当前位置:文档之家› 第五章 地震波的激发和震源机制3

第五章 地震波的激发和震源机制3

2.利用S波偏振确定断层面
?1 = ε tg 1) S波的偏振角ε的定义:
SH SV
由直接的记录计算出真入射的SV、SH。 ?1 SH ε = tg SV 2)用地震记录实测ε,并画在Wolf 网上 将Wolf 网上过台站,以 ε为切向的大园弧BC画 出。
2013-5-22
《地震学原理与应用》第五章
99

3)由位错源理论求出偏振方向,并画在Wolf网上 *剪切位错源的震源坐标系 (与断层面法向n 一致)
(与X1,X3组成右手直角坐标系) (与断层面滑动方向λ一致) 则剪切位错源 的辐射波谱为:
*辐射图形因子
2013-5-22
《地震学原理与应用》第五章
100

震源坐标中,eθ方向与偏 振方向(BC)夹角为: ?? du ?1 ε ' = tg ( ) ?θ du
(注意:它虽能确定偏振方向 ,却不是偏振角的定义)
cos θ sin ? ε ' = tg ( ? ) cos 2 θ cos ?
?1
当震源是剪切位错源时 ,位于(θ,?)的台站上 有:
因此,设定一{Xi}便可计算出任意指定点(θ,?)上的偏振方向。
2013-5-22
《地震学原理与应用》第五章
101

4) 穷举对比
2013-5-22
《地震学原理与应用》第五章
102

三、破裂过程和震源参数
断层面上各点同时破裂不太合乎实际,比较合理的模型应是一 个破裂过程(有限时段)。
2013-5-22
《地震学原理与应用》第五章
103

2013-5-22
《地震学原理与应用》第五章
104

2013-5-22
《地震学原理与应用》第五章
105

2013-5-22
106

2008年5月12日14:28 汶川地震
汶川 青城山
2013-5-22
《地震学原理与应用》第五章
107

汶川 青城山 武都 北川 映秀镇
2013-5-22
《地震学原理与应用》第五章
108

2013-5-22
《地震学原理与应用》第五章
109

2013-5-22
《地震学原理与应用》第五章
110

2013-5-22
《地震学原理与应用》第五章
111

2013-5-22
《地震学原理与应用》第五章
112

2013-5-22
《地震学原理与应用》第五章
113

2013-5-22
《地震学原理与应用》第五章
114

2013-5-22
《地震学原理与应用》第五章
115

1.有限移动源
把移动着的点源的辐射场迭加起来,成为扩展成线状的源;线 状源移动又可扫描出扩展的面源;…… 破裂按不同的几何扩展方式可分成不同类型的有限移动源,如: 单侧破裂的一维有限移动源、双侧破裂的一维有限移动源。
(1)单侧破裂的一维有限移动源
2013-5-22
《地震学原理与应用》第五章
116

1)波场 (远场近似解,R>>Λ,R>>L) 不失一般性,考虑单色球面波:
且在01 可将 提出积分号。 R'
2013-5-22
《地震学原理与应用》第五章
117

因而:
2013-5-22
《地震学原理与应用》第五章
118

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

第一章 地震波的运动学练习题

第一章地震波的运动学练习题 一、名词解释 1.反射波—— 2.透射波—— 3.滑行波—— 4.折射波—— 5.波前—— 6.射线—— 7.均匀介质—— 8.层状介质—— 9.振动图形和波剖面—— 10.同相轴和等相位面—— 11.时间场和等时面—— 12.地震视速度—— 二、填空题 1物体在作用下,弹性体____________所发生的________或________的变化,就叫做_____________形变。 2 物体在外力作用下发生了____________,若去掉外力以后,物体仍旧其受外力时的形状,这样的特性称为_________.这种物体称为____________。 3 弹性和塑性是物质具有两种互相____________的特性,自然界大多数物质都____________具有这两种特性,在外力作用下既产生____________形变,也产生____________形变。 4 弹性和塑性物体在外力作用下主要表现为____________形变或____________形变。这取决于物质本身的____________物质,作用其上的外力________作用力延续时间的_____________,变化快慢,以及物体所处____________、压力等外界条件。 5 地震波遇到岩层分界面时主要产生两种波是_________和________。 三、选择题 1. 连续介质中,常见的地震波传播速度与深度Z关系是 A)V=V o(1+βZ) B)V=V o(1+β+Z) C)V=V oβZ D)V=(1+2βZ)V o 2. 连续介质地震波射线为 A)直线B)曲射线C)双曲线D)抛物线 3. 费马原理认为,地震波沿 A)最大路径传播B)最小路径传播C)二次抛物线路径传播D)双曲线路径传播 4. 物理地震学认为,地震波是

