实现制冷。 蒸汽压缩式制冷机的工作循环由压缩、冷凝、节流、蒸发四个基本过程组成。吸收式制冷机的基本工作过程实际上也是这四个过程,不过在压缩过程中,蒸汽不是利用压缩机的机械压缩,而是使用另一种方法完成的。如图2—1所示,由蒸发器出来的低压制冷剂蒸汽先进人吸收器,成在吸收器中用一种液态吸收剂来吸收,以维持蒸发器内的低压,在吸收的过程中要放出大量的溶解热。热量由管内冷却水或其他冷却介质带走,然后用溶液泵将这一由吸收剂与制冷剂混合而成的溶液送人发生器。溶液在发

冰箱空调制冷基本原理

冰箱工作原理 我们知道任何物质在液化(气体变为液体)后都要放出热量,在气化(液体变为气体)时都要吸收热量,这是最普遍的物理现象。空调冰箱就是利用了这个道理,将制冷剂液化放出热量,然后再让他蒸发吸收热量。因此空调就有了室外机,目的是散热和其它主要功能,冰箱则散热器在冰箱外部。 作为制冷剂的物质通常常温下为气体,便于蒸发,而且沸点不能太低,否则压缩时液化不容易,还要要求无毒,无异味儿。常见的制冷剂为氨、氟里昂。氟里昂实际上就是卤代烷,常见的是卤代甲烷。例如一氟三氯甲烷、三氟一氯甲烷、二氟二氯甲烷等等。也就是甲烷的分子中的氢原子被氯和氟原子所取代,你可以自己组合出不同的物质。当然了,这种卤代烷一定要有氯原子和氟原子存在,不能全是氯也不能全是氟,而且烷烃中的氢原子全部被取代。倒不是说不存在这种物质,而是满足不了作为制冷剂的要求,例如四氯甲烷,常温下为液体,也就是四氯化碳,不能做制冷剂的。但是四氯化碳中的一个氯被氟取代,就可以做制冷剂。 制冷的过程是这样的: 首先压缩机将蒸发器来的气体制冷剂进行压缩,由于室温低于制冷剂的临界温度,当达到所需的压力后液化,液化时放出大量的热,这些热量通过散热管、散热片散发到空气中,也就是冰箱后面的散热管、空调室外机的风扇吹着的散热片。

提高压放出热量力,强制冷却,使制冷剂从气体转化为液体而放热。 液化后的制冷剂散热后,温度降低到接近室温,经过缓冲器后再通过毛细管进入蒸发器,毛细管很细,流着的是液体,到了蒸发器,空间突然增大,使得气体压力低,导致沸点降低,就不得不气化了,于是上演了气化吸热的一幕。然后蒸发器后面就是压缩机,压缩机会及时地抽取气体,制冷剂在蒸发器蒸发后变成了气体,再到压缩机压缩, 结果又放出热量变成了液体,成为一个循环。

制冷原理知识点总结

制冷原理及设备期末复习 有不全的大家相互补充 题型:填空20分;选择10分;判断10分;简答45分(5道);计算1道,带计算器。 绪论 实现人工制冷的方法(4大类,简单了解原理) 1.利用物质的相变来吸热制冷; 融化(固体—液体),气化(液体—气体),升华(固体—气体) 气化制冷(蒸气制冷): 包括蒸气压缩式制冷、吸收式制冷、蒸汽喷射式制冷、吸附式制冷。 2.利用气体膨胀产生低温 气体等熵膨胀时温度总是降低的,产生冷效应。 3.气体涡流制冷 高压气体经涡流管膨胀后,可分为冷热两股气流; 4.热电制冷(半导体制冷) 利用半导体的温差电效应实现的制冷。 根据制冷温度的不同,制冷技术可大体上划分三大类: 普通冷冻:>120K【我们只考普冷】 深度冷冻:120K~20K 低温和超低温:<20K。 t= (t, ℃; T, Kelvin 开)T=273+t 常用制冷的方法有:液体蒸发制冷循环必须具备以下四个基本过程:液体气化制冷制冷剂液体在低压下汽化产生低压蒸气,气体膨胀制冷将低压蒸气抽出并提高压力变成高压气,涡流管制冷将高压气冷凝成高压液体, 热电制冷高压液体再降低压力回到初始的低压状态。按照实现循环所采用的方式之不同,液体蒸发制冷有 蒸气压缩式制冷蒸气吸收式制冷蒸气喷射式制冷吸附式制冷等 蒸气压缩式制冷 系统组成:

