当前位置:文档之家› 关于模式识别应用发展的研究和分析

关于模式识别应用发展的研究和分析

关于模式识别应用发展的研究和分析
关于模式识别应用发展的研究和分析

课程名称:中外文学术论文写作

姓名:周杉

学号:212012083500005

专业:软件工程

学院:数学与计算机学院

导师:黄襄念

成绩:

2013.5.23

关于模式识别应用发展的研究和分析

周杉

(西华大学数学与计算机学院图像处理与模式识别实验室成都610039)

摘要:自20世纪50年代以来,模式识别(Pattern Recognition)在人工智能兴起后不久就迅速发展成一门学科。它所研究的理论和方法在很多科学和技术领域得到广泛的重视,推动了人工智能系统的发展,扩大了计算机应用的可能性。本文主要讨论模式识别的一些基本概念和问题,以利于对模式识别的现状与未来的发展方向有更全面的了解。

关键词:模式识别人工智能信息科学

中图分类号:TP399

The Research and Analysis about the Development of Pattern

Recognition Applications

ZHOU Shan

(Mathematics and Computer College of Xihua University,

Image Processing and Pattern Recognition Laboratory,Chengdu,610039) Abstract:Since the1950s,pattern recognition shortly quickly developed after the rise of artificial intelligence into a discipline.It studies the theory and methods in many areas of science and technology which has received considerable attention,and it also promote the development of artificial intelligence systems,expanding the possibilities of computer applications.This article focuses on pattern recognition of some basic concepts and issues in order to getting more comprehensive understanding about facilitate pattern recognition status and future direction of development.

Keywords:Pattern Recognition Artificial Intelligence Information Science

0引言

狗的嗅觉的灵敏度非常高,大约是人的50至100倍。狗通过这项特异的功能来识别各种各样的东西,帮助人类完成一些鉴别工作。不仅如此,识别也是人类的一项基本技能,人们无时无处的在进行“模式识别”,古人有一成语“察言观色”表达的正是这个意思。随着第一台计算机ENIAC的出现以及人工智能的兴起,人们自然而然的把目光投向如何将人类的识别能力成为计算机的一部分功能,从而减轻人类自身的脑力劳动。计算机模式识别在20世纪60年代初迅速发展并成为一门新学科[1]。

1模式识别与统计模式识别

1.1模式与模式识别的概念

广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)[2]。

模式识别则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。计算机模式识别就是是指利用计算机等装置对物体、图像、图形、语音、字形等信息进行自动识

别。模式识别的研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家、神经生理学家的研究内容,属于认知科学的范畴;后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。

1.2模式识别的方法

现在有两种基本的模式识别方法,即统计模式识别方法和结构(句法)模式识别方法。[3]统计模式识别是对模式的统计分类方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。利用模式与子模式分层结构的树状信息所完成的模式识别工作,就是结构模式识别或句法模式识别。

1.3模式识别系统

不论是以哪种模式识别方法为基础的模式识别系统,基本上都是由两个过程组成的,即设计与实现。设计是指用一定数量的样本(叫做训练集或学习集)进行分类器的设计。实现是指用所设计的分类器对待识别的样本进行分类决策。基于统计方法的模式识别系统如图所示[4]:

1.4统计模式识别

在统计模式识别中,一个模式表示为一组d个特征或属性,称为d维特征矢量。识别系统运行有两种模式:训练和分类。在训练模式中,预处理模块将感兴趣的特征从背景中分割出来,去除噪声,归一化模型,以及其它限定模式在紧支区间表示的操作;特征提取,选择模块找到合适的特征来表示输入模式;分类器被训练分割特征空间。在分类模式中,被训练的分类器根据测量的特征将输入模式分配到某个模式类。

统计模式识别的决策过程可以总结如下:根据一个d维特征矢量,将一个给定模式分配到c类中的某一个[5]。如果待分类样本的类条件密度已知,则可以通过贝叶斯决策理论来对样本进行分类;如果样本的类条件密度未知,则又根据训练样本的类别是否已知可以将分类问题二分为监督学习(标签训练样本)对非监督学习(未标签训练样本)[6];监督学习和非监督学习又可分为参数估计和非参数估计。

统计模式识别的主要方法有:判别函数法,k近邻分类法,非线性映射法,特征分析法,主因子分析法等。

在统计模式识别中,贝叶斯决策规则从理论上解决了最优分类器的设计问题,但其实施却必须首先解决更困难的概率密度估计问题。BP神经网络直接从观测数据(训练样本)学习,是更简便有效的方法,因而获得了广泛的应用,但它是一种启发式技术[7],缺乏指定工程实践的坚实理论基础。统计推断理论研究所取得的突破性成果导致现代统计学习理论——VC 理论的建立,该理论不仅在严格的数学基础上圆满地回答了人工神经网络中出现的理论问题,而且导出了一种新的学习方法——支撑向量机[8]。

2模式识别的应用

经过多年的研究和发展,模式识别技术已广泛被应用于人工智能、计算机工程、机器学、神经生物学、医学、侦探学以及高能物理、考古学、地质勘探、宇航科学和武器技术等许多重要领域,如语音识别、语音翻译[9]、人脸识别、指纹识别、手写体字符的识别、工业故障检测、精确制导等。模式识别技术的快速发展和应用大大促进了国民经济建设和国防科技现

