当前位置:文档之家› 中考数学(圆的综合提高练习题)压轴题训练含答案

中考数学(圆的综合提高练习题)压轴题训练含答案

中考数学(圆的综合提高练习题)压轴题训练含答案
中考数学(圆的综合提高练习题)压轴题训练含答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,在△ABC中,AB=AC,以AB为直径作⊙O,⊙O交BC于点D,交CA的延长线于点E.过点D作DF⊥AC,垂足为F.

(1)求证:DF为⊙O的切线;

(2)若AB=4,∠C=30°,求劣弧BE的长.

【答案】(1)证明见解析(2)4 3

【解析】

分析:(1)连接AD、OD,根据直径所对的圆周角为直角,可得∠ADB=90°,然后根据等腰三角形的性质求出BD=CD,再根据中位线的性质求出OD⊥DF,进而根据切线的判定证明即可;

(2)连接OE,根据三角形的外角求出∠BAE的度数,然后根据圆周角定理求出∠BOE的度数,根据弧长公式求解即可.

详解:(1)连接AD、OD.∵AB是直径,∴∠ADB=90°.

∵AB=AC,∴BD=CD,

又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,

∵DF⊥AC,∴OD⊥DF

即∠ODF=90°.∴DF为⊙O的切线;

(2)连接OE.∵AB=AC,∴∠B=∠C=30°,∴∠BAE=60°,

∵∠BOE=2∠BAE,∴∠BOE=120°,

∴=·4π=π.

点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、圆周角定理,灵活添加辅助线是解题关键.

2.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.

(1)求证:DE是⊙O的切线;

(2)求CE的长;

(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.

【答案】(1)证明见解析(2)33)4π

【解析】

【分析】

(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;

(2)如图2,连接BF,根据已知可推导得出DE=1

2

BF,CE=EF,根据∠A=30°,AB=16,可

得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF?AE,即42=CE?(16﹣CE),继而可求得CE长;

(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得BG的长度.

【详解】

(1)如图1,连接AD,OD;

∵AB为⊙O的直径,

∴∠ADB=90°,即AD⊥BC,

∵AB=AC,

∴BD=DC,

∵OA=OB,

∴OD∥AC,

∵DE⊥AC,

∴DE⊥OD,

∴∠ODE=∠DEA=90°,

∴DE为⊙O的切线;

(2)如图2,连接BF,

∵AB为⊙O的直径,

∴∠AFB=90°,

∴BF∥DE,

∵CD=BD,

∴DE=

1

2

BF ,CE=EF , ∵∠A=30°,AB=16, ∴BF=8, ∴DE=4,

∵DE 为⊙O 的切线, ∴ED 2=EF?AE ,

∴42=CE?(16﹣CE ),

∴CE=8﹣43,CE=8+43(不合题意舍去); (3)如图3,连接OG ,连接AD , ∵BG ∥DF , ∴∠CBG=∠CDF=30°, ∵AB=AC , ∴∠ABC=∠C=75°, ∴∠OBG=75°﹣30°=45°, ∵OG=OB ,

∴∠OGB=∠OBG=45°, ∴∠BOG=90°, ∴BG 的长度=

908

180

π??=4π.

【点睛】

本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.

3.如图,在ABC 中,90ACB ∠=,BAC ∠的平分线AD 交BC 于点D ,过点D 作

DE AD ⊥交AB 于点E ,以AE 为直径作O .

()1求证:BC 是O 的切线;

()2若3AC =,4BC =,求tan EDB ∠的值.

【答案】(1)见解析;(2)1tan 2

EDB ∠=. 【解析】 【分析】

()1连接OD ,如图,先证明OD//AC ,再利用AC BC ⊥得到OD BC ⊥,然后根据切线

的判定定理得到结论;

()2先利用勾股定理计算出AB 5=,设

O 的半径为r ,则OA OD r ==,OB 5r =-,

再证明BDO ∽BCA ,利用相似比得到r :()35r =-:5,解得15

r 8

=

,接着利用勾股定理计算5BD 2=

,则3CD 2=,利用正切定理得1

tan 12

∠=,然后证明1EDB ∠∠=,从而得到tan EDB ∠的值.

