当前位置:文档之家› 邵武永太高新材料有限公司年产6000吨六氟磷酸锂和2000吨新型锂盐项目一期项目可行性研究报告

邵武永太高新材料有限公司年产6000吨六氟磷酸锂和2000吨新型锂盐项目一期项目可行性研究报告

邵武永太高新材料有限公司年产6000吨六氟磷酸锂和2000吨新型锂盐项目一期项目可行性研究报告
邵武永太高新材料有限公司年产6000吨六氟磷酸锂和2000吨新型锂盐项目一期项目可行性研究报告

邵武永太高新材料有限公司

年产6000吨六氟磷酸锂和2000吨新型锂盐项目

一期项目可行性研究报告

一、项目基本情况

本项目系浙江永太科技股份有限公司(以下简称“公司”或“永太科技”)控股子公司邵武永太高新材料有限公司(以下简称“永太高新”)投资建设年产6000吨六氟磷酸锂和2000吨新型锂盐项目,一期项目形成年产3000吨六氟磷酸锂和1000吨新型锂盐的生产能力。

二、项目建设背景

(一)锂电池行业背景

1、锂电池性能优越,全球锂电池市场快速发展

锂电池是20世纪90年代开发成功的新型绿色电池,近十几年来发展迅猛,在小型电池市场中占据了最大的市场份额,已成为化学电源应用领域中最具竞争力的电池。

锂电池在充电时,Li+从正极脱嵌,经过电解质嵌入负极,此时正极处于贫锂态,负极处于富锂态;放电时则相反。与传统的镍铬镍氢电池相比,锂电池具有能量密度高、无记忆效应、寿命长、自放电小、绿色环保等优势,是21世纪发展的理想电源,目前已在移动电话、摄像机、笔记本电脑、便携式电器上大量应用,并开始向电动汽车及替代领域市场快速扩张。

随着比传统功能手机更耗电的智能手机以及平板电脑、电动汽车等新兴市场的崛起,推动了锂电池市场的快速发展和市场普及。2011 年以来,全球锂电池市场进入到高速发展通道,2014 年市场规模是2011 年的2.5 倍,年均复合增长率高达32.51%。到2014 年全球锂电池市场规模快速发展到6646.5万kWh。据真锂研究和中国电池网预计, 2015-2020 年全球锂电池规模将保持20%以上的年复合增速。

2、锂电池行业政策支持力度不断加大

随着电子产品的快速发展,为了应对能源危机以及保护环境等共性问题的客观需求,锂电池的研究与推广成为国家重点关注的领域,为此政府相继推出了一系列强有力政策来推动锂电池市场的快速发展。政策内容包括示范推广、财政补贴、税收减免、技术创新与政府采购等多个方面,为我国锂电池行业的发展奠定了良好的政策基础。

近年来,国家出台的支持锂电池行业发展的主要政策包括:

3、锂电池市场下游市场需求广阔

锂电池主要应用于三大领域:消费电池、动力电池、储能电池。目前,消费类电池占80%,主要应用于手机、笔记本等一些3C 产品,由于该领域发展已经步入成熟稳定阶段,预计每年以10%的速度温和增长。而动力电池受益于新能源汽车的快速增长、储能电池受益于风光发电和微网的发展将成为锂电池增长的重要拉动力。

我国新能源汽车近年来呈现翻倍式增长,2014到2015年,中国新能源汽车销量从7.5万辆增长到33.1万辆。根据国务院《节能与新能源汽车产业发展规划(2012-2020)》,到2015年新能源汽车累计销量要超过500万辆。根据规划的目标测算,至2020年其新能源汽车整车市场空间保守预计已超2500亿。

在现有的新能源汽车动力电池中,锂电池生产成本相对较低,重复充电利用非常方便,相比其他可携带能源具有更高的成本优势。因此,这类电池成为了目前最受欢迎的动力电源。十三五期间,国内动力电池预计总需求在 170Gwh 左右,电子数码产品对锂电池的需求增速比较稳定,预计消费电池总需求为100Gwh 左右,加上储能消费电池总需求为30Gwh 左右,合计超过300Gwh。十三五期间锂电池需求年平均增速为25%以上。

(二)锂电池电解质锂盐市场概况

1、锂盐是电解质核心材料,技术壁垒较高

锂电池的主要配件由正极材料、负极材料、电解质、隔膜四大部分组成。电解质是锂电池制造所需的四大关键材料之一,由溶剂、电解质和添加剂按一定比例配置而成,在正负极之间起传导锂离子的作用,是锂电池获得高电压、高比能量的保证,对电池的比容量、工作温度范围、循环效率和安全性能等至关重要。尽管锂盐和添加剂二者之和只占整个电解液的质量的10?15%,但它们是实现电解液核心功能的不可替代的材料。核心原材料六氟磷酸锂是电解液成本占比最大的部分,约占电解液总成本的 50%左右。