代化建设。

2.1字符识别[10]

字符识别处理的信息可分为两大类:一类是文字信息,处理的主要是用各国家、各民族的文字(如:汉字,英文等)书写或印刷的文本信息,目前在印刷体和联机手写方面技术已趋向成熟,并推出了很多应用系统;另一类是数据信息,主要是由阿拉伯数字及少量特殊符号组成的各种编号和统计数据,如:邮政编码、统计报表、财务报表、银行票据等等,处理这类信息的核心技术是手写数字识别[11]。

汉字是历史悠久的中华民族文化的重要结晶,闪烁着中国人民智慧的光芒。汉字数量众多,仅清朝编纂的《康熙字典》就包含了49000多个汉字,其数量之大,构思之精,为世界文明史所仅有。由于汉字为非字母化、非拼音化的文字,所以在信息技术及计算机技术日益普及的今天,如何将汉字方便、快速地输入到计算机中已成为关系到计算机技术能否在我国真正普及的关键问题。目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。[12]从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了连机手写体识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。

2.2语音识别[13]

语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安全验证方式。而且利用基因算法训练连续隐马尔柯夫模型[14]的语音识别方法现已成为语音识别的主流技术。该方法在语音识别时识别速度较快,也有较高的识别率。

2.3指纹识别

我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹5个大的类别[15]:左旋型(left loop),右旋型(right loop),双旋型(twin loop),螺旋型(whorl),弓型(arch)和帐型(tented arch),这样就可以将每个人的指纹分别归类,进行检索。指纹实现的方法有很多,大致可以分为4类:基于神经网络的方法、基于奇异点的方法、语法分析的方法和其他的方法。在指纹识别的应用中,一对一的指纹鉴别已经获得较大的成功,但一对多的指纹识别,还存在着比对时间较长,正确率不高的特点。为了加快指纹识别的速度,无论是对简化图像的预处理,还是对算法的改进,都刻不容缓。

2.4细胞识别

细胞识别是最近在识别技术中比较热门的一个话题。以前,对疾病的诊断仅仅通过表面现象,经验在诊断中起到了主导作用,错判率始终占有一定的比例;而今,通过对显微细胞图像的研究和分析来诊断疾病,不仅可以了解疾病的病因、研究医疗方案,还可以观测医疗疗效。如果通过人工辨识显微细胞诊断疾病也得不偿失,费力费时不说,还容易耽误治疗。基于图像区域特征[16],利用计算机技术对显微细胞图像进行自动识别愈来愈受到大家的关注,并且现在也获得了不错的效果。但实际中,细胞的组成是复杂的,应该选择更多的特征,建立更为完善的判别函数,可能会进一步提高分类精度。

3模式识别技术的发展趋势[17]

3.1语音识别技术

语音识别技术正逐步成为信息技术中人机接口的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。[18]

3.2生物认证技术

生物认证技术是本世纪最受关注的安全认证技术,它的发展是大势所趋。人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。在银行里,人们只需伸出手指放在识别仪上就可以存取现金将指日可待。国际数据集团(IDC)预测[19]:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100美元的市场规模。

3.3数字水印技术[20]

90年代以来才在国际上开始发展起来的数字水印技术是最具发展潜力与优势的数字媒体版权保护技术。IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。

[21]

4结束语

在这篇综述中,介绍了模式识别里面的一些基本概念,模式识别是一个多领域的交叉学科,它涉及人工智能、统计学、计算机科学、工程学、医学等众多的研究问题。例如,语音识别、字符识别、医学图像识别、医疗诊断、商品销售分析等[22],吸引了众多的研究人员,且人们提出了许多新方法。随着模式识别理论和技术的发展,其应用领域和实际应用需求也将不断增长。人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。到目前为止,模式识别理论和技术还远未完善,尚有很多课题有待人们去研究和探索。

参考文献

[1]Barry https://www.doczj.com/doc/58363041.html,vine.Pattern Recognition[J].Critical Reviews in Analytical Chemistry,2006,(36):153-161.

[2]MING-KUEI HU.Visual Pattern Recognition by Moment Invariants[J].IRE TRANSACTIONS ON INFORMATION THEORY,1962,179-187.

[3]Eduardo GONZALEZ,Hans LILJENSTROM,Guang LI.A biologically inspired model for pattern recognition[J].Zhejiang Univ-Sci B(Biomed&Biotechol),2010,11(2):115-126.

[4]Kidiyo Kpalma and Joseph Ronsin.An Overview of Advances of Pattern Recognition Systems in Computer Vision[J].Vision Systems,2007,170-188.

[5]王煦法,杨奕若.遗传算法在模式识别中的应用[J].小型微型计算机系统,1997,10(18),32-36.

[6]Ke Lu,Jidong Zhao,Yue Wu.Pattern Recognition Hessian optimal design for image retrieval[J].Pattern Recognition,2011,1155-1161.

[7]Domingo Ortiz-Boyer.A cooperative constructive method for neural networks for pattern recognition[J].Pattern Recognition Society,2007,80-98.

[8]Horst Bunke,Kaspar Riesen.Pattern Recognition Recent advances in graph-based pattern recognition with applications in document analysis[J].Pattern Recognition,2011,1057-1067.