【详解】

()1证明:连接OD ,如图,

AD 平分BAC ∠,

12∴∠=∠,

OA OD =, 23∴∠=∠, 13∴∠=∠, //OD AC ∴, AC BC ⊥, OD BC ∴⊥,

BC ∴是O 的切线;

()2解:在Rt

ACB 中,22345AB =+=,

O 的半径为r ,则OA OD r ==,5OB r =-,

//OD AC ,

BDO ∴∽BCA ,

OD ∴:AC BO =:BA ,

即r :()35r =-:5,解得158

r =

, 158OD ∴=

,258

OB =, 在Rt ODB 中,2

2

5

2

BD OB OD =-=

, 32

CD BC BD ∴=-=

, 在Rt ACD 中,

3

12tan 132

CD AC ∠===

, AE 为直径,

90ADE ∴∠=, 90EDB ADC ∴∠+∠=, 190ADC ∠+∠=,

1EDB ∴∠=∠,

1

tan 2

EDB ∴∠=.

【点睛】

本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;也考查了圆周角定理和解直角三角形.

4.如图,已知Rt △ABC 中,C=90°,O 在AC 上,以OC 为半径作⊙O ,切AB 于D 点,且BC=BD .

(1)求证:AB 为⊙O 的切线; (2)若BC=6,sinA=

3

5

,求⊙O 的半径; (3)在(2)的条件下,P 点在⊙O 上为一动点,求BP 的最大值与最小值.

【答案】(1)连OD,证明略;(2)半径为3;(3)最大值35+3 ,35-3.【解析】

分析:(1)连接OD,OB,证明△ODB≌△OCB即可.

(2)由sinA=3

5

且BC=6可知,AB=10且cosA=

4

5

,然后求出OD的长度即可.

(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.

详解:(1)如图:连接OD、OB.

在△ODB和△OCB中:

OD=OC,OB=OB,BC=BD;

∴△ODB≌△OCB(SSS).

∴∠ODB=∠C=90°.

∴AB为⊙O的切线.

(2)如图:

∵sinA=3

5,∴

CB3

AB5

,

∵BC=6,∴AB=10,∵BD=BC=6,

∴AD=AB-BD=4,

∵sinA=3

5,∴cosA=

4

5

∴OA=5,∴OD=3,

即⊙O的半径为:3.

(3)如图:连接OB,交⊙O为点E、F,

由三角形的三边关系可知:

当P点与E点重合时,PB取最小值.

由(2)可知:OD=3,DB=6,

∴OB=22

+=.

3635

∴PB=OB-OE=353

-.

当P点与F点重合时,PB去最大值,

PB=OP+OB=3+35.

点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.

5.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且

x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.

(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角

为;

(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;

(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.

【答案】(1)60°;(2)y=x+1或y=﹣x+3;(3)1≤m≤5或﹣5≤m≤﹣1

【解析】

分析:(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;

(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(﹣2,5),易得直线CD的表达式为:y=x+1或y=﹣x+3;

(3)分两种情况:

①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;

②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,同理可得结论.

详解:(1)∵点A(2,0),B(0,∴OA=2,OB.在Rt△AOB中,由勾

股定理得:AB,∴∠ABO=30°.

∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°.

∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°.故答案为:60°;

(2)如图2.

∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.

过点C作CE⊥DE于E,∴D(4,5)或(﹣2,5),∴直线CD的表达式为:y=x+1或y=﹣x+3;

(3)分两种情况:

①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3.

∵⊙O

,且△OQ'D是等腰直角三角形,∴OD OQ'=2,∴P'D=3﹣2=1.

∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,

∴AB=3+2=5.

∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;

②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4.

∵⊙O,且△OQ'D是等腰直角三角形,∴OD'=2,∴BD=3﹣2=1.

∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,

∴AB=3+2=5.

∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;

综上所述:m的取值范围是1≤m≤5或﹣5≤m≤﹣1.

点睛:本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P ,Q 的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.

6.如图1

O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D .

()1如图2,当//PD AB 时,求PD 的长;

()2如图3,当DC AC =时,延长AB 至点E ,使1

2

BE AB =

,连接DE . ①求证:DE 是O 的切线;

②求PC 的长.