电解质中锂盐的性质决定了电解液的关键基本化学和电化学性能,六氟磷酸锂是目前商品锂电池普遍采用的锂盐。由于其较高的技术壁垒,中国仅有少数企业能够规模化生产。从全球市场来看,目前,日本森田化学、关东电化和Stella Chemifa三家公司是全球六氟磷酸锂的主要供应商;韩国有少量的六氟磷酸锂供给三星电子。

开发具有提升六氟磷酸锂化学稳定性的新型锂盐作为功能添加剂,通过提高六氟磷酸锂电解液的耐高温性能或改善石墨负极表面的固体电解质界面膜性能,特别是抑制氟化氢生成,从而实现电池高温循环稳定性的提升,包括延长循环寿命、提高倍率性能和安全性,是近年电解液性能优化的技术发展方向之一。

新型锂盐双氟磺酰亚胺锂热稳定性高,耐水解、电导率高,其作为添加剂加入六氟磷酸锂电解液中,一方面通过抑制电解液中氟化氢生成,阻断六氟磷酸锂的缓慢持续分解,实现电解液化学稳定性的实质性提升;另一方面通过提高电解液的导电率和发挥其独特的SEI成膜能力,不仅提升了电池循环能力,而且有效提高电池的低温放电性能、以及高温保存后的容量保持率,同时还有抑制膨胀的效果。

2、电解质锂盐市场需求广阔

由于产品供不应求,六氟磷酸锂价格自去年下半年以来持续上涨,由15 年年中9 万/吨涨至目前约40 万/吨。

(数据来源:中国产业信息网)

随着国内锂电池产业的快速发展,六氟磷酸锂产品需求旺盛,目前的产能难以满足下游需求。由于六氟磷酸锂的技术壁垒较高,扩产周期较长,新厂商较难进入,新增产能多由原有厂商投放。目前全球行业总产能约1.5万吨,累计2.2万吨扩产计划,而2016年需求约为1.7万吨,市场供应格局将继续偏紧。

根据《赛迪-2014年中国锂离子电池电解液市场分析》的统计和预测,2014年全球电解液出货量8.25万吨,全球六氟磷酸锂出货量1.35万吨;预计到2020年全球电解液用量将超过15.2万吨,相应六氟磷酸锂用量将超过2.49万吨。

三、项目可行性分析

(一)公司拥有丰富的氟精细化工行业经验

永太科技自1999年成立便专注于精细化工产品的生产、研发和销售,产品主要应用于医药、农药、电子化学品等领域。公司已成为我国有机氟精细化学品的龙头企业,是行业内产品链最完善、产能最大的苯系列氟精细化学品的生产商之一。凭借强大的技术优势和丰富的行业经验,公司现已是多家跨国专利药厂商的长期合格供应商,成为专利创新性跨国企业全球供应链上不可或缺的关键一环。

(二)公司拥有强大的研发实力

公司拥有健全的研发创新体系,研发实力雄厚。截止2015年底已累计申请发明专利56项,其中24项已获得授权。2014年公司顺利通过高新技术企业复审。公司的研发中心被评为“浙江永太氟精细化学品研究院”、“省级企业技术中心”和“永太氟精细化学品省级高新技术研究开发中心”,

2015年企业技术中心被认定为“国家认定企业技术中心”。

作为氟苯精细化工龙头企业,公司经过多年研发,已经储备和掌握了生产六氟磷酸锂以及新一代含氟电解质材料的核心技术,可以在较短时间内实现产业化。

(三)公司拥有极强的产业化能力和成本控制能力

依托深厚的精细化学品开发与生产经验,公司已形成对精细化工的深刻理解,凭借丰富的产品结构以及专有的联产技术和设备,公司不仅构建了独特而高效的综合性生产平台,更积累了丰富的新产品产业化经验和成本控制经验。从产品放大、产能建设到订单排产,公司均已形成完善的流程,并拥有一支专业而稳定的团队。在生产过程中,研发团队与生产一线密切互动,及时进行工艺路线优化,能够在稳定并提升产品的质量与收率的前提下不断实现成本优化,确保公司产品始终具有市场竞争力。