[9]John Wright,Member.Sparse Representation For Computer Vision and Pattern Recognition[J].PROCEEDINGS OF IEEE,2009.

[10]Guillaume Touya.River network selection based on structure and pattern recognition[J].Geographical Information Science,2004.

[11]Masanori Kitamura,Shagufta H.Shabbir.Guidelines for Pattern Recognition Using Differential Receptors and Indicator Displacement Assays[J].American Chemical Society Published on Web,2009,4479-4489.

[12]Pierre Dissaux and Jerome Legrand.AADL Real-Tme Design-Pattern Automatic Recognition[J].Ellidiss Technologies,2011.

[13]Daniela Durackova.New digital approach to cnn on chip implementation for pattern recognition[J].Pattern Recognition Techniques,Technology and Applications,2008,283-290.

[14]P.Soda.A multi-objective optimisation approach for class imbalance learning[J].Machine learning,2011,1801-1810.

[15]Andrea Bottino,Aldo Laurentini.Pattern Recognition A nearly optimal algorithm for coveringthe interior of an Art Gallery[J].Pattern Recognition,2011,1048-1056.

[16]Lu Zhang,Tao Mei.Visual search reranking via adaptive particle swarm optimization[J].Microsoft Research Asia,Beijing,2007.

[17]P.Assheton,A.Hunter.Pattern Recognition A shape-based voting algorithm for pedestrian detection and tracking[J].Pattern Recognition,2011,1106-1120.

[18]Jigang Sun,Malcolm Crowe.Extending metric multidimensional scaling with Bregman divergences[J].Pattern Recognition,2011,1137-1154.

[19]R.Medina-Carnicer.A novel method to look for the hysteresis thresholds for the Canny edge detector[J].Pattern Recognition,2011,1201-1211.

[20]Haiping Lu,Konstantinos N.Plataniotis.A survey of multilinear subspace learning for tensor data[J].Pattern Recognition,2011,1540-1551.

[21]Mingyu Fan,Nannan Gu.Sparse regularization for semi-supervised classification[J].Chinese Academy of Science,Beijing,2011,1777-1784.

[22]Xin Fu,Qiang Shen.Fuzzy complex numbers and their application for classifiers performance evaluation[J].Pattern Recognition,2011,1403-1417.

模式识别的研究现状与发展趋势

模式识别的研究现状与发展趋势 摘要:随着现今社会信息技术的飞速发展, 人工智能的应用越来越广泛, 其中模式识别是人工智能应用的一个方面。而且现今的模式识别的应用也越来越得到大家的重视与支持,在各方面也有重大的进步。模式识别也成为人们身边不可或缺的一部分。关键词:人工智能,技术,模式识别,前景 Abstract:In the modern society with the rapid development of information technology, the application of a rtificial intelligence is more and more extensive, among them pattern recognition is one of the ap ply of artificial intelligence. And now the application of pattern recognition is also more and more to get everyone's attention and support, in various aspects have significant progress. Pattern rec ognition has become an integral part of people around. Keywords: Artificial Intelligence, Technology,Pattern Recognition, prospects 一,引言 如今计算机硬件的高速发展, 以及计算机应用领域的不断开拓, 人们开始要求计算机能够更有效地感知诸如声音、文字、图像、温度、震动等人类赖以发展自身、改造环境所运用的信息资料。但就一般意义来说, 目前一般计算机却无法直接感知它们, 我们常用的键盘、鼠标等外部设备, 对于这些外部世界显得无能为力。虽然摄像机、图文扫描仪、话筒等设备业已解决了上述非电信号的转换, 并与计算机联机, 但由于识别技术不高, 而未能使计算机真正知道采录后的究竟是什么信息。计算机对外部世界感知能力的低下, 成为开拓计算机应用的瓶颈, 也与其高超的运算能力形成强烈的对比。于是, 着眼于拓宽计算机的应用领域, 提高其感知外部信息能力的学科———模式识别, 便得到迅速发展。 人工智能所研究的模式识别是指用计算机代替人类或帮助人类感知模式, 是对人类感知外界功能的模拟, 研究的是计算机模式识别系统, 也就是使一个计算机系统具有模拟人类通过感官接受外界信息、识别和理解周围环境的感知能力。现将人工智能在模式识别方面的一些具体和最新的应用范围遍及遥感、生物医学图象和信号的分析、工业产品的自动无损检验、指纹鉴定、文字和语音识别、机器视觉地圈模式识别等方面。 二,现状 以地图模式识别为例,地图模式识别是由计算机来对地图进行识别与理解, 并借助一定的技术手段, 让计算机研究和分析地图上的各种模式信息, 获取地图要素的质量意义。其计算处理的过程类似于人对地图的阅读。 地图模式识别是近年来在地图制图领域中新兴的一门高新技术, 是信息时代人工智能、模式识别技术在地图制图中的具体应用。由于它是传统地图制图迈向数字地图制图的一座桥梁, 因此,地图模式识别遥感技术、地理信息系统一起, 被称为现代地图制图的三大技术。 目前, 地图模式识别由于具有广泛的应用价值和发展潜力,因而受到了人们的普遍重视。尤其是随着现今的计算机及其外部硬件环境的不断提高, 科技不过发展的情况下,