【答案】(1)262)333①见解析,②.

【解析】

分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长;

()2①首先得出

OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即

可;

②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案.

详解:()1如图2,连接OD ,

//OP PD PD AB ⊥,,

90POB ∴∠=,

O 的直径12AB =,

6OB OD ∴==,

在Rt POB 中,30ABC ∠=,

3

tan30623OP OB ∴=?=?

=, 在Rt POD 中,

22226(23)26PD OD OP =-=-=;

()2①证明:如图3,连接OD ,交CB 于点F ,连接BD ,

DC AC =,

30DBC ABC ∴∠=∠=, 60ABD ∴∠=,

OB OD =,

OBD ∴是等边三角形, OD FB ∴⊥,

1

2

BE AB =,

OB BE ∴=, //BF ED ∴,

90ODE OFB ∴∠=∠=,

DE ∴是O 的切线;

②由①知,OD BC ⊥,

3

cos306332

CF FB OB ∴==?=?

=, 在Rt POD 中,OF DF =,

1

3(2

PF DO ∴=

=直角三角形斜边上的中线,等于斜边的一半), 333CP CF PF ∴=-=-.

点睛:此题主要考查了圆的综合以及直角三角形的性质和锐角三角函数关系,正确得出

OBD 是等边三角形是解题关键.

7.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E

(1)判断直线PD 是否为⊙O 的切线,并说明理由; (2)如果∠BED=60°,PD=3,求PA 的长;

(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析. 【解析】 【分析】

(1)连接OD ,由AB 是圆O 的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD 为⊙O 的切线;

(2)根据BE 是⊙O 的切线,则∠EBA=90°,即可求得∠P=30°,再由PD 为⊙O 的切线,得∠PDO=90°,根据三角函数的定义求得OD ,由勾股定理得OP ,即可得出PA ;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF ,由AB 是圆O 的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE 是等边三角形.进而证出四边形DFBE 为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,3

∴0 tan30

OD

PD

=,解得OD=1,

∴22

PO PD OD

+,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,

∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.

8.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)

(1)在如图中,过点作边上的高.

(2)在如图中,过点作的切线,与交于点.

【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】

【分析】

(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.

(2)连接OF交BC于Q,连接PQ即为所求.

【详解】

(1)如图1所示.(答案不唯一)

(2)如图2所示.(答案不唯一)

【点睛】

本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

9.如图,在ABC △中,10AC BC ==,3

cos 5

C =,点P 是BC 边上一动点(不与点,A C 重合),以PA 长为半径的

P 与边AB 的另一个交点为D ,过点D 作DE CB ⊥于点E .

()1当P 与边BC 相切时,求P 的半径;

()2联结BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,

并直接写出x 的取值范围;

()3在()2的条件下,当以PE 长为直径的

Q 与P 相交于AC 边上的点G 时,求相交

所得的公共弦的长.

【答案】(1)409;(2))2

5880

010x x x y x -+=<<;(3)105- 【解析】 【分析】

(1)设⊙P 与边BC 相切的切点为H ,圆的半径为R ,连接HP ,则HP ⊥BC ,cosC=3

5

,则sinC=

45,sinC=

HP CP =R 10R -=4

5

,即可求解;

(2)PD∥BE

,则

EB

PD

BF

PF

,即:2

2

4880

5

x x x y

x y

--+-

=,即可求解;

(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=45,即可求解.

【详解】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,

连接HP,则HP⊥BC,cosC=

3

5

,则sinC=

3

5

sinC=

HP

CP

=

R

10R

-

=

4

5

,解得:R=

40

9

(2)在△ABC中,AC=BC=10,cosC=

3

5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,

则BH=ACsinC=8,

同理可得:

CH=6,HA=4,5tan∠()2

2

84

x

+-2880

x x

-+

25

,则5

25

如下图所示,

PA=PD ,∴∠PAD=∠CAB=∠CBA=β, tanβ=2,则cosβ=

5,sinβ=

5, EB=BDcosβ=(45-25

x )×5=4-25x ,

∴PD ∥BE ,

∴EB PD =BF

PF

,即:22

48805x x x y x

--+-=,

整理得:y=()2

5x x 8x 80

0x 103x 20

-+<<+;