同时,本项目选址位于福建省“十二五”氟化工产业发展基地,具有良好的基础设施和完善的产业配套,项目合作方永晶化工作为福建省大型氟化工生产企业,也具有丰富的氟化工经验和充足的原材料保障能力。

公司极强的产业化能力以及本项目所整合的各方优势,为该项目的顺利实施提供了有力的保障。(四)公司拥有广阔稳定的产品销售渠道和销售经验

永太科技是产品链最完善、产能最大的氟精细化学品生产商之一,经过十多年的努力,已开发出二氟、三氟、四氟、五氟、邻氟和对氟六大氟苯系列产品,形成了芳香族含氟产品的完整生产链,在全球化工行业享有较高知名度。

经过多年来的市场开拓,依托自身高规格、高品质的产品,已建立了广阔、稳定的销售渠道,拥有一大批稳定的客户,产品覆盖美国、欧洲、日本和印度等主要国际市场。公司产品80%以上出口到欧洲、美国、日本、印度,主导产品市场占有率达70-80%。

经过多年在氟化学行业的精耕细作,公司积累了丰富的产品销售经验,能够精准把握市场动态,快速形成产品需求,为客户提供高品质产品和定制加工服务。同时,基于现有的部分含氟电解质的客户前期认证,公司也已同多家下游厂商建立了联系,为本项目产品的后续市场开拓奠定了基础。

四、项目主要建设内容及目标

本项目的主要建设内容:年产6000吨六氟磷酸锂和2000吨新型锂盐项目,一期年产3000吨六氟磷酸锂和1000吨新型锂盐。具体情况如下:

本项目采用整体规划,分期实施的原则,由公司的控股子公司永太高新负责实施,建设投资生产车间、生产设备、环保设施、仓库、公用工程等,以形成一期年产3000吨六氟磷酸锂和1000吨

新型锂盐的生产能力。

五、项目建设主体及地点

本项目系由永太高新拟在邵武市金塘工业园区内取得的土地进行投资建设。

六、项目建设周期

一期项目产业化建设的建设期预计约为1.5年。根据公司的计划,预计在投产第一年达到达产收入的40%,第二年达到达产收入的80%,第三年达到达产收入的100%。

七、项目投资额

一期项目总投资为38,760万元,其中固定资产投资为34,760万元,铺底流动资金4,000万元。

本项目投资资金全部由永太高新自有资金投入。

八、财务评价

一期项目满产后年新增收入94,000万元,年新增净利润9,331万元,税后财务内部收益率29.01%,税后投资回收期(含建设期)为4.89年。

关于磷酸铁锂配方以及制作工艺要点

关于材料应用的一些建议和方法 一、我们推荐的配方: LiFePO4:SP:KS-6:PVDF:NMP=(90-92):(1-2):(2-1):(5-6):(120-140) 二、我们推荐的混合方案: 1.)pvdf母液的配制,5%的pvdf的nmp溶液,搅拌溶解pvdf母液时,一定要充分溶解,最好能高温(50-60度)搅拌一小时,并真空静置2小时,使高分子链充分的伸展,这时的成膜性能最好。 2.)在配置好的母液中添加KS-6,充分润湿并高速搅拌1小时,使其充分分散。利用其片状石墨的润滑作用,为下一步的SP和主材料的分散做准备。 3.)在上述溶液中加入SP,充分湿润,高速搅拌一小时,充分分散后,低速搅拌并抽真空,消除SP的加入引入的气泡。 4.)在上述溶液中加入需要加入量一半的磷酸铁锂,充分湿润,高速(转速3500转以上、线速度350-500之间)搅拌30分钟后,再加入余下材料的一半,高速搅拌60分钟,加入相当于固体材料质量20%-40%的nmp,搅拌30分钟,粘度降低后,加入余下的材料,高速搅拌2-3个小时。加入适量nmp调整浆料粘度,慢速搅拌并抽真空。 三、我们推荐的涂布参数设置、面密度设置、压实密度 涂布参数我们建议烤箱前段温度在90-100度之间,中间温区在110-120度,尾端温区在80-90度,这样极片不易出现开裂和水痕装,粘接效果也较好,关于涂布速度,以充分干燥为标准设置。我们推荐的面密度pd60在300左右,压实密度2.1-2.4,pt30在260左右,压