模式识别研究进展-刘成林and谭铁牛

模式识别研究进展 刘成林,谭铁牛 中国科学院自动化研究所 模式识别国家重点实验室 北京中关村东路95号 摘要 自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,是人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt的感知机[1]和Nilsson的学习机[2]就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20世纪80年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。 模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain等人的综述[3]已经全面介绍了2000年以前模式分类方面的进展,本文侧重于2000年以后的研究进展。

模式识别复习要点和参考习题教学内容

复习要点 绪论 1、举出日常生活或技术、学术领域中应用模式识别理论解决问题的实例。 答:我的本科毕设内容和以后的研究方向为重症监护病人的状态监测与预诊断,其中的第一步就是进 行ICU病人的死亡率预测,与模式识别理论密切相关。主要的任务是分析数据库的8000名ICU病人,统计 分析死亡与非死亡的生理特征,用于分析预测新进ICU病人的病情状态。 按照模式识别的方法步骤,首先从数据库中采集数据,包括病人的固有信息,生理信息,事件信息等并分为死亡组和非死亡组,然后分别进行数据的预处理,剔除不正常数据,对数据进行插值并取中值进行第一次特征提取,然后利用非监督学习的方法即聚类分析进行第二次特征提取,得到训练样本集和测试样本集。分别利用判别分析,人工神经网络,支持向量机的方法进行训练,测试,得到分类器,实验效果比传统ICU 中采用的评价预测系统好一些。由于两组数据具有较大重叠,特征提取,即提取模式特征就变得尤为重要。语音识别,图像识别,车牌识别,文字识别,人脸识别,通信中的信号识别; ① 文字识别 汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可 磨灭的功勋。所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已 成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。目前,汉字输 入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分 为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写 体识别中,脱机手写体的难度又远远超过了联机手写体识别。到目前为止,除了脱机手写体数字的识别已 有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。 ②语音识别 语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人 工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势 受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续 隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有 较高的识别率。 ③ 指纹识别 我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的 纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起 来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几 个大的类别:环型(loop),螺旋型(whorl),弓型(arch),这样就可以将每个人的指纹分别归类,进行检索。指 纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。 ③ 遥感 遥感图像识别已广泛用于农作物估产、资源勘察、气象预报和军事侦察等。 ④医学诊断 在癌细胞检测、X射线照片分析、血液化验、染色体分析、心电图诊断和脑电图诊断等方面,模式识别已取 得了成效。

模式识别研究进展

模式识别研究进展 摘要:自20 世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt 的感知机和Nilsson 的学习机就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20 世纪80 年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识 别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/ 视频的处理、 分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain 等人的综述[3] 已经全面介绍了2000 年以前模式分类方面的进展,本文侧重于2000 年以后的研究进展。 2. 历史回顾 现代模式识别是在20 世纪40 年代电子计算机发明以后逐渐发展起来的。在更早的

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract: The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology,

人工智能的研究方向和应用领域

人工智能的研究方向和应用领域 人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。广义的人工智能包括人工智能、人工情感与人工意志三个方面。 一、研究方向 1.问题求解 人工智能的第一个大成就是发展了能够求解难题的下棋(如国际象棋)程序。在下棋程序中应用的某些技术,如向前看几步,并把困难的问题分成一些比较容易的子问题,发展成为搜索和问题归约这样的人工智能基本技术。今天的计算机程序能够下锦标赛水平的各种方盘棋、十五子棋和国际象棋。另一种问题求解程序把各种数学公式符号汇编在一起,其性能达到很高的水平,并正在为许多科学家和工程师所应用。有些程序甚至还能够用经验来改善其性能。 2.逻辑推理与定理证明 逻辑推理是人工智能研究中最持久的子领域之一。其中特别重要的是要找到一些方法,只把注意力集中在一个大型数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的定理寻找一个证明或反证,确实称得上是一项智能任务。为此不仅需要有根据假设进行演绎的能力,而且需要某些直觉技巧。 1976年7月,美国的阿佩尔(K.Appel)等人合作解决了长达124年之久的难题--四色定理。他们用三台大型计算机,花去1200小时CPU时间,并对中间结果进行人为反复修改500多处。四色定理的成功证明曾轰动计算机界。 3.自然语言理解 NLP(Natural Language Processing)自然语言处理也是人工智能的早期研究领域之一,已经编写出能够从内部数据库回答用英语提出的问题的程序,这些程序通过阅读文本材料和建立内部数据库,能够把句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。有些程序甚至能够在一定程度上翻译从话筒输入的口头指令(而不是从键盘打入计算机的指令)。目前语言处理研究的主要课题是:在翻译句子时,以主题和对话情况为基础,注意大量的一般常识--世界知识和期望作用的重要性。