1-压缩机2-冷凝器3-膨胀阀4-蒸发器组成的密闭系统。 工作原理:制冷剂在蒸发器中吸收被冷却对象的热量而蒸发,产生的低压蒸气被压缩机吸入,经压缩机压缩后制冷剂压力升高,压缩机排出的高压蒸气在冷凝器中被常温冷却介质冷却,凝结成高压液体。高压液体经膨胀阀节流,变成低压、低温湿蒸气,进入蒸发器,低压液体在蒸发器中再次汽化蒸发。如此周而复始。 蒸气吸收式制冷 系统组成: 发生器、吸收器、冷凝器、蒸发器、溶液热交换器、溶液泵、冷剂泵等 工质对:制冷剂与吸收剂常用:氨—水溶液溴化锂—水溶液 工作原理:Ⅰ.溴化锂溶液在发生器中被热源加热沸腾,产生出制冷剂蒸汽在冷凝器被冷凝成冷剂水。冷剂水经U型管节流进入蒸发器,在低压下蒸发,产生制冷效应。 Ⅱ.发生器中出来的浓溶液,经热交换器降温、降压后进入吸收器,与吸收器中的稀溶液混合为中间浓度的溶液。中间热度的溶液被吸收器泵输送并喷淋,吸收从蒸发器中产生的冷剂蒸汽,形成稀溶液。稀溶液由发生器泵输送到发生器,重新被热源加热,形成浓溶液。 氨水吸收式制冷循环工作原理: 在发生器中的氨水浓溶液被热源加热至沸腾,产生的蒸气(氨气中含有一小部分水蒸汽)经精馏塔精馏后(得到几乎是纯氨的蒸气),进入冷凝器放出热量后被冷凝成液体,经节流机构节流,进入蒸发器,低压液体制冷剂,吸收被冷却物体的热量而蒸发,达到制冷的目的,产生的低压蒸气进入吸收器。而发生器中发生后的稀溶液,降压后也进入吸收器,吸收由蒸发器来的制冷剂蒸气,浓溶液经溶液泵加压后送入发生器。如此不断循环。