由震源机制解反演中国大陆现代构造应力场_杜兴信

第21卷 第4期地 震 学 报Vol.21,No.4 1999年7月 (354~360)ACT A SEISM OLOGICA SIN ICA Jul.,1999  由震源机制解反演中国大陆 现代构造应力场 杜兴信 邵辉成 (中国西安710068陕西省地震局) 摘要 使用1920~1996年的震源机制资料,分区反演了中国现代构造应力场.结果表明,最 大主压应力e1轴在西藏高原和中国西部成近南北向,华北成近东西向.在中国中部,e1轴在 北段成北北东-南南西向,中部成近东西向,南部成北北西-南南东向.最小主压应力e3轴水 平投影除在中国西部与e1轴为斜交外,大多数地方为正交.中等主应力e2相对大小R值在 西藏高原最低,为0.10~0.30,并很快地向东北过渡到0.60~0.90高值区.实测和反演的断 层破裂面多分成共轭的两组.结合主应力方向和R值,把中国构造运动特征分为7类.断裂 类型大多数为具有中等R值的走滑型,主要分布在华北和中国东部以及西藏高原内部; 少数为逆断型,分布在中国西部和西藏高原北缘.正断层分布在西藏高原的南缘, 相应R值也较小. 关键词 震源机制 平均应力场 应力方向 构造运动特征 引言 近一二十年发展起来的区域应力场反演,提供了研究区域平均应力场的重要方法(Ang elier,1979;Ellswo rth,1981;许忠淮,戈树谟,1984).由于它使用的是多个断层面而不是单个断层作反演资料,因而能去除局部介质的不均匀性,突出区域应力场信息,较单个地震更能代表应力分析结果.此外,这种方法还能计算出中等主应力相对大小R值[(e2-e1)/(e3-e1)],在一定程度上给出了应力的量值.这里,e1,e2和e3分别为最大、中等和最小主应力. 最初的区域应力场反演使用的是滑动矢量法(Ellsw o rth,1981),利用的资料仅限于野外的地质断层面和断层面上的擦痕,多数地震资料因不知哪个震源机制解节面是断层面而不能作为原始数据使用.为充分利用地震资料,一些学者通过定义断层面,使得可以利用任意震源机制解确定平均应力场.如Gephar t和Forsyth(1984)定义:当两个节面围绕任一轴旋转,以达到对某一给定应力理论剪应力方向与滑动方向一致时,转角较小的节面为断层面.换言之,由该方法可同时确定平均应力场和理论断层面. 本文首先利用具有已知断层面的地震资料研究中国平均应力场,然后利用震源机制资 中国地震局95-04-04-02-03课题资助. 1998-10-19收到初稿,1999-02-02收到修改稿并决定采用.

地震波运动学理论

第二章地震波运动学理论 一、名词解释 1. 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。 2. 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系。 3. 地震波:是一种在岩层中传播的,频率较低(与天然地震的频率相近)的波,弹性波在 岩层中传播的一种通俗说法。地震波由一个震源激发。 4. 地震子波:爆炸产生的是一个延续时间很短的尖脉冲,这一尖脉冲造成破坏圈、塑性带,最后使离震源较远的介质产生弹性形变,形成地震波,地震波向外传播一定距离后,波形逐渐稳定,成为一个具有2-3个相位(极值)、延续时间60-100毫秒的地震波,称为地震子波。地震子波看作组成一道地震记录的基本元素。 5.波前:振动刚开始与静止时的分界面,即刚要开始振动的那一时刻。 6.射线:是用来描述波的传播路线的一种表示。在一定条件下,认为波及其能量是沿着一条“路径”从波源传到所观测的一点P。这是一条假想的路径,也叫波线。射线总是与波阵面垂直,波动经过每一点都可以设想有这么一条波线。 7. 振动图和波剖面:某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 8. 折射波:当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波 9.滑行波:由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 10.同相轴和等相位面:同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.地震视速度:当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 12 波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi,i为地层),在声学中称为声阻抗,在地震学中称波阻抗。波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1≠Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 13.纵波:质点振动方向与波的传播方向一致,传播速度最快。又称压缩波、膨胀波、纵波或P-波。 14.横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、旋转波、横波或S-波,速度小于纵波约0.7倍。横波分为SV和SH波两种形式。 15.体波:波在无穷大均匀介质(固体)中传播时有两种类型的波(纵波和横波),它们在介质的整个立体空间中传播,合称体波。 16共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 17.面波:波在自由表面或岩体分界面上传播的一种类型的波。 18.纵测线和非纵测线:激发点与接收点在同一条直线上,这样的测线称为纵测线。用纵测线进行观测得到的时距曲线称为纵时距曲线。激发点不在测线上,用非纵测线进行观测得到的时距曲线称为非纵时距曲线。