模式识别与智能系统

模式识别与智能系统 (081104) 一、培养目标 培养热爱祖国,拥护中国共产党的领导,拥护社会主义制度,遵纪守法,品德良好,具有服务国家、服务人民的社会责任感,掌握本学科坚实的基础理论和系统的专业知识,具有创新精神、创新能力和从事科学研究、教学、管理等工作能力的高层次学术型专门人才。 模式识别与智能系统是20世纪60年代以来在信号处理、人工智能、控制论、计算机技术等学科基础上发展起来的新型学科。该学科以各种传感器为信息源,以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,探索对各种媒体信息进行处理、分类、理解并在此基础上构造具有某些智能特性的系统或装置的方法、途径与实现,以提高系统性能。模式识别与智能系统是一门理论与实际紧密结合,具有广泛应用价值的控制科学与工程的重要学科分支。 本学科培养德智体全面发展,具有坚实和系统的模式识别与智能系统理论知识和实践技能,了解模式识别与智能系统学科发展的前沿和动态,能够适应我国经济、科技、教育发展需要,面向二十一世纪的科学研究、工程技术和高等教育的高层次人才。学位获得者业务上应具有具备从事在本学科及相关学科领域独立开发研究工作的能力,注意理论联系实际,能够分析和解决现代经济建设和交叉学科中涌现出的新课题;能够熟练利用计算机解决本学科的有关问题;较为熟练地掌握一门外国语;具有健康的体格。 二、研究方向 (一)智能机器人系统 主要进行智能机器人控制与决策系统的研究与开发,包括自主移动机器人、特种机器人、服务机器人、工业机器人等内容。机器人的自主定位、导航、避障与多机器人协调控制为主要研究方向。 (二)系统仿真技术与应用 主要研究方向为控制系统仿真与计算机辅助设计、半实物仿真与实时控制、分数阶与网络控制系统仿真、系统建模校验与验证及仿真算法和高层体系结构理论与应用技术、工业过程建模仿真和提高控制效果与系统性能的方法研究。 (三)图像处理与计算机视觉 研究图像信息获取、处理、分析、理解与识别分类等理论与技术,研究图像处理技术在医学影像处理、动态目标识别与跟踪、智能交通系统、军事等领域的工程应用问题。 (四)建筑智能化技术 本方向以建筑智能化技术为背景,主要研究智能建筑系统集成理论与技术、

模式识别发展及现状综述

模式识别发展及现状综述 xxx (xxxxxxxxxxxxxxxxxxx) 摘要 [摘要]:通过对模式识别的发展及现状进行调查研究,了解到模式识别的理论和方法在很多科学和技术领域中得到了广泛的应用,极大的推动了人工智能系统的发展,同时扩大了计算机应用的可能性。模式识别 的研究主要集中在研究生物体(包括人)是如何感知对象的,以及在给定的任务下,如何用计算机实现模式 识别的理论和方法。本文详细的阐述了模式识别系统的组成结构以及模式识别的现状并展望了未来的模式 识别的发展趋势。 [关键词]:模式识别;模式识别的应用 Abstract [Abstract]:through the investigation and Study on the present situation and development of pattern recognition, knowing that the theory and method of pattern recognition has been widely used in many fields of science and technology and greatly promoting the development of artificial intelligence systems as well as expanding the fields of computer applied to.The research of pattern recognition mainly concentrated on the research of the theory and method of pattern recognition which how the organisms(including humans)to perceive objects as well as,in a given task,how to realize the pattern recognition with computer.This paper expounds the present situation and system structure of the pattern recognition as well as prospects the development trend in the future of pattern recognition. [keyword]:pattern recognition;pattern recognition applications 1前言 模式识别诞生于20世纪20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成一门学科。什么是模式和模式识别呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以称之为模式;狭义地说,模式是通过对具体的个别事物进行观测所得到的具有时间和空间分布的信息;把模式所属的类别或同一类中模式的总体称为模式类(或简称为类)[1]。而“模式识别”则是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。 经过多年的研究和发展,模式识别技术已广泛被应用于人工智能、计算机工程、机器人学、神经生物学、医学、侦探学以及高能物理、考古学、地质勘探、宇航科学和武器技术等许多重要领域,如语音识别、语音翻译、人脸识别、指纹识别、生物认证技术等。模式识别的技术对国民经济建设和国防科技发展的重要性已得到了人们的认可和广泛重视。本文将就模式识别所涉及的基本问题、研究的领域及其当前进展现状进行详细的介绍,并对模式识别的发展趋势进行展望。 2模式识别 2.1模式识别系统 一个计算机模式识别系统基本上是由三个相互关联而又有明显区别的过程组成的,即数据生成、模式分析和模式分类。有两种基本的模式识别方法,即统计模式识别方法和结构

模式识别文献综述

模式识别基础概念文献综述 一.前言 模式识别诞生于20世纪20年代。随着20世纪40年代计算机的出现,20世纪50年代人工智能的兴起,模式识别在20世纪60年代迅速发展成为一门学科。在20世纪60年代以前,模式识别主要限于统计学领域的理论研究,计算机的出现增加了对模式识别实际应用的需求,也推动了模式识别理论的发展。经过几十年的研究,取得了丰硕的成果,已经形成了一个比较完善的理论体系,主要包括统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别和多分类器融合等研究内容。 模式识别就是研究用计算机实现人类的模式识别能力的一门学科,目的是利用计算机将对象进行分类。这些对象与应用领域有关,它们可以是图像、信号,或者任何可测量且需要分类的对象,对象的专业术语就是模式(pattern)。按照广义的定义,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或相似,都可以成为模式。 二.模式识别基本概念 <一>.模式识别系统 模式识别的本质是根据模式的特征表达和模式类的划分方法,利用计算机将模式判属特定的类。因此,模式识别需要解决五个问题:模式的数字化表达、模式特性的选择、特征表达方法的确定、模式类的表达和判决方法的确定。一般地,模式识别