太阳能吸收式制冷原理和特点

太阳能吸收式制冷原理和特点 太阳能吸收式制冷是利用溶液浓度的变化来获取冷量的装置,即制冷剂在一定压力下蒸发吸热。再利用吸收剂吸收制冷剂蒸汽。自蒸发器出来的低压蒸汽进入吸收器并被吸收剂强烈吸收,吸收过程中放出的热量被冷却水带走,形成的浓溶液由泵送入发生器中被热源加热后蒸发产生高压蒸汽进入冷凝器冷却,而稀溶液减压回流到吸收器完成一个循环。它相当于用吸收器和发生器代替压缩机,消耗的是热能。热源可以利用太阳能、低压蒸汽、热水、燃气等多种形式。 吸收式制冷系统的特点与所使用的制冷剂有关。常用于吸收式制冷机中的制冷剂大致可分为水系、氨系、乙醇系和氟里昂系四个大类。水系工质对是目前研究最热门的课题之一,对它的研究主要是针对现今大量生产的商用LiBr吸收式制冷机依然存在的易结晶、腐蚀性强及蒸发温度只能在零度以上等缺陷。氨系工质对中包括了最为古老的氨水工质对和近期开始受重视的以甲氨为制冷剂的工质对,由于氨水工质对具有互溶极强、液氨蒸发潜热大等优点,它至今仍被广泛用于各类吸收式制冷机。人们对氨水工质对的研究主要是针对它的一些致命的缺陷,如:COP较溴化锂小、工作压力高、具有一定的危险性、有毒、氨和水之间沸点相差不够大、需要精馏等。吸收式空调采用溴化锂或氨水 制冷机方案,虽然技术相对成熟,但系统成本比压缩式高,主要用于大型空调,如中央空调等。 太阳能吸收式制冷的研究现状及发展 太阳能吸收式制冷是最早发展起来的,起源于1932年,但因成本高,效率低,没什么商业价值。后来随着科技的进步,吸收式制冷研究逐渐得到了发展。由于1992年世界性能源危机的影响,吸收制冷受到了发达国家的重视,吸收式制冷产业也得到了普及和发展。 太阳能吸收式制冷由于利用太阳能,所以其发生温度低,即便采用特殊的集热器,也只有100℃多一些。因此,其制冷循环方式都是采用单效方式。再细分下去,有单效单级和单效双级两种。迄今为止,国外的太阳能制冷空调系统通常都采用热水型单级吸收式溴化锂制冷机。该类制冷机在热源温度足够高及冷却水温度比较低的场合,性能良好:若热源温度降低而冷却水温度较高,它的效率将大大下降,甚至不能正常制冷。因此国外太阳能空调制冷系统普遍采用高温运行的方式,有的甚至在120℃一13O℃下运行,需要采用聚光式集热器,这就影响了太阳能制冷空调的推广使用。单级吸收式制冷机还有一个很大的缺点,就是热源的可利用温差小,一般只有6℃一8℃,为了适应低温余热 和太阳能的利用,W.B.Ma等人对双级溴化锂一水吸收式制冷机进行了理论分析和初步的实验研究,指出双级溴化锂一水吸收式制冷机可有效利用太阳能,有着广阔的市场前景。这种新型的两级吸收式制冷机有两个显著的特点: 一是所要求的热源温度低,在75℃到85℃之间都可运行,当冷凝水温为32℃时,COP 值可达到0.38; 二是热源的可利用温差大,热源出口温度低至64℃时。此系统对热源温度有较宽的适应范围,有利于制冷机在较低的太阳辐射强度和不稳定的太阳能输入情况下,适应其引起的温度波动,实现稳定的运行。 陈滢等人提出了一种新型的单效双级吸收式制冷循环,该循环采用增大热源温差的思路,增加了一个发生器和一个换热器。模拟计算表明,其COP值可达到O.42—0.62之间,

冰箱压缩机原理

个人收集整理仅供参考学习 电冰箱的制冷原理 [实验目的]: 掌握冰箱压缩机的工作原理。 [实验原理]: 世界上的物质有三态:气态、固态和液态,在一定条件下三态可以相互转化。液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化吸热来制冷的,该种电冰箱由电动机提供机械能,通过压缩机对制冷系统作功,制冷系统利用低沸点的制冷剂,蒸发时,吸收汽化热的原理制成的。 电冰箱的喉管内,装有一种称为氟利昂:freon,俗称雪种的致冷剂。常用的一种为二氟二氯甲烷(CCL2F2),是一种无色无臭无毒的气体,沸点为29℃。氟利昂在气体状态时,被压缩器加压,加压后,经喉管流到电冰箱背部的冷凝器,借散热片散热(物质被压缩后,温度就会升高)后,冷凝而成液体。液体的氟里昂进入蒸发器的活门之后,由于脱离了压缩器的压力,就立即化为蒸汽,引致冰箱内部冷却。汽化后的氟里昂又被压缩器压回箱外的冷凝器散热,再变为液体,如此循环不息,把冰箱内的热能泵到箱外。 蒸气压缩式电冰箱制冷系统循环原理图见图。它由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成。其动力来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。 制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