论地震勘探中几种主要地震波

论地震勘探中的几种主要地震波 论文提要 地震勘探,就是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其它勘探目的服务的一种方法。也可以理解为就是利用地震子波从地下地层界面反射回地面时带回来的旅行时间和形状变化的信息,用以推断地下的底层构造和岩性。地震勘探在勘探已有的各种物探方法中,是最有效地方法。在地震勘探中用炸药激发时,一声炮响之后会产生各种各样的地震波。按波在传播过程中质点震动的方向来区分,可以纵波和横波;根据波动所能传播的空间范围而言,地震波又可以分为体波和面波;按照波在传播过程中的传播路径的特点,又可以把地震波分为直达波、反射波、透射波、折射波,等等。地震勘探在石油勘探中除了能产生来自地层界面有用的反射波外,还会产生各种各样的干扰波。因此,我们要更好的了解各种波的产生、特点、用途,等等。下面简单介绍几种地震勘探中产生的地震波。 正文 一、反射波 (一)反射波的形成 1、几何地震学的观点 当炸药在井中爆炸激发地震波时,在雷管引爆几百微妙之内爆炸便完成了,在接近爆炸点的压强是一个延续时间很短的尖脉冲,爆炸脉冲向外传播,压强逐渐减少,地层开始产生弹性形变,形成地震波。地震波继续传播,由于介质对高频的吸收,地震波信号减小。当波入射到两种介质的分界面时(当上层介质波阻抗与下层介质波阻抗不等时,弹性地震波才会发生反射;上层介质波阻抗与下层介质波阻抗差别越大,反射波越强——反射波条件),一部分波回到第一种介质中,这就是所谓的反射波。如图所示 2、物理地震学观点 地震波从震源出发以球面波的方式向下传播,到达反射界面S,S可以就看成有许多

有关地震和地震波的基本概念

教师启发学生活动

教学过程【导入新课】同刮风下雨一样,地震是一种自然 现象,这种自然现象与地球内部运动有关。地震 时,地面上下颠,左右晃,颠簸震撼,“如行舟于 江河大海之中”今天我们就共同来了解一下有关 地震和地震波的基本概念。 【讲授新课】 【板书】 一、震源,震中和震源深度 震源:地球内部发生地震的部位 震中:地面上正对震源的地方 震中分类:微观震中 宏观震中 【讲解】 平常所说的震中一般是指微观震中,是由地震仪 器记录到的震相确定的。宏观真震中是地震破坏 最严重的中心。因地壳结构的不均匀性,断裂错 动情况的差异性等原因,微观震中和宏观震中一 般是不一致的,但相去不远,一般相差10千米内。 【板书】 震源深度:从地面到震源的距离 震源深度分类:浅源地震 中源地震 深源地震 【讲述】 类别震源深震例 同学们共同阅读课本震源、震中 和震源深度,之后共同来学习 课题有关地震和地震波的基本概念课时 1 时间

教学内容震源,震中距和震源深度,纵波和横波,震中距,地震三要素,震级、烈度和等震线 教学目标 通过对地震基本知识的了解,让学生掌握有关地震的一些基本概念,并且让学生学到一些基本的地震常识。 德育目标了解灾难,学会在灾难中迅速逃生,急中生智教学重点震源,震中和震源深度 教学难点横波和纵波 板书设计一、震源,震中和震源深度 震源:地球内部发生地震的部位 震中:地面上正对震源的地方 震中分类:微观震中 宏观震中 二、纵波和横波 纵波:方向:与波的传播方向一致 传播地点:在地球内部传播 过程:在传播过程中,物质发生体积胀缩变化,传播速度较快。 横波:方向:震动方向与波传播的方向垂直 过程:物质发生剪切变形,体积不变 传播地点:只能通过固体传播,不能通过液体或气体传播,传播速度较慢。 三、震中距 类别地面现象 地方震100千米以内 近震100~1000千米 远震1000千米以外 四、地震三要素 地震发生的时间 地点 震级 五、震级、烈度和等震线 1、震级:地震本身能量的大小 2、烈度 3、震级与烈度的关系 4、等震线 教观察初中学生对于地震灾害的默写只是的理解和接受程度,决定自己的讲

地震波传播原理

菲涅尔体和透射波 摘要 在地震成像实验中,通常使用基于波动方程高频渐进解的几何射线理论,因此,通常假设地震波沿着空间中一条连接激发点和接受点的无限窄的线传播,称为射线。事实上,地震记录有非常多的频率成分。地震波频率的带限性就表明波的传播应该扩展到几何射线周围的有限空间。这一空间范围就成为菲涅尔体。在这片教案中,我们讲介绍关于菲涅尔体的物理理论,展示适用于带限地震波的波动方程的解。波动方程的有限频理论通过敏感核函数精确地描述了带限透射波和反射波的旅行时与振幅和地球介质中慢度扰动之间的线性关系。菲涅尔体和有限频敏感核函数可以通过地震波相长干涉的概念联系起来。波动方程的有限频理论引出了一个反直觉的结论-在三维几何射线上的点状速度扰动不会不会造成波长的相位扰动。因此,这说明在射线理论下的菲涅尔体理论是波动方程有限频理论在有限频下的一个特例。最后,我们还澄清了关于菲涅尔体宽度限制成像实验分辨率的误解。 引言 在地震成像技术中,射线理论通常在正演和反演中被用有构建正反演波长算子。射线理论之所以收到欢迎部分是由于计算机速度和内存的限制,因为射线理论具有较高的计算效率并且对于各种地震成像方法的应用也比较容易。而另一方面,地震成像实验清晰的表明,射线理论,由于他对波场传播的近似描述,对于散射效应严重的波场的成像是不完备的。Cerveny 给出了对于地震波射线理论的一个全面的理解。 在地震成像实验中,记录到的透射波和反射波信号都是由一个主要由低频信号组成的宽带震源激发产生的,因为地震波的高频信号在地层中很容易衰减。但是射线理论是基于高频近似的,这表明基于射线理论的成像技术和和测量波场这件之能会存在方法上的冲突。这个围绕射线且对带限地震波的传播起主要影响的空间范围就被叫做菲涅尔体。射线理论在地下构造尺度大于记录波场的第一菲涅尔带的介质中能够取得较好的效果。对于低频反射波(频率成分在10-70Hz之间)和透射波(频率成分在300-800Hz之间),第一菲涅尔体的宽度可以分别达到500m和50m的量级。这个宽度要大于我们在陆地和海洋的反射波地震勘探以及井间和垂直地震剖面中想要成像的地下地质特征。 在这篇教案中,我们将看到如何将地震分辨率扩展到识别体积小于第一菲涅尔带的不均匀体。我们将展示如把射线理论下的旅行时和振幅公式扩展到更精确的、可以应用与带限反射和透射地震信号波场近似理论。波动方程的有限频理论提出了反射和透射地震波的敏感核函数(也称作Frechet核函数)。这些有限频Frechet核函数将速度扰动和旅行时与振幅的扰动线性的联系起来。有限频波长近似被直接应用到各种地震成