系统由信息获取、预处理、特征提取和选择、分类判决等4部 分组成,如图1-1所示。 观察对象→→→→→→→→→类→类别号信息获取预处理特征提取和选择分类判决 图1-1模式识别系统的组成框图 <二>.线性分类器 对一个判别函数来说,应该被确定的是两个内容:其一为方程 的形式;其二为方程所带的系数。对于线性判别函数来说方程 的形式是线性的,方程的维数为特征向量的维数,方程组的数 量则决定于待判别对象的类数。对M类问题就应该有M个线 性判别函数;对两类问题如果采用“+”“-”判别,则判别函数 可以只有一个。既然方程组的数量、维数和形式已定,则对判 别函数的设计就是确定函数的各系数,也就是线性方程的各权 值。在计算机上确定各权值时采用的是“训练”或“学习”的 方法,这就是待识别的模式集中挑选一批有代表的样本,它们 经过人工判读成为已知类别的样本,把这批样本逐个输入到计 算机的“训练”程序(或算法)中去,通过一次一次的迭代最 后得到正确的线性判别函数,这样一个迭代的运算的过程成为 训练过程。由于样本的分类首先经过人工判读,因而这样的构 成分类器也称为有人监督或有教师的分类器。 <三>.特征选择和提取 <1>、特征选择 特征的获取是依赖于具体的问题和相关专业的知识的,无法进

模式识别方法简述

XXX大学 课程设计报告书 课题名称模式识别 姓名 学号 院、系、部 专业 指导教师 xxxx年 xx 月 xx日

模式识别方法简述 摘要:模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的( 数值的、文字的和逻辑关系的) 信息进行处理和分析, 以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分。模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。 关键词:模式识别; 模式识别方法; 统计模式识别; 模板匹配; 神经网络模式识别 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着2 0 世纪4 0 年代计算机的出现以及5 0 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在2 0 世纪6 0 年代初迅速发展并成为一门新学科。 模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。 模式识别是一种借助计算机对信息进行处理、判别的分类过程。判决分类在

模式识别研究进展

模式识别研究进展 摘要:自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt 的感知机和Nilsson的学习机就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20 世纪80 年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/ 视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain 等人的综述[3]已经全面介绍了2000 年以前模式分类方面的进展,本文侧重于2000 年以后的研究进展。 2. 历史回顾

模式识别及应用--教学大纲

《模式识别及应用》课程教学大 纲 ( 06、07级) 编号:40021340 英文名称:Pattern Recognition and Its Applications 适用专业:电子信息工程 责任教学单位:电子工程系电子信息 教研室 总学时:32 学分:2 考核形式:考查 课程类别:专业课 修读方式:必修 教学目的:模式识别是电子信息工程专业的一门专业必修课。通过该课程的学习,学生能够掌握模式识别的基本理论和主要方法,并且能掌握在大量的模式样本中获取有用信息的原理和算法,通过课外上机练习,学会编写模式识别的算法程序,达到理论和实践相结合的目的,使学生了解模式识别的应用领域,为将来从事这一方面的研究打下初步基础。 主要教学内容及要求:由于本课程的目标是侧重在应用模式识别技术,因此在学习内容上侧重基本概念的讲解,辅以必要的数学推导,使学生能掌握模式识别技术中最基本的概念,以及最基本的处理问题方法。 本课程安排了一些习题,以便学生能通过做练习与实验进一步掌握课堂知识,学习了本课程后,大部分学生能处理一些简单模式识别问题,如设计获取信息的手段,选择要识别事物的描述方法以及进行分类器设计。 第一章概论 1.掌握模式识别的概念 2.熟悉模式识别系统 3.熟悉模式识别的应用 第二章统计模式识别——概率分类法 1. 掌握概率分类的判别标准 (1)Bayes法则 (2)Bayes风险 (3)基于Bayes法则的分类器 (4)最小最大决策 (5)Neyman-pearson决策 2. 熟悉正态密度及其判别函数 (1)正态密度函数 (2)正态分布样品的判别函数 3.了解密度函数的估计 第三章聚类分析 1. 掌握基于试探的聚类算法 (1)基于最近邻规则的试探法 (2)最大最小距离法 2.熟悉层次聚类算法 3.熟悉动态聚类法 (1)K均值算法 (2)迭代自组织的数据分析算法4.了解合取聚类法、最小张树分类法 第四章模糊模式识别 1.掌握模糊信息处理的基本概念 2.熟悉模糊识别信息地获取 3.熟悉模糊综合评判 4.熟悉基于识别算法的模糊模式识别 5.熟悉模糊聚类分析 第五章神经网络识别理论及模型 1.掌握人工神经网络基本模型 2.熟悉神经网络分类器 3.熟悉模糊神经网络系统 4.熟悉神经网络识别模型及相关技术 第六章特征提取与选择 1.掌握类别可分性判据 2.掌握基于可分性判据进行变换的特征提取与选择 3.掌握最佳鉴别矢量的提取 4.熟悉离散K-L变换及其在特征提取与选择中的应用 5.熟悉基于决策界的特征提取 6.熟悉特征选择中的直接挑选法 本课程与其他课程的联系与分工:本课程的先修课程是线性代数、概率与数理统计。它与数字图像处理课可并开。所学知识可以直接应用于相关课题的毕业设计中,并可为学生在研究生阶段进一步深入学习模式识别理论和从事模式识别方向的研究工作打下基础。