冰箱制冷原理

家用电冰箱制冷原理 从低于环境温度的物体中吸取热量,并将其转移给环境介质的过程,称为制冷。 由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量(如电能,机械能等)的补偿过程。 借助制冷系统消耗一定的电能,利用物态变化过程中的吸热(液态→气态),放热(气态→液态)物理过程,强制热量由低温物体(冷柜内的食物)转至高温物体(室内空气)从而达到制冷的目的。 冰箱的制冷是一个热泵的原理,就是利用机械能,在冰箱保温的条件下,将热量从冰箱里面移出,这些热量在冰箱外面散去。 家用电冰箱制冷系统循环过程,压缩机将低温低压的制冷剂(R-600a或HFC-134a)气体吸入气缸,经过压缩机压缩,变成高温高压的气态R-600a或HFC-134a,并排到冷凝器内,在冷凝器内,高温高压的R600a或HFC-134a气体与温度较低的环境进行交换,温度降低并冷凝为液体;液体R-600a或HFC-134a通过毛细管节流,降低压力后进人蒸发器,在蒸发器内吸热汽化,(未汽化的暂留在储液管里),汽化后被吸回压缩机,重新压缩。如此周而复始,不断循环,使柜内温度降低。 整个制冷循环过程可分为4个阶段: (1)绝热压缩:压缩机将蒸发后的低温低压制冷剂吸入,这时气体的理想状态是充分汽化,无液滴,稍微过热,经压缩机活塞的急剧压缩,对气体所做的机械功转换为热,使之变成高温高压气体,此压缩过程很短,被升温气体的热量几乎没有传到外部,故此过程称为绝热压缩过程。 (2)等温压缩:压缩机将高温高压气态制冷剂送至冷凝器中冷却到其完全液化,这段时间放出冷凝潜热,在此过程中,因制冷剂温度不变,仅发生气一液状态变化,故称为等温压缩。在冷凝器末端,制冷剂全部液化后,温度有所下降,即为过冷。 在这一过程中,制冷剂通过蒸发器吸收的热量和压缩机活塞做功转换的热量已全部放出,这时已完成了将低温物体的热量送到高温的外界空气中的任务。 (3)绝热膨胀:液态制冷剂在毛细管中受到节流作用,使液体压力急剧降到蒸发压力,制冷剂在此过程中温度虽剧降,但因时间极为短暂,未能吸收外界的热量,故称绝热膨胀。 (4)等温膨胀:进入蒸发器的制冷剂迅速蒸发,不断从冷柜(冰箱)内吸收热量(蒸发潜热),直到液体完全汽化为止,在此过程中,制冷剂的温度恒定,故称为等温膨胀。 海尔变频冰箱的制冷原理 普通家用冰箱中的电机起动频繁、噪声大、寿命短、温度稳定性差、能耗高。变频冰箱带来功能的增加、性能的改善,而且具有明显的节能效果和降噪效果,同时整机寿命有明显提高。近年来国内家电厂商都在竞相开发。 2000年4月,科龙首推BCD-348WA/HP变频冰箱,具有助动开门、制冰功能等,被业内人士誉为“最成熟、最稳定”的冰箱。随后,海尔推出007系列衍生239DVC系列变频冰箱具有控温精确、制冷分立、多循环技术结合变频技术的独立控温、节能高效等优点。以海尔BCD-239DVC为例,介绍变频冰箱的制冷原理。 变频冰箱制冷系统组成: 图1是海尔变频冰箱制冷系统原理图。全系统由变频压缩机、冷凝器、过滤器、电磁阀、毛细管、蒸发器及控制器等构成。管路系统中,在能够反映制冷剂状态的关键部位设置了温度传感器,用以检测其温度。在制冷工作状态,制冷剂的工作流向如图2。

《制冷原理与设备》详细知识点

《制冷原理与设备》详细知识点 制冷原理与设备复习题 绪论 一、填空: 1接近0k为超低温冷冻。 2、人工制冷的方法包括(相变制冷)(气体绝热膨胀制冷)(气体涡流制冷)(热电制冷)几种。 3、蒸汽制冷包括(单级压缩蒸气制冷)(两级压缩蒸气制冷)(复叠式制冷循环)三种。 二、名词解释:人工制冷;制冷;制冷循环;热泵循环;制冷装置;制冷剂。 1. 人工制冷:用人工的方法,利用一定的机器设备,借助于消耗一定的能量不断将热量由低温物体转移给高温物体的连续过程。 2.制冷:从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质的过程称为制冷。 3.制冷循环:制冷剂在制冷系统中所经历的一系列热力过程总称为制冷循环 4.热泵循环:从环境介质中吸收热量,并将其转移给高于环境温度的加热对象的过程。 5.制冷装置:制冷机与消耗能量的设备结合在一起。 6.制冷剂:制冷机使用的工作介质。