(3)以EP 为直径作圆Q 如下图所示,

两个圆交于点G ,则PG=PQ ,即两个圆的半径相等,则两圆另外一个交点为D ,GD 为相交所得的公共弦, ∵点Q 时弧GD 的中点, ∴DG ⊥EP , ∵AG 是圆P 的直径, ∴∠GDA=90°, ∴EP ∥BD ,

由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG=EP=BD ,

∴5

设圆的半径为r,在△ADG中,

AD=2rcosβ=

5,DG=

5

,AG=2r,

5+2r=45,解得:2r=

51

则:DG=

5

=10-25,

相交所得的公共弦的长为10-25.

【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

10.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.

(1)求证:DF是⊙O的切线;

(2)若AD=DP,OB=3,求BD的长度;

(3)若DE=4,AE=8,求线段EG的长.

【答案】(1)证明见解析(2)π(3)13

【解析】

试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;

(2)易得∠BOD=60°,再由弧长公式求解即可;

(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.

试题解析:(1)证明:连接OD,如图1所示:

∵OA=OD,

∴∠DAB=∠ADO,

∵∠DAF=∠DAB,

∴∠ADO=∠DAF,

∴OD∥AF,

又∵DF⊥AF,

∴DF⊥OD,

∴DF是⊙O的切线;

(2)∵AD=DP

∴∠P=∠DAF=∠DAB =x0

∴∠P+∠DAF+∠DAB =3x o=90O

∴x0=300

∴∠BOD=60°,

∴BD的长度=π

(3)解:连接DG,如图2所示:

∵AB⊥CD,

∴DE=CE=4,

∴CD=DE+CE=8,

设OD=OA=x,则OE=8﹣x,

在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,

解得:x=5,

∴CG=2OA=10,

∵CG是⊙O的直径,

∴∠CDG=90°,

∴DG=2222

-=-=6,

108

CG CD

∴EG=2222

+=+=213.

64

DG DE

2020上海中考数学压轴题专项训练

1文档来源为:从网络收集整理.word 版本可编辑. 24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得 1, 1643 c b c =-?? ++=-?, ………………………………………………………………(1分) 解,得9 ,12b c =-=- …………………………………………………………………(1分) 所以抛物线的解析式为29 12y x x =- - …………………………………………… (1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5AOH OBC ∠=∠= ……………………………(1分) ∴4sin 5AH OA AOH =∠= ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511AH ABO BH ∠==÷= ………………………………(1分) (3)直线AB 的解析式为1 12y x =--, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分) 所以符合题意的点N 有4 个35 (22),(22),(1,),(3,)22 --+--- ……………………………………………………………………………………(1分) 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5

(完整版)吉林省中考数学压轴题汇编,推荐文档

2003 年---2011 年吉林省中考数学压轴题 28.(2011 年吉林省)如图,梯形ABCD 中,AD∥BC,∠BAD=90°,CE⊥AD 于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B 同时出发,运动速度均为1cm/s,动点P 沿A-B--C--E 的方向运动,到点E 停止;动点Q 沿B--C--E--D 的方向运动,到点D 停止,设运动时间为xs,△PAQ 的面积为ycm2,(这里规定:线段是面积为0 的三角形) 解答下列问题: 9 (1)当x=2s 时,y= cm2;当x= s 时,y= cm2. 2 (2)当5≤x≤14 时,求y 与x 之间的函数关系式. 4 (3)当动点P 在线段BC 上运动时,求出y= S 梯形ABCD 时x 的值. 15 (4)直接写出在整个运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值. 28.(2010 年吉林省)如图,在等腰梯形ABCD 中,AD∥BC,AE⊥BC 于点E.DF⊥BC 于点F.AD=2cm,BC=6cm,AE=4cm.点P、Q 分别在线段AE、DF 上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB 所围成的封闭图形记为M,若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm.解答下列问题: (1)直接写出当x=3 时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积.