模拟地震波传播可视化

模拟地震波传播的可视化研究 摘要:实验中选取了与地壳平均波速相近的光学玻璃作样品,利用动态光弹的成像系统,来观测波在光学玻璃及波从光学玻璃透射到水中的传播过程,并记录0~50μs内的波的传播过程,以此来模拟地震波在地壳中反射、透射等传播行为。 abstract: the experiments selected optical glass similar with average velocity, and used imaging system of dynamic photoelasticity to observe the communication process of light in optical glass and light refraction from optical glass to water, and record the wave transmission during 0~50μs,for simulating reflection and transmission of seismic wave in crust. 关键词:地震波;动态光弹;反射;透射 key words: seismic waves;dynamic photoelastic;reflection;transmission 中图分类号:p315.3+1 文献标识码:a 文章编号:1006-4311(2013)04-0297-02 0 引言 在地震勘探中,通常是通过检波器来记录地下地震波带来的信息,根据相应的数学和物理模型进行复杂的计算机处理以获得地下的构造情况,虽然地震勘探的相关理论有很大的发展,但是由于理论结果难以获得,并且对于复杂形状的结构,解析方法变得相当繁

地震勘探原理题库讲解

第一章地震波的运动学 第一节地震波的基本概念 第二节反射地震波的运动学 第三节地震折射波运动学 第二章地震波动力学的基本概念 第一节地震波的频谱分析 第二节地震波的能量分析 第三节影响地震波传播的地质因素 第四节地震记录的分辨率 第三章地震勘探野外数据的野外采集第一节野外工作方法 第二节地震勘探野外观测系统 第三节地震波的激发和接收 第四节检波器组合 第五节地震波速度的野外测定 第四章共中心点迭加法原理 第一节共中心点迭加法原理 第二节多次反射波的特点 第三节多次叠加的特性 第四节多次覆盖参数对迭加效果的影响及其选择原则第五节影响迭加效果的因素 第五章地震资料数字处理 第一节提高信噪比的数字滤波 第二节反滤波 第三节水平迭加 第四节偏移归位 第五节地震波的速度 第六章地震资料解释 第一节地震资料构造解释工作概述 第二节时间剖面的对比 第三节地震反射层位的地质解释 第四节各种地质现象在时间剖面上的特征和解释 第五节地震剖面解释中可能出现的假象

第六节反射界面空间位置的确定 第七节构造图、等厚图的绘制及地质解释 第八节水平切片的解释 一、名词解释 第一章地震波的运动学 1、波动(难度90区分度30) 2、波前(难度89区分度31) 3、波尾(难度89区 分度31) 4、波面(难度89区分度31) 5、等相面(80 、 33) 6、波阵面(81 、 34) 7、波线(70 、 33) 8、射线(72 、 40) 9、振动曲线(75 、 42) 10、波形曲线(76 、 44) 11、波剖面(65 、 46) 12、 子波(60 45)13、视速度(80 、 30) 14、射线平面(60 、 47) 15、运动学(70 、 55) 16、时距曲线(68、 40) 17、正常时差(60 、 45) 18、 动校正(60、 60) 19、几何地震学(70 、 35) 第二章地震波动力学的基本概念 1、动力学(70 、 40) 2、物理地震学(71、 35) 3、频谱(50 、 50) 4、波的发散(90 、 30) 5、波散(90 、 31) 6、频散(80、 35) 7、吸收(70 、 40 ) 8、纵向分辨率(60、40)9、垂向分辨率(60、40)10、横向分辨率(60、40)11、水平 分辨率(60、40)12、菲涅尔带(50、45) 13、主频(65、40) 第三章地震勘探野外数据的野外采集 1、规则干扰波(90、30) 2、不规则干扰波(90、30) 3、观测系统(80、35) 4、多次 覆盖(65、50) 5、共反射点道集(70、45) 6、检波器组合(90、30) 7、方向特性(75、30) 8、方向效应(90、30) 第四章共中心点迭加法原理 1、共中心点迭加(70、40) 2、水平迭加(60、40) 3、剩余时差(60、50) 第五章地震资料数字处理 1、偏移迭加(75、30) 2、平均速度(85、30) 3、均方根速度(80、30) 4、迭加 速度(70、40) 第六章地震资料解释 1、标准层(50、40) 2、绕射波(40、50) 3、剖面闭合(30、60) 4、三维地震(70、 30) 5、水平切片(45、60) 6、等厚图(65、40) 7、构造图(80、30) 二、填空题 第一章 1、振动在介质中的传播就是()。(90、30) 2、在地震勘探中把入射线、过入射点的界面法线、()三者所决定的平面称为()。(70、50) 3、反射波振幅的大小决定于(),极性的正负决定于(),到达时间先后决定于()。 (40、60) 4、倾斜界面共炮点反射波时距曲线形状(),极小点坐标()。(70、40) 5、地震反射界面是指()。(70、35) 6、折射波形成的条件(),盲区半径()。(75、35) 7、射线总是()波面。(70、40) 8、地面与地下反射界面都是平面,界面以上介质为均匀介质,则地面上纵直测线观测的反 射波时距曲线为()。(65、40) 9、在V(Z)=V0+(1+βZ)连续介质中,反射界面深度为H,如果要观测到该界面的反射 波,那么入射波的最大穿透深度为()。(30、50) 10、当地面和地下反射界面为平面时,共炮点反射波时距曲线极小点处的视速度为()。(35、