模式识别在神经网络中的研究

摘要:基于视觉理论的神经网络模式识别理论的研究一直是非常活跃的学科,被认为是神经网络应用最成功的一个方面,它的发展与神经网络理论可以说是同步的。几乎所有现有的神经网络物理模型都在模式识别领域得到了成功的应用,神经网络理论取得进步会给模式识别理论的发展带来鼓舞;相反,模式识别理论的进步又会大大推动神经网络理论的长足发展。它们的关系是相互渗透的。 关键词:神经网络;模式识别 Abstract: The research of pattern recognition theories according to the neural network mode of sense of vision theories has been very active in academics, neural network has been thought one of the most successful applications , its development can been seen as the same step with the neural network theories.Almost all existing physics model of the neural network all identified realm to get success in the mode of application, neural network theories' progress will give the development of the pattern recognition theories much encourage;Contrary, the pattern recognition theories of progress again consumedly push neural network theories of substantial development.Their relations permeate mutually. Key word: neural network; pattern recognition

TR-模式识别研究-腾讯计算机系统

TR-模式识别研究-腾讯计算机系统

手写识别 ocr的核心维护 优化 模式识别相关项目研究 信号处理、图像处理、特征提取、模式分类方法 Image processing with neural networks—a review Pattern Recognition Off-line recognition of realistic Chinese handwriting using segmentation-free strategy Original Research Article Pattern Recognition A Hilbert warping method for handwriting gesture recognition Original Research Article

Pattern Recognition Bilinear Lanczos components for fast dimensionality reduction and feature extraction Original Research Article Pattern Recognition Writer independent on-line handwriting recognition using an HMM approach Original Research Article Pattern Recognition A new benchmark on the recognition of handwritten Bangla and Farsi numeral characters Original Research Article Pattern Recognition

模式识别理论的研究与应用

模式识别理论的研究与应用 摘要:通过对模式识别系统的简要评述,对近年来几种基本的模式识别方法进行了总结,并对模式识别在字符识别方面的应用原理作了介绍。字符识别技术属于模式识别的范畴,本文首先介绍模式识别的基本理论和基本方法,然后阐述了模式识别技术在光学识别技术上的应用,并将其应用到角铁字符识别系统上。实践证明,采用模式识别!能减轻人工操作的复杂性和失误。 关键字:字符识别;模式识别;凹凸字符;OCR(光学字符识别);特征抽取Research and Application of Pattern Recognition Theory Abstract:In this paper components of pattern recognition system were introduced. Several basic patternrecognition methods which were frequently utilized are summed up. Finally Chinese character recognition whichis a application of pattern recognition were introduced.Character recognition technology belongs to the category of pattern recognition, this paper first introduce the basic theory and basic methods of pattern recognition, and then expounds the application of pattern recognition technology in optical recognition technology! And apply it to the Angle iron character recognition system. Practice has proved that using pattern recognition! To reduce the complexity of manual operation and failure. KeyWord:Character Recognition;Pattern Recognition;Protuberant Characters;Optical Character Recognition;Feature Extraction

人脸识别技术的几个主要研究方向

人脸识别技术的几个主要研究方向 1 引言 计算机人脸识别是指基于已知的人脸样本库,利用计算机分析图像和模式识别技术从静态或动态场景中,识别或验证一个或多个人脸。通常识别处理后可得到的基本信息包括人脸的位置、尺度和姿态信息。利用特征提取技术还可进一步抽取出更多的生物特征(如:种族、性别、年龄..) 。计算机人脸识别是目前一个非常活跃的研究课题,它可以广泛应用于保安系统、罪犯识别以及身份证明等重要场合。虽然人类对于人脸的识别能力很强,能够记住并辨识上千个不同的人脸,可是对于计算机则困难多了,其表现在:人脸表情丰富;人脸随年龄的增长而变化;发型、胡须、眼镜等装饰对人脸造成的影响;人脸所成图像受光照、成像角度以及成像距离等影响。 计算机人脸识别技术是近20年发展起来的,90年代更成为科研热点,仅从1990 年到1999年之间,EI 可检索到的相关文献多达数千篇,关于人脸识别的综述也屡屡可见[1] 。自动人脸识别系统包括两个主要技术环节首先是人脸检测和定位,然后是对人脸进行特征提取和识别(匹配)。本文着重介绍人脸识别技术的各类方法,通过对比指出各类方法的优缺点及今后的发展方向。 2 人脸检测和定位 人脸检测和定位即对于给定的一幅图像检测图像中是否有人脸,若有则确定其在图像中的位置,并从背景中分割出来。这是个极富挑战性的问题,因为人脸是非刚体,且人脸在图像中的大小和方向以及人的肤色和纹理等方面有很大的可变形。人脸检测问题主要有四种:(1)对于给定的一幅人脸图像,将其中的人脸定位并给出其位置;(2)在一幅混乱的单色场景图中检测出所有的人脸;(3)在彩色图像中检测(定位)所有人脸;(4)在某一视频序列中,检测和定位出所有人脸。文献[2]对人脸检测进行了较为详细的综述,指出常用的人脸检测方法有四种:(1)基于知识的方法;(2)基于人脸固定特征的方法;(3)基于模板匹配的方法;(4)基于外貌的方法(Appearance-based methods),在基于模板匹配的方法中所采用的是预先确定的模板,而在基于外貌的方法中其模板的选择是通过对一系列图像的学习而确定的。一般来说,基于外貌的方法依靠统计和学习技术来找出人脸和非人脸图像的相关特征。在该方法中有特征脸法、基于聚类的方法、神经网络方法和支持向量机的方法。CMU库是常用的人脸检测库,主要的算法评定指标为错误接受率(FAR)和错误拒绝率(ARR)。 3 人脸特征提取和识别 目前大部分研究主要是针对二维正面人脸图像,也有基于三维人脸模型的方法,还有一种所谓的混合系统的身份鉴定系统。 3.1 二维正面人脸识别 在对人脸图像进行特征提取和分类之前一般需要做几何归一化和灰度归一化。几何归一化是指根据人脸定位结果将图像中人脸变换到同一位置和同样大