中考数学填空压轴题大全

中考数学填空压轴题大 全 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-

2017全国各地中考数学压轴题汇编之填空题4 1.(2017贵州六盘水)计算1+4+9+16+25+……的前29项的和是. 【答案】8555, 【解析】由题意可知1+4+9+16+25+……的前29项的和即为:12+22+32+42+52+…+292.∵有规律:21(11)(211)116+?+== ,222(21)(221) 1256 +?++==, 2223(31)(231)123146+?+++== ,……,2222(1)(21) 123146 n n n n ++++++==…. ∴222229(291)(2291) 123296 +?+++++= (8555) 2.(2017贵州毕节)观察下列运算过程: 计算:1+2+22+…+210.. 解:设S =1+2+22+…+210,① ①×2得 2S =2+22+23+…+211,② ②-①,得 S =211-1. 所以,1+2+22+…+210=211-1. 运用上面的计算方法计算:1+3+32+…+32017=______________. 【答案】201831 2 -, 【解析】设S =1+3+32+…+32017,① ①×3得 3S =3+32+33+…+32018,② ②-①,得 2S =32018-1. 所以,1+3+32 +…+3 2017 =2018312 -.

3.(2017内蒙古赤峰)在平面直角坐标系中,点P (x ,y )经过某种变换后得到点 P '(-y +1,x +2),我们把点P '(-y +1,x +2)叫做点P (x ,y )的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…P n 、…,若点P 1的坐标为(2,0),则点P 2017的坐标为. 【答案】(2,0), 【解析】根据新定义,得P 1(2,0)的终结点为P 2(1,4),P 2(1,4)的终结点为P 3(-3,3),P 3(-3,3)的终结点为P 4(-2,-1),P 4(-2,-1)的终结点为P 5(2,0), P 5(2,0)的终结点为P 4(1,4),…… 观察发现,4次变换为一循环,2017÷4=504…余1.故点P 2017的坐标为(2,0). 4.(2017广西百色)阅读理解:用“十字相乘法”分解因式的方法. (1)二次项系数212=?; (2)常数项3131(3)-=-?=?-,验算:“交叉相乘之和”; (3)发现第③个“交叉相乘之和”的结果1(3)211?-+?=,等于一次项系数-1,即:22(x 1)(2x 3)232323x x x x x +-=-+-=--,则223(x 1)(2x 3)x x --=+-,像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法,仿照以上方法,分解因式:23512x x +-=______. 【答案】(x +3)(3x -4). 【解析】如图. 5.(2017湖北黄石)观察下列各式: …… 按以上规律,写出第n 个式子的计算结果n 为正整数).(写出最简计算结果即可) 【答案】 1 n n +,

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学压轴题 易错题难题专项训练检测试题

一、中考数学压轴题 1.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点. (1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是 O 一点,1cm OM =. ①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm . 2.如图1,在 O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO , AD AB =. (1)求证:2CAO CDB ∠=∠ (2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE += (3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长. 3.已知抛物线2 17 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.

4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中, DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积. 5.如图,在等边ABC ?中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接 BE ,DE . (1)如图1,若310DE =,23BC =,求CE 的长; (2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且 DF CD =,求证:12 AB EF =; (3)在(2)的条件下,若45AED ∠=?直接写出线段BD ,EF ,ED 的等量关系 6.如图,90EOF ∠=?,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =, 3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,

2019年云南省中考数学试题(解析版)

2019年云南省中考数学试卷 一、填空题(本大题共6小题,每小题3分,共18分) 1.(3分)若零上8℃记作+8℃,则零下6℃记作℃. 2.(3分)分解因式:x2﹣2x+1=. 3.(3分)如图,若AB∥CD,∠1=40度,则∠2=度. 4.(3分)若点(3,5)在反比例函数y=(k≠0)的图象上,则k=. 5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图: 根据以上统计图提供的信息,则D等级这一组人数较多的班是. 6.(3分)在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分) 7.(4分)下列图形既是轴对称图形,又是中心对称图形的是() A.B.C.D.