地震波的频率和振幅

地震波的频率和振幅 时间:2010-06-05 20:18 来源:unknown 作者:wowglad 点击:$ 7 次2008年12月19日地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系 ,统称为地震波的频 频谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t )变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t)

--傅氏正变换 ------------- ()-- --傅氏反变换 这两式是等价的,即A⑴与a(t)是一一对应的①S脉冲函数A S (t) ②函数: ③函数: 可以看出:不同时间函数具有不同的频谱。

图、地震波的频率特征 地震波是人工激发的振动,具有连续的频谱,如图所示 图主频fO :振幅谱曲线极大值所对应的频率。 频带的宽度:若|A(f)|最大值为1则可找|A(f)|=的两个频率fl和f2,两者之差△ f=f2 -f1为频带宽度。 大量的实际观测和分析,各种不同类型的地震波的能量主要分布频带是不同的。如图所示。

3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ①激发条件。 ②地震波在传播过程中受到影响。 ③接收条件的影响。 ④其它如地下岩层界面的形态和平滑状态。 图大地低通滤波器效应: 地震波在传播过程中随着距离(或深度)的增加,高频成分会很快地损失,而且波的振幅按指数规律衰减。实际地层对波的这种改造,称之为大地低通滤器效应。 ⑴波前扩散 球面扩散:在均匀介质中,点震源的波前为球面,随着传播距离的增大,球面逐渐扩展,但总能量仍保持不变,而使单位面积上的能量减小,振动的振幅将随之减小,这称之为球面扩散(或波前扩散)。 设某一时刻球面的波前面S,总能量为E,单位面积上的能量为e,则有

震源机制解综述

震源机制解综述 1、引言 地震学是一门以观测资料为基础的研究地震的成因及其规律已成为地震预报的一种重要手段,它的发展奠定了地震预报的物理基础。地震震源和地震波传播介质的各种参数在强震前的变化早就被当作地震预测的地震学前兆指标,随着地震预测的深入研究,以及我国“十五”台站数字化改造的完成,我们在进一步研究地震时空强分布特征的同时,加强对地震波的运动学和动力学特征的研究,从中提取震源,我们意识到加强对地震波的运动学和动力学的研究,从中提取震源信息,对增强地震预测的物理基础,提高地震预测的水平是十分必要的。 地震是地球内部物质运动的结果,这种运动反映在地壳上,使得地壳产生破裂,促成了断层的生成、发育和活动。地震前后的地形变测量和地震波的观测研究等结果确认,天然构造地震是地下岩层的突然错动引起的。发生错动的岩层可称为地震断层。断层活动诱发了地震,地震发生又促成了断层的生成与发育,因此地震与断层有密切联系。地壳中的断层密如织网。实际地震断层的几何形状可能很复杂,但对多数地震,特别是小地震,作为初级近似,总体上可将地震看成是沿一个平面断层发生的突然错动引起的。 2、前人对震源机制解的研究历程 地震震源处地球介质的运动方式。通常所说的震源机制是狭义的,即专指研究构造地震的机制而言。构造地震的机制是震源处介质的破裂和错动。震源机制研究的内容包括,确定地震断层面的方位和岩体的错动方向,研究震源处岩体的破裂和运动特征,以及这些特征和震源所辐射的地震波之间的关系。对地震震源的研究开始于20世纪初叶。1910年提出的弹性回跳理论,首次明确表述了地震断层成因的概念。在地震学的早期研究中,人们就已注意到P波到达时地面的初始振动有时是向上的,有时是向下的。20世纪的10~20年代,许多地震学者在日本和欧洲的部分地区几乎同时发现,同一次地震在不同地点的台站记录,所得的P波初动方向具有四象限分布。日本的中野广最早提出了震源的单力偶力系,第一次把断层的弹性回跳理论和P波初动的四象限分布联系起来。此后,本多弘吉又提出双力偶力系,事实证明它比单力偶力系更接近实际。美国的拜尔利(P.Byerly)发展了最初的震源机制求解法,1938年第一次利用P波初动求出完整的地震断层面解。 3、断层及断层面参数 3.1、断层参数及分类 地震断层通常用断层的走向φS、倾角δ和滑动角λ三个参数来描述(图2.1)。按目前国际上常用的描述方法,这些参数的定义是: 走向φS:断层面与水平面交线的方向,但此交线有两个方向,为唯一确定起见,按以下原则确定其中之一为断层的走向:人沿走向看去,断层上盘在右。走向用从正北顺时针量至走向方向的角度φS来表示,0o≤φS<360°。 倾角δ:断层面与水平面的夹角。0o<δ≤90°。 滑动角λ:在断层面上量度,从走向方向逆时针量至滑动方向的角度为正,顺时针量至滑动方向的角度为负。滑动方向指断层上盘相对于下盘的运动方向。-180<λ≤180°。 (仰角:力轴与水平面的夹角(小于90度) 方位角:力轴在水平面上的投影线与北方向之间的夹角 倾向:节面的上表面的法线在水平面上的投影线与北方向之间的夹角,顺时针量取。)走向φS和倾角δ是断层的几何参数,二者规定了断层的产状;滑动角λ是断层的运动参数,由这一参数的具体数值,即可描述断层的各种运动类型(图2.2)。