三、问答: 制冷原理与设备的主要内容有哪些? 制冷原理的主要内容: 1.从热力学的观点来分析和研究制冷循环的理论和应用; 2.介绍制冷剂、载冷剂及润滑油等的性质及应用。 3.介绍制冷机器、换热器、各种辅助设备的工作原理、结构、作用、型号表示等。 第一章制冷的热力学基础 一、填空: 1、lp-h图上有_压强_、_温度_、_比焓_、__比熵_、_干度_、比体积_六个状态参数。 2、一个最简单的蒸气压缩式制冷循环由_压缩机__、__蒸发器_、_节流阀、_冷凝器___几大件组成。 3、一个最简单的蒸气压缩式制冷循环由_绝热压缩、_等压吸热_、_等压放热_、__绝热节流_几个过程组成。 4、在制冷技术范围内常用的制冷方法有_相变制冷_、__气体绝热膨胀制冷_、_气体涡流制冷_、_热电制冷_几种。 5、气体膨胀有__高压气体经膨胀机膨胀_、_气体经节流阀膨胀_、_绝热放气制冷三种形式。 6、实际气体节流会产生零效应_、热效应_、冷效应_三种效应。制冷是应用气体节流的_冷_效应。理想气体节流后温度_不变_。 二、名词解释:

冰箱空调制冷基本原理.

冰箱工作原理 我们知道任何物质在液化后都要放出热量,在气化时都要吸收热量,这是最普遍的物理现象。空调冰箱就是利用了这个道理,将制冷剂液化放出热量,然后再让他蒸发吸收热量。液化放出热量的位置和蒸发吸收热量的位置不能在一处,否则没有任何效果。因此空调就有了室外机,目的是散热和其它主要功能,冰箱则散热器在冰箱外部。 那么怎么能实现制冷剂液化-气化呢?我们知道,气体物质在它的临界温度下,当压力达到一定值的时候,就会液化。所谓的临界温度就是在这个温度之上,无论采用多高的压力都不能使他液化。当温度高于气体物质在某个压力下的沸点之上时就会发生气化,气化时吸收热量,吸收的热量从环境中获得,从而实现制冷。 用于上述实现制冷的气体物质就是制冷剂。作为制冷剂的物质通常常温下为气体,便于蒸发,而且临界温度不能太低,否则压缩时液化不容易。还要要求无毒,无异味儿。常见的制冷剂为氨、氟(这个字念服笨蛋才念佛呢里昂。 氟里昂实际上很多种物质的总称,是一种系列产品。那么他是什么物质呢?实际上就是卤代烷,常见的是卤代甲烷。例如一氟三氯甲烷、三氟一氯甲烷、二氟二氯甲烷等等。也就是甲烷的分子中的氢原子被氯和氟原子所取代,你可以自己组合出不同的物质。当然了,这种卤代烷一定要有氯原子和氟原子存在,不能全是氯也不能全是氟,而且烷烃中的氢原子全部被取代。倒不是说不存在这种物质,而是满足不了作为制冷剂的要求,例如四氯甲烷,常温下为液体,也就是四氯化碳,不能做制冷剂的。但是四氯化碳中的一个氯被氟取代,就可以做制冷剂。 制冷的过程是这样的: 首先压缩机将蒸发器来的气体制冷剂进行压缩,由于室温低于制冷剂的临界温度,当达到所需的压力后液化,液化时放出大量的热,这些热量通过散热管、散热片散发到空气中,也就是冰箱后面的散热管、空调室外机的风扇吹着的散热片。