8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为() A.68.8×104B.0.688×106C.6.88×105D.6.88×106 9.(4分)一个十二边形的内角和等于() A.2160°B.2080°C.1980°D.1800° 10.(4分)要使有意义,则x的取值范围为() A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣1 11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π 12.(4分)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1 C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1 13.(4分)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是() A.4 B.6.25 C.7.5 D.9 14.(4分)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2 三、解答题(本大共9小题,共70分) 15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1. 16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

备战中考数学圆的综合-经典压轴题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积. 【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3. 【解析】 试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切. (2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论. (3)连接BD,由AG2=AF?AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案. 试题解析:解:(1)PA与⊙O相切.理由如下: 如答图1,连接CD, ∵AD为⊙O的直径,∴∠ACD=90°. ∴∠D+∠CAD=90°. ∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D. ∴∠PAC+∠CAD=90°,即DA⊥PA. ∵点A在圆上, ∴PA与⊙O相切.

(2)证明:如答图2,连接BG , ∵AD 为⊙O 的直径,CG ⊥AD ,∴AC AD =.∴∠AGF=∠ABG. ∵∠GAF=∠BAG ,∴△AGF ∽△ABG. ∴AG :AB=AF :AG. ∴AG 2=AF?AB. (3)如答图3,连接BD , ∵AD 是直径,∴∠ABD=90°. ∵AG 2=AF?AB ,55∴5 ∵CG ⊥AD ,∴∠AEF=∠ABD=90°. ∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴ AE AF AB AD =545=,解得:AE=2. ∴221EF AF AE = -=. ∵224EG AG AE = -=,∴413FG EG EF =-=-=. ∴1132322 AFG S FG AE ?=??=??=.

中考数学压轴题(五)平移问题

平移问题 平移性质——平移前后图形全等,对应点连线平行且相等。 一、直线的平移 1、(2009武汉)如图,直线43y x = 与双曲线k y x =(0x >)交于点A .将直线43y x =向右平移9 2 个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2=BC AO ,则k = . 2、(09年四川南充市)如图已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式; (2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式; (3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式; (4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:12 3 S S =?若存在,求点E 的坐标;若不存在,请说明理由. 提示:第(2)问,直线平行时,解析式中k 值相等。 ‘ 3、(2009年日照)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积; (2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数; (3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由. 提示:第(2)问,按MN 分别在三角形、矩形区域内滑动分类讨论; 第(3)问,对(2)问中两种情况分别求最值,再比较得最值。 C

最新广东中考数学填空题压轴题突破

填空题难题突破 备考提示:近几年广东中考填空题中难度较大、考查最多的均为求面积的题目,2016年出现了考圆的综合题,这类几何综合题也值得重视起来,几何图形规律题(常以三角形、四边形为背景)也是需要适当练习. 1.(2017广东,16,4分)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H 处,折痕为FG,则A、H两点间的距离为. 2.(2016广东,16,4分)如图,点P是四边形ABCD外接圆上任意一点,且不与 四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A 到PB和PC的距离之和AE+AF=. 3.(2015广东,16,4分)如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分面积是___. 4.(2014广东,16,4分)如图,△ABC绕点A按顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC= ,则图中阴影部分的面积等于____.

5.(2013广东,16,4分)如图,三个小正方形的 边长都为1,则图中阴影部分面积的和是____.(结果保留π) 6.(2012广东,10,4分)如图,在平行四边形ABCD中,AD=2,AB=4,∠A=30°.以点A 为圆心,AD的长为半径画弧交AB于点E,连接CE,则 阴影部分的面积是______ (结果保留π) 7.(2011广东,10,4分)如图1,将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图2中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图3中阴影部分,如此下去,……,则正六角星形A4F4B4D4C4E4的面积为 ____ 强化训练: 1.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是.

2016年中考压轴题专题与圆有关的最值问题附答案

B y C x A O D B O C A 与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限 内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________. 引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径 作⊙O ,C 为半圆弧?AB 上的一个动点(不与A 、B 两点重合) ,射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值. 引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点, 以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A .3 B .6 C .332 D .33 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