第五章 地震波的激发和震源机制3

2.利用S波偏振确定断层面
?1 = ε tg 1) S波的偏振角ε的定义:
SH SV
由直接的记录计算出真入射的SV、SH。 ?1 SH ε = tg SV 2)用地震记录实测ε,并画在Wolf 网上 将Wolf 网上过台站,以 ε为切向的大园弧BC画 出。
2013-5-22
《地震学原理与应用》第五章
99

3)由位错源理论求出偏振方向,并画在Wolf网上 *剪切位错源的震源坐标系 (与断层面法向n 一致)
(与X1,X3组成右手直角坐标系) (与断层面滑动方向λ一致) 则剪切位错源 的辐射波谱为:
*辐射图形因子
2013-5-22
《地震学原理与应用》第五章
100

震源坐标中,eθ方向与偏 振方向(BC)夹角为: ?? du ?1 ε ' = tg ( ) ?θ du
(注意:它虽能确定偏振方向 ,却不是偏振角的定义)
cos θ sin ? ε ' = tg ( ? ) cos 2 θ cos ?
?1
当震源是剪切位错源时 ,位于(θ,?)的台站上 有:
因此,设定一{Xi}便可计算出任意指定点(θ,?)上的偏振方向。
2013-5-22
《地震学原理与应用》第五章
101

4) 穷举对比
2013-5-22
《地震学原理与应用》第五章
102

三、破裂过程和震源参数
断层面上各点同时破裂不太合乎实际,比较合理的模型应是一 个破裂过程(有限时段)。
2013-5-22
《地震学原理与应用》第五章
103

震源机制解教学提纲

震源机制解

四、震源机制和震源参数 地震发生的物理过程或震源物理过程,称为震源机制。它可以通过多个地震台的地震记录图来确定。地震发生时震源处的一些特征量或震源物理过程的一些物理量,称为震源参数。震源参数包括震源断层面的走向、倾向和倾角,震源断层两盘错动的方向、幅度,震源断层面的长度、宽度,断层破裂的扩展速度,震源主应力状态,错动时释放的应力等。它可以通过震源机制断层面解、宏观地震测量及微震活动空间分析等途径来求得。震源机制和震源参数的资料对区域地壳稳定性分析至关重要。 1.震源机制 根据近几十年来的研究表明,浅源地震P波初动与震源体初动方向之间的关系较明确而简单,即P波初动具明显的象限分布特点。图3-7所示即为1948年日本福井地震时,通过各地地震仪记录资料所得的P波初动象限分布图。震源断层发动地震时,不同地区P波初动方向呈现压缩和拉伸有观律的分布。这种现象可用震源错动的单力偶和双力偶模式来解释。 有力偶作用的震源断层,当它突然错动时,断层的两盘,在错动前进方向上的介质受到推挤,即产生压缩波,以“+”号表示;而在相反方向上的介质受到拉伸,则产生膨胀波,以“-”号表示。压缩波与膨胀波的分界面叫节面,节面与地面或震源球面的交线就叫节线。一次地震的发生,就有两条互成正交的P波节线,其中一条节线与断层线相符,是为断层面节线;另一条则为辅助面节线。两条节线分成了四个象限,在相对的象限中有相同的P波初动符号,而相邻的象限中P波初动符号相反。这就是单力偶震源机制模式(图3-8a)。而双力偶震源机制模式更能反映出P波初动分布的实际情况,即两节线上均有力偶作用,但错动方向相反,一为左旋另一为右旋。由它们 合成的最大、最小主应力(和)分别为压应力和拉应力,作用方向与两节线夹角平分线一致。显然,这两条节线也就是一对共轭剪切面。其中之一为震源断层(图3-8b)。但是究竟二者之中哪一个是地震断层面,单靠震源机制是不能断定的,必须根据震中区地质结构、地表错断方向和等震线的长轴方向等才能判定。