实密度2.0-2.2。可以保证加工性能,并兼顾到电池容量和功率。对于分切时边缘脱粉的问题,可以考虑调整辊压、分切的顺序,采用先分切,后辊压的方式,这样会降低生产效率,可以弥补粘接性能不好造成整批报废的问题。 四、我们对电池装配的建议 电芯组装是电池生产的关键环节,对电池容量的发挥、电池首次效率、电池的存储性能有较大的影响。因此在这个过程中,一定要对一些关键因素做一些重点控制,如车间粉尘控制、电池装配比控制(电池松紧度)、电池短路测试,隔膜的选择等。我们建议电池的装配比最好不要超过91%、测试电池短路时绝缘测试仪电压应该不低于200v。由于磷酸铁锂超细粉和一次颗粒很小,国产隔膜或者走私过来的次优隔膜可都能对电池的首次效率和荷电存储有较大的影响。五、我们对电池化成和分容制度的建议 对于磷酸铁锂电池的化成,由于磷酸铁锂本征导电率较低,活化相对困难。因此应该考虑在化成前,电解液充分的浸润电极,常温搁置7个小时以上,高温(50-60)老化2个小时以上。化成时最好考虑小电流高电压化成,我们建议化成制度是: 1)0.1c恒流充电5小时,上线电压4v 2)0.2c恒流恒压充电6小时,上限电压4v 3)搁置30分钟 4)0.2c恒流放电至2.0v。 5)如果电池容量和设计容量有较大出入,考虑循环2)-4)步两

二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)应用和合成分析

二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2) 应用和合成分析 引言 二(三氟甲基磺酰)亚胺锂(LiN(CF3SO2)2)是二(全氟甲基磺酰)亚胺盐化合物系列的第1个成员。相对分子质量为287.1,熔点236~237℃,具有良好的热稳定性,加热到360℃才开始分解[1]。一方面,在强拉电子效应的三氟甲基协同参与下,二(三氟甲磺酰)亚胺锂阴离子中N原子上的负电荷可通过共振作用分散到整个O-S-N骨架上而高度离域化,从而大大增强了离子的稳定性。另一方面,电化学稳定性较高,作为锂离子二次电池的电解质,其稳定电压约为5 V。它属于有机阴离子锂盐,从N(CF3SO2)2-的化学结构看,电负性中心的氮原子和2个硫原子同具有强烈的吸电子能力的—CF3官能团并存。其阴离子电荷分散程度高,阴离子半径在目前所见的电解质锂盐中最大[2],因此较易电离。最后,两个大体积三氟甲基的空间位阻,使该类离子的配位能力大大削弱,使它展现出潜在的强的化学亲电性、高Lewis酸酸性及优良的固体表面特征,从而使得该类物质在众多领域具有广泛的用途,如制锂离子二次电池电解质、离子液体、选择性氟化试剂和环境友好的高效Lewis酸催化剂。 1应用 1.1做为电解质盐使用 目前,研究应用于锂离子二次电池的导电锂盐主要有含CF3SO2的甲基锂盐及亚甲基胺锂盐、硼酸锂盐、磷酸锂盐,无机锂盐水溶液作电解质应用于锂离子二次电池,其平均电压较低。若以(LiN(CF3SO2)2)为锂盐溶于有机溶剂中,应用于锂离子二次电池中,电池电压可大大提高。其中,含有LiPF6的有机电解液显示出导电率高、稳定好的电化学性能等优点。LiPF6成为目前商业化的主要电解液的导电锂盐,但其价格较贵,且P-F键易水解断裂使其抗热和抗水解性能不够理想。 (CF3SO2)2NLi用作锂离子电池有机电解质锂盐,具有较高的电化学稳定性和电导率,而且在较高的电压下对铝集液体没有腐蚀作用。用EC/DMC配制成1mol/L电解质溶液,电导率可达1.0×10-2 S/cm。在-30℃下电导率还在10-3S/cm 以上,这对于军事应用极为重要[3]。 1.2合成室温离子液体

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

关于磷酸铁锂电池的知识

关于磷酸铁锂电池的知识 导读:锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 1.介绍 磷酸铁锂电池属于锂离子二次电池,一个主要用途是用作动力电池,相对NI-MH、Ni-Cd电池有很大优势。 磷酸铁锂电池充放电效率较高,倍率放电情况下充放电效率可达90%以上。而铅酸电池约为80%。 2.八大优势 安全性能的改善 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质,因此拥有良好的安全性。有报告指出,实际操作中针刺或短路实验中发现有小部分

样品出现燃烧现象,但未出现一例爆炸事件,而过充实验中使用大大超出自身放电电压数倍的高电压充电,发现依然有爆炸现象。虽然如此,其过充安全性较之普通液态电解液钴酸锂电池,已大有改善。寿命的改善 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理论寿命将达到7~8年。综合考虑,性能价格比理论上为铅酸电池的4倍以上。大电流放电可大电流2C快速充放电,在专用充电器下,1.5C 充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。 高温性能好 磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。 大容量 具有比普通电池(铅酸等)更大的容量。5AH-1000AH(单体) 无记忆效应 可充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而