云南省中考数学压轴题及答案

题目篇 (2014年昆明) 23. (本小题9分)如图,在平面直角坐标系中,抛物线) 0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C 。 (1)求抛物线的解析式; (2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动。其中一个点到达终点时,另一个点也停止运动。当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少 (3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S PBQ CBK =△△:S ,求K 点坐标。 (2013年昆明)23.(本小题9 点A 在x 轴的正半轴上,点C 在y BC 边上,且抛物线经过O 、A (1)求抛物线的解析式; (2)求点D 的坐标; (3)若点M 在抛物线上,点N 在x 边形是平行四边形若存在,求出点N (2012年昆明)23.(本小题9交x 轴于点P ,交y 轴于点A 与直线相交于A 、B 两点. ⑴ ⑵ 过点A 作AC AB ⊥交x ⑶ 除点C

在,请求出点M的坐标,若不存在,请说明理由. (2011年昆明)25、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A 方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. (2010年昆明)25.(12分)在平面直角坐标系中,抛物线经过O(0,0)、A(4, 0)、B(3, 23 )三点. (1)求此抛物线的解析式; (2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号) (云南省2010年)24.(本小题12分)如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90° (1)求点C的坐标; (2)求经过A、B、C三点的抛物线的解析式;

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

初三中考数学选择填空压轴题

中考数学选择填空压轴题 一、动点问题 1.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点, 且∠ACD=45°,DF ⊥AB 于点F,EG ⊥AB 于点G,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示 y 与x 的函数关系式的图象大致是( ) 2.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 路线作匀速运 动,设运动时间为x (s ).∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为 . 3.如图,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时, 始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、8 4.如图,已知Rt △ABC 的直角边AC =24,斜边AB =25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是( ) A. 563 B. 25 C. 112 3 D. 56 5.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍. 6.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( ) A .2 B .4π- C .π D .π1- 7.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△( )2 cm . A .8 B .9 C .8 3 D .9 3 8.△ABC 是⊙O 的内接三角形,∠BAC =60°,D 是的中点,AD =a,则四边形ABDC 的面积为 . 在 梯 形 ABCD 中, 9.如图, 90614AD BC ABC AD AB BC ∠====∥,°,,,点M 是 BC 上一定点,且MC =8.动点P 从C 点出发沿线段 A B C Q R M D A D C E F G B D P

中考圆压轴题训练精选

成都中考圆压轴题训练 一.选择题(共15小题) 1.如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD,ED,交直线AB于点F、M. (1)求∠COA和∠FDM的度数; (2)求证:△FDM∽△COM; (3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM∽△COM?证明你的结论. 2.已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD 的对角线AC、BD交于点E. (1)求证:△ABE∽△DBC; (2)已知BC=,CD=,求sin∠AEB的值; (3)在(2)的条件下,求弦AB的长. 3.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E. (1)当BC=1时,求线段OD的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,

如果不存在,请说明理由; (3)设BD=x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域. 4.如图,⊙M 交x 轴于B 、C 两点,交y 轴于A ,点M 的纵坐标为2.B (﹣3, O ),C (,O ). (1)求⊙M 的半径; (2)若CE ⊥AB 于H ,交y 轴于F ,求证:EH=FH . (3)在(2)的条件下求AF 的长. 5.已知:如图,△ABC 内接于⊙O ,BC 为直径,AD ⊥BC 于点D ,点E 为DA 延长线上一点,连接BE ,交⊙O 于点F ,连接CF ,交AB 、AD 于M 、N 两点. (1)若线段AM 、AN 的长是关于x 的一元二次方程x 2﹣2mx +n 2﹣mn +m 2=0的两个实数根,求证:AM=AN ; (2)若AN=,DN=,求DE 的长; (3)若在(1)的条件下,S △AMN :S △ABE =9:64,且线段BF 与EF 的长是关于y 的一元二次方程5y 2﹣16ky +10k 2+5=0的两个实数根,求直径BC 的长.

中考数学压轴题专项训练十套(含答案)

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1, 1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速 度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日 三、解答题 23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点, 与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线的解析式及点D 的坐标. (2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标. (3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由. 备用图

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,已知直线 1 1 2 y x =-+与坐标轴交于A,B两点,以线段AB 为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E. (1)请直接写出C,D两点的坐标,并求出抛物线的解析式; (2 个单位长度的速度沿射线AB下滑,直至顶点D落 在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围; (3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积. 备用图

相关主题
文本预览
相关文档 最新文档