模式识别与智能系统研究进展.

一.详细介绍人工情感方向内涵、相关课题及研究成果 人工情感内涵 :人工情感指用人工的方法和技术, 模仿、延伸和扩展人的情感, 使机器具有识别、理解和表达情感的能力。人工智能是指用人工的方法和技术,模仿、延伸和扩展人的智能, 实现机器的智能化。从广义的角度来看,情感是一种特殊的认知,意志又是一种特殊的情感,广义的人工智能包括狭义人工智能、人工情感与人工意志三个方面。 人工情感并不是指简单地模拟人的某些情感表达方式和情感识别方式, 而是为了使电脑或机器人具有像一样的内在情感, 真实地具有像人一样的情感表达能力、情感识别能力、情感思维能力和情感实施能力。 人工情感相关课题: 国内开展的研究项目主要有: 1. 脸部运动编码系统可应用于人脸表情的自动识别与合成; 2.MPEG-4 V2视觉标准可以组合多种表情以模拟混合表情; 3. 针对人的肢体运动而设计的运动和身体信息捕获设备; 4. 基于生物特征的身份验证系统; 5. 语调表情构造系统根据语音的时间、振幅、基频和共振峰等, 寻找不同情感信号特征的构造特点和分布规律; 6. 可穿戴式计算机可用于增强和补偿人的感知功能。 人工情感研究成果: (1 1996年日本文部省就以国家重点基金的方式开始支持“情感信息的信息学、心理学研究”的重大研究课题,日本各大公司竞相开发、研究、生产了所谓的个人机器人(Personal Robot 产品系列。其中, 以 SONY 公司的 AIBO 机器狗 (已经生产 6

万只, 获益近 10亿美元和 QRIO 型以及 SDR -4X 型情感机器人为典型代表。日本新开发的情感机器人取名“小IF ” , 可从对方的声音中发现感情的微妙变化,然后通过自己表情的变化在对话时表达喜怒哀乐, 还能通过对话模仿对方的性格和癖好。 (2美国 MIT 展开了对“情感计算”的研究, IBM 公司开始实施“蓝眼计划”和开发“情感鼠标” ; 2008年 4月美国麻省理工学院的科学家们展示了他们最新开发出的情感机器人“ Nexi ” ,该机器人不仅能理解人的语言,还能够对不同语言做出相应的喜怒哀乐反应,还能够通过转动和睁闭眼睛、皱眉、张嘴、打手势等形式表达其丰富的情感。这款机器人完全可以根据人面部表情的变化来做出相应的反应。它的眼睛中装备有 CCD(电荷耦合器件摄像机, 这使得机器人在看到与它交流的人之后就会立即确定房间的亮度并观察与其交流者的表情变化。 (3 德国 Mehrdad Jaladi-Soli 等人在 2001年提出了基于 EMBASSI 系统的多模型购物助手。 EMBASSI 是由德国教育及研究部(BMBF 资助并由 20多个大学和公司共同参与的,以考虑消费者心理和环境需求为研究目标的网络型电子商务系统。英国科学家已研发出名为“灵犀机器人” (Heart Robot 的新型机器人,这是一种弹性塑胶玩偶,其左侧可以看到一个红色的“心” ,而它的心脏跳动频率可以变化,通过程式设计的方式,让机器人可对声音、碰触与附近的移动产生反应。 二 . 分析介绍民用航空领域模式识别与智能系统的应用研究内容和成果 (1研究内容:卫星遥感图像中机场的识别方法研究 利用卫星或飞机等所摄取的图像来获取地面目标 , 一直是空间技术获取有关地面信息的重要手段。随着计算机性能的提高和图像处理技术的发展 , 利用计算机来检测识别遥感图像中的目标已经成为研究的热点。机场识别作为模式识别领域的问题之一 , 在民航领域有着重要的应用前景。使用模糊学增强方法对遥感图像进行预处理 , 利用阈值分割方法进行图像分割 , 然后利用像素标记法提取出最大连通区域 , 最后通过 ROI 的算法 , 实现对机场区域 的定位。

相关主题
文本预览
相关文档 最新文档