双(多氟烷氧基磺酰)亚胺碱金属盐的合成、表征及锂盐电解液的性质

Vol.35高等学校化学学报No.42014年4月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 804~811 doi:10.7503/cjcu20131151 双(多氟烷氧基磺酰)亚胺碱金属盐的 合成二表征及锂盐电解液的性质 张 恒,刘成勇,巩守哲,冯文芳,徐 飞,聂 进,周志彬 (大型电池关键材料与系统教育部重点实验室,华中科技大学化学与化工学院,武汉430074) 摘要 制备并表征了双(三氟乙氧基磺酰)亚胺{[N(SO 2OCH 2CF 3)2]-,TFESI -}和双(六氟异丙氧基磺酰)亚胺({N[SO 2OCH(CF 3)2]2}-,HFPSI -)2个阴离子的10种碱金属盐,并采用示差扫描量热仪(DSC)和热重分析仪(TGA)研究了其相变行为和热稳定性.测试了LiTFESI 和LiHFPSI 与碳酸乙烯酯(EC)/碳酸甲乙酯(EMC)(3∶7,体积比)组成的电解液的电导率二氧化电位及对铝箔的腐蚀性.结果表明,所制备的碱金属盐均具有较高的纯度和热分解温度(>200℃)及较低的熔点(117~211℃);LiTFESI?EC /EMC 和LiHFPSI?EC /EMC 电解液均具有较高的电导率和氧化电位,并对铝箔具有良好的钝化性能,有可能作为锂离子电池的导电盐或添加剂. 关键词 双(三氟乙氧基磺酰)亚胺阴离子;双(六氟异丙氧基磺酰)亚胺阴离子;碱金属盐;非水电解液; 锂离子电池 中图分类号 O646 文献标志码 A 收稿日期:2013?11?26. 基金项目:国家自然科学基金(批准号:51172083)资助. 联系人简介:聂 进,男,博士,教授,博士生导师,主要从事有机氟化学和含氟有机功能材料研究. E?mail:niejin@https://www.doczj.com/doc/582424584.html, 周志彬,男,博士,教授,博士生导师,主要从事有机氟化学和电解质材料研究.E?mail:zb?zhou@https://www.doczj.com/doc/582424584.html, 在现有商业化锂离子电池中,六氟磷酸锂(LiPF 6)是被广泛使用的导电盐,这主要是基于LiPF 6的电解液具有电导率高二耐氧化还原能力强二对正极集流体铝箔的钝化性能好及与正负极材料的相容性好等优异性能,满足现有锂离子电池室温附近的应用要求.但LiPF 6作为导电盐也具有明显缺陷,如热稳定性差和易水解产生HF,造成电池的循环寿命短(特别是高温条件下)并带来安全隐患[1],已成为发展长寿命大型动力与储能电池的技术瓶颈之一.因此,寻找高性能新型锂盐替代LiPF 6或作为添加剂提升LiPF 6的性能,一直是国内外产业和学术界的努力目标[1~6].人们设计和合成了各种锂盐, 如以N,P,C,B 等为中心原子的弱配位阴离子的多种锂盐[2~5],以期替代LiPF 6.其中,由Armand 等[7]提出的双(三氟甲基磺酰)亚胺锂{Li[N(SO 2CF 3)2],LiTFSI}受到了广泛的研究.然而LiTFSI 腐蚀铝集流体,限制了其作为主导电盐的应用[8].最近,基于弱配位含氟磺酰亚胺阴离子的碱金属盐的低共熔点融熔盐作为常温电解质已经成为一个研究热点[9~12].尤其是双(氟磺酰)亚胺锂{Li[N(SO 2F)2],LiFSI}与双(氟磺酰)亚胺钾{K[N(SO 2F)2],KFSI}组成的熔融盐具有较低的熔点(最低共融温度为75℃)[12],明显低于双(三氟甲基磺酰)亚胺{[N(SO 2CF 3)2]-,TFSI -}[9]以及双(五氟乙基磺酰)亚胺{[N(SO 2C 2F 5)2]-,BETI -}[11]等阴离子的碱金属盐的熔融盐的低共熔点,使电池在常温下运行成为可能.聂进等[13,14]曾报道了另一类以含N 原子为中心的磺酰亚胺阴离子的锂盐,即双(多氟烷氧基磺酰)亚胺