吸附式制冷

固体吸附式制冷可采用太阳能或余热等低品位热源作为驱动热源,不仅缓解电力的紧张供应和能源危机,而且能有效的利用大量的低品位热源。另外,吸附式制冷不采用氯氟烃类制冷剂,无CFCS问题,也无温室效应作用,是一种环境友好型制冷方式。 与蒸气压缩式制冷系统相比,吸附式制冷具有结构简单,一次性投资少,运行费用低,使用寿命长,无噪音,无环境污染,能有效利用低品位热源等一系列优点;与吸收式制冷系统相比,吸附式制冷系统不存在结晶和分馏问题,且能用于震动,倾颠或旋转等场合。 两床连续型吸附式制冷系统主要由两部分组成。第一部分包括两个吸附床(解吸床和吸附床),两床的功能相当于传统制冷中的压缩机。解吸态床向冷凝器排放高温高压的制冷剂蒸气,吸附床则吸附蒸发器中低温低压的蒸气,使制冷剂蒸气在解吸床中不断蒸发制冷。因此吸附式制冷系统设计的核心是吸附床,它的性能好坏直接影响了整个系统的功能。第二部分包括冷凝器,蒸发器及流量调节阀,冷却水系统和冷冻水系统,与普通的制冷系统相类似。从解吸态床解吸出来的高温高压的制冷剂蒸气在冷凝器中被冷凝后,经过流量调节阀,变成低温低压的液体,进入蒸发器蒸发制冷,被蒸发的制冷剂蒸气重新被吸附态床吸收。 1 吸附床设计的要求 a.传热性能好,和流体的传热迅速,同时能够有效地克服吸附剂低导热系数的影响,这样才能保证吸附床及时补充解吸过程所需要的解吸热并及时带走吸附过程所放出的吸附热,它是使吸附床具有高性能的必要条件。 b.传质迅速,吸附质扩散通道畅通,这样才能保证吸附床吸附过程的吸附速度和解吸过程的解吸速度,缩短循环周期,提高单位工质的制冷功率。 c.吸附床材料以及热媒流体本身的热容和床内填充吸附剂的热容之比也决定了吸附式制冷系统的性能。这主要是由于吸附床材料本身的加热和冷却,会造成大量的系统热量损失,严重影响了系统的性能。 上述三点都是非常重要的。而这三点常常是相互矛盾、相互制约的,要强化吸附床的传热,必然要加入一些必要的导热片或增加必要的传热通道,这样也就必然导致了吸附床金属热容比的增加;要强化吸附床的传热,就必须要提高吸附剂的导热系数,而这样却影响了吸附床内的传质。 2 结构 床身由上下两个吸附床复合而成,每个吸附床上表面是一个高效太阳能集热器,为避免它们之间的相互热作用,两个吸附床之间用绝热层隔开。该吸附床可用金属合金制造,这样有利于保持吸附床的真空度且增加传热面积。吸附床内壁设有一个 U型水槽,当下床吸附时,通以冷媒水冷却。当上下两床分别达到脱附/ 吸附饱和时,通过转动轴旋转180o,上下两床互换位置,仍然保持上床解吸,下床吸附,从而达到连续循环。(1)床内结构特点 传质通道采用蜂窝状分布,有利于吸附过程吸附剂对制冷剂的吸收。烧结成块状的吸附剂除了与太阳能集热器结合的那一面外,其它三面都有冷却水槽。当吸附床吸附制冷剂时,打开水槽阀门,通入冷却水,带走吸附热,这样一来可以加快吸附过程,从而缩短整个循环的时间。

制冷原理与压焓图图文详解

制冷原理与压焓图图文详解 发布时间:2018-04-16 11:33 ℉与℃的换算 F=9/5C+32,C=5/9(F-32) 式中 F-华氏温度,C-摄氏温度。 显热:显热即指引起物质温度变化的热量;如果加热某种物质,使其温度升高,则加入的热量称为显热;同样地,如果冷却某种物质,使其温度降低,则释放的热量也称为显热;显热可以通过温度的变化测量出来。 潜热:使物质状态发生改变,而不改变温度的热量称为潜热。这种物质“状态的改变”可以是固态和液态之间的转变,也可以是液态和气态之间的转变。 制冷是释放热量的过程。 制冷机组的重要组成部分有哪些: 1)压缩机 2)冷凝器 3)膨胀阀 4)蒸发器 5)制冷剂 压缩机有两大重要作用: 1)使制冷剂在系统中循环; 2)将低压的制冷剂蒸气压缩至较高的冷凝压力,以便于凝结成液体。 冷凝器提供了换热表面和贮存空间用于: 1)将潜热和显热从高压制冷剂传递给冷却水; 2)贮存足够的液体在冷凝器和膨胀阀之间形成液封阻隔蒸气。 膨胀阀的作用? 膨胀阀是截流元件的一种。来自冷凝器的高压液体流经膨胀阀后转变成低压的气/液体混合物。 蒸发器中提供换热表面,使低压制冷剂液体蒸发成制冷剂蒸气。在液态向气态的转变过程中吸收潜热。这些潜热来自被冷却的载冷剂(冷冻水)。 制冷剂是一种物质,它可以在一定的温度下蒸发,从液态转变成气态,同时吸收热量达到制冷目的。通常要得到70 ~150 ℉冷冻水的话,蒸发温度通常在40 ~80 ℉。该蒸发过程的压力一定要合理。制冷剂必须根据实际的温度需要来选择。饱和蒸气:蒸气和液体之间存在着相互的联系。 饱和点:指某种物质在指定压力下的沸腾温度。 饱和:某种物质在其饱和温度和压力下,处于饱和的气/液混合状态。