地震波的频率和振幅

地震波的频率和振幅 时间:2010-06-05 20:18来源:unknown 作者:wowglad 点击:7次 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t)变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t) ------------------(1.3.1)--

--傅氏正变换 --------------------(1.3.2)-- --傅氏反变换 这两式是等价的,即A(f)与a(t)是一一对应的。 ① δ脉冲函数Aδ(t) ② 函数: ③ 函数: 可以看出:不同时间函数具有不同的频谱。 图1.3.52、地震波的频率特征 地震波是人工激发的振动,具有连续的频谱,如图1.3.6所示。

图1.3.6主频f0:振幅谱曲线极大值所对应的频率。 频带的宽度:若|A(f)|最大值为1,则可找|A(f)|=0.707的两个频率f1和f2,两者之差△f=f2-f1为频带宽度。 大量的实际观测和分析,各种不同类型的地震波的能量主要分布频带是不同的。如图1.3.7所示。 图1.3.7 3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ① 激发条件。 ② 地震波在传播过程中受到影响。 ③ 接收条件的影响。 ④ 其它如地下岩层界面的形态和平滑状态。

《地震勘探》复习提纲

《地震勘探》复习提纲 《地震勘探》复习提纲 复习说明: 对《地震勘探》的复习,要求掌握基本概念,弄清楚各种方法的基本思路,记住最基本的公式。特别要注意对专业词汇的掌握,也就是强调对基础知识的学习。 绪论 1、了解地球信息的主要方法有哪些及各种方法的定义 2、地球物理勘探方法的特点 3、主要的物探方法有哪些?各种物探方法的物理依据如何? 4、地震勘探的主要环节?各环节的主要任务? 第一章地震波的动力学 1、地震波传播的动态特征主要反映在哪两个方面? 2、地震地质模型类型及定义 3、振动的定义及描述参数 4、波动的定义及描述参数 5、地震波的动力学参数及定义:震源、地震子波、地震波的频谱、地震波振动图及波剖面图、描述地震波的特征参数及定义、波阵面(波前、波后)、平面波与球面波、波线(射线)、惠更斯原理及应用 6、地震波的类型、振动模式及特征:体波(纵波与横波)、面波(瑞利波、拉夫波、斯通利波及管波) 7、在无限均匀各向同性介质中,只有纵波和横波存在,纵波和横波有共性也有区别。①纵波和横波的共性:都是体波,都有球面扩散; ②纵波和横波的区别:极化方向不同,传播速度不同(记住纵波和横波的速度公式)。纵波速度公式:;横波速度公式:

8、介质对地震波传播的影响因素有哪些? 9、地震波的球面扩散、几何扩散定义? 10、地震波吸收的定义、描述参数及有关结论 11、地震反射波、透射波及折射波的定义 12、费马原理及应用 13、Snell定律及应用 14、转换波定义及成因 15、临界角及折射波的形成 16、地震绕射波定义(广义和狭义) 17、地震横向分辨率定义 18、地震波遇到分界面时:①在界面上能量重新分配,传播方向发生变化。能量分配关系由诺特方程(或佐普里兹方程)决定,传播方向遵行斯奈尔定律;②非垂直入射时,一般都产生转换波;③垂直入射时,不产生转换波。记住垂直入射的反射系数、透射系数公式。利用垂直反射系数公式说明界面产生反射波的条件。 ④下覆速度大于上覆速度时,以临界角入射会产生折射波。 19、薄层的定义、分类及调谐效应 20、地震垂向分辨率定义 21、地震记录道的形成及地震波形的影响因素 22、地震道褶积模型 23、地震波传播速度及影响因素有哪些? 24、实际介质中波的传播更复杂,除了考虑上述的球面扩散、透射、反射、折射与转换波等影响外,还要考虑波的吸收、透射损失、地质结构、大地滤波作用、波的干涉叠加、岩性突变点产生的绕射波等影响。 第二章地震波的运动学 1、时间场、时间场函数、等时面、射线的定义

震源机制解

四、震源机制和震源参数 地震发生的物理过程或震源物理过程,称为震源机制。它可以通过多个地震台的地震记录图来确定。地震发生时震源处的一些特征量或震源物理过程的一些物理量,称为震源参数。震源参数包括震源断层面的走向、倾向和倾角,震源断层两盘错动的方向、幅度,震源断层面的长度、宽度,断层破裂的扩展速度,震源主应力状态,错动时释放的应力等。它可以通过震源机制断层面解、宏观地震测量及微震活动空间分析等途径来求得。震源机制和震源参数的资料对区域地壳稳定性分析至关重要。 1.震源机制 根据近几十年来的研究表明,浅源地震P波初动与震源体初动方向之间的关系较明确而简单,即P波初动具明显的象限分布特点。图3-7所示即为1948年日本福井地震时,通过各地地震仪记录资料所得的P波初动象限分布图。震源断层发动地震时,不同地区P波初动方向呈现压缩和拉伸有观律的分布。这种现象可用震源错动的单力偶和双力偶模式来解释。 有力偶作用的震源断层,当它突然错动时,断层的两盘,在错动前进方向上的介质受到推挤,即产生压缩波,以“+”号表示;而在相反方向上的介质受到拉伸,则产生膨胀波,以“-”号表示。压缩波与膨胀波的分界面叫节面,节面与地面或震源球面的交线就叫节