《制冷原理与设备》详细知识点解析

制冷原理与设备复习题 绪论 一、填空: 1、人工制冷温度范围的划分为:环境温度~-153.35为普通冷冻;-153.35℃~-268.92℃为低温冷冻;-268.92℃~接近0k为超低温冷冻。 2、人工制冷的方法包括(相变制冷)(气体绝热膨胀制冷)(气体涡流制冷)(热电制冷)几种。 3、蒸汽制冷包括(单级压缩蒸气制冷)(两级压缩蒸气制冷)(复叠式制冷循环)三种。 二、名词解释:人工制冷;制冷;制冷循环;热泵循环;制冷装置;制冷剂。 1.人工制冷:用人工的方法,利用一定的机器设备,借助于消耗一定的能量不断将热量由低温物体转移给高温物体的连续过程。 2.制冷:从低于环境温度的空间或物体中吸取热量,并将其转移给环境介质的过程称为制冷。 3.制冷循环:制冷剂在制冷系统中所经历的一系列热力过程总称为制冷循环 4.热泵循环:从环境介质中吸收热量,并将其转移给高于环境温度的加热对象的过程。 5.制冷装置:制冷机与消耗能量的设备结合在一起。 6.制冷剂:制冷机使用的工作介质。 三、问答: 制冷原理与设备的主要内容有哪些? 制冷原理的主要内容: 1.从热力学的观点来分析和研究制冷循环的理论和应用; 2.介绍制冷剂、载冷剂及润滑油等的性质及应用。 3.介绍制冷机器、换热器、各种辅助设备的工作原理、结构、作用、型号表示等。 第一章制冷的热力学基础 一、填空: 1、lp-h图上有_压强_、_温度_、_比焓_、__比熵_、_干度_、比体积_六个状态参数。 2、一个最简单的蒸气压缩式制冷循环由_压缩机__、__蒸发器_、_节流阀、_冷凝器___几大件组成。 3、一个最简单的蒸气压缩式制冷循环由_绝热压缩、_等压吸热_、_等压放热_、__绝热节流_几个过程组成。 4、在制冷技术范围内常用的制冷方法有_相变制冷_、__气体绝热膨胀制冷_、_气体涡流制冷_、_热电制冷_几种。 5、气体膨胀有__高压气体经膨胀机膨胀_、_气体经节流阀膨胀_、_绝热放气制冷三种形式。 6、实际气体节流会产生零效应_、热效应_、冷效应_三种效应。制冷是应用气体节流的_冷_效应。理想气体节流后温度_不变_。 二、名词解释: 相变制冷;气体绝热膨胀制冷;气体涡流制冷;热电制冷;制冷系数;热力完善度;热力系数; 洛伦兹循环;逆向卡诺循环; 1.相变制冷:利用液体在低温下的蒸发过程或固体在低温下的融化或升华过程从被冷却的物体吸取热量以制取冷量。 2.气体绝热膨胀制冷:高压气体经绝热膨胀以达到低温,并利用膨胀后的气体在低压下的复热过程来制冷 3.气体涡流制冷:高压气体经涡流管膨胀后即可分离为热、冷两股气流,利用冷气流的复热过程即可制冷。4.热电制冷:令直流电通过半导体热电堆,即可在一段产生冷效应,在另一端产生热效应。 5制冷系数:消耗单位功所获得的制冷量的值,称为制冷系数。ε=q。/w。 6.热力完善度:实际循环的制冷系数与工作于相同温度范围内的逆向卡诺循环的制冷系数之比。其值恒小于1。 7.热力系数:获得的制冷量与消耗的热量之比。用ζ0表示 8.洛仑兹循环:在热源温度变化的条件下,由两个和热源之间无温差的热交换过程及两个等熵过程组成的逆向可逆循环是消耗功最小的循环,即制冷系数最高的循环。 9.逆向卡诺循环:当高温热源和低温热源的温度不变时,具有两个可逆的等温过程和两个可逆的绝热过程组成的

相关主题
文本预览
相关文档 最新文档