线。一次地震的发生,就有两条互成正交的P波节线,其中一条节线与断层线相符,是为断层面节线;另一条则为辅助面节线。两条节线分成了四个象限,在相对的象限中有相同的P波初动符号,而相邻的象限中P波初动符号相反。这就是单力偶震源机制模式(图3-8a)。而双力偶震源机制模式更能反映出P波初动分布的实际情况,即两节线上均有力偶作用,但错动方向相反,一为左旋另一为右旋。由它们合成的最大、最小主应力(和)分别为压应力和拉应力,作用方向与两节线夹角平分线一致。显然,这两条节线也就是一对共轭剪切面。其中之一为震源断层(图3-8b)。但是究竟二者之中哪一个是地震断层面,单靠震源机制是不能断定的,必须根据震中区地质结构、地表错断方向和等震线的长轴方向等才能判定。

地震波的定义

地震波的定义

地震波的定义 地震是地壳的一切颤动,是一种自然现象。其主要能源来自地球的内部,是由地球内部自然力冲击引起的。地壳或地幔中发生振动的地方称为震源。震源在地面上的垂直投影称为震中。震中到震源的距离称为震源深度。地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。 发生原理 英文seismic wave.由地震震源发出的在地球介质中传播的弹性波。地球内 地震波 部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。地震震源发出的在地球介质中传播的弹性波。地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。 概念介绍 地震波是指从震源产生向四外辐射的弹性波。地球内部存在着地震波速度突变的基干界面、莫霍面和古登堡面,将地球内部分为地壳、地幔和地核三个圈层。 传播方式 地震波按传播方式分为三种类型:纵波、横波和面波[1]。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。 纵波和横波

现象介绍 我们最熟悉的波动是观察到的水波。当向池塘里扔一块石头时水面被扰乱,以石头入水处为中心有波纹向外扩展。这个波列是水波附近的水的颗粒运动造成的。然而水并没有朝着水波传播的方向流;如果水面浮着一个软木塞,它将上下跳动,但并不会从原来位置移走。这个扰动由水粒的简单前后运动连续地传下去,从一个颗粒把运动传给更前面的颗粒。这样,水波携带石击打破的水面的能量向池边运移并在岸边激起浪花。地震运动与此相当类似。我们感受到的摇动就是由地震波的能量产生的弹性 岩石的震动。 假设一弹性体,如岩石,受到打击,会产生两类弹性波从源向外传播。第一类波的物理特性恰如声波。声波,乃至超声波,都是在空气里由交替的挤压(推)和扩张(拉)而传递。因为液体、气体和固体岩石一样能够被压缩,同样类型的波能在水体如海洋和湖泊及固体地球中穿过。在地震时,这种类型的波从断裂处以同等速度向所有方向外传,交替地挤压和拉张它们穿过的岩石,其颗粒在这些波传播的方向上向前和向后运动,换句话说,这些颗粒的运动是垂直于波前的。向前和向后的位移量称为振幅。在地震学中,这种类型的波叫P波,即纵波(图2.1),它是首先到达的波。 地震P波(纵波)和S波(横波)运行时弹性岩石运动的形态 弹性岩石与空气有所不同,空气可受压缩但不能剪切,而弹性物质通过使物体剪切和扭动,可以允许第二类波传播。地震产生这种第二个到达的波叫S 波,即横波。在S波通过时,岩石的表现与在P波传播过程中的表现相当不同。因为S波涉及剪切而不是挤压,使岩石颗粒的运动横过运移方向(图2.1)。这些岩石运动可在一垂直向或水平面里,它们与光波的横向运动相似。P和S波同时存在使地震波列成为具有独特的性质组合,使之不同于光波或声波的物理表现。因为液体或气体内不可能发生剪切运动,S波不能在它们中传播。P和S波这种截然不同的性质可被用来探测地球深部流体带的存在(见第6章)。 相关性质 带偏光眼镜以减弱散射光的人可能熟悉光的偏振现象,只有S波具有偏振现象。只有那些在某个特定平面里横向振动(上下、水平等)的那些光波能穿过偏光透镜。传过的光波称之为平面偏振光。太阳光穿过大气是没有偏振的,即没有光波振动的优选的横方向。然而晶体的折射或通过特殊制造的塑料如偏光眼镜,可使非偏振光成为平面偏振光。 当S波穿过地球时,他们遇到构造不连续界面时会发生折射或反射,并使其振动方向发生偏振。当发生偏振的S波的岩石颗粒仅在水平面中运动时,称为SH波。当岩石颗粒在包含波传播方向的垂直平面里运动时,这种S波称为SV

相关主题
文本预览
相关文档 最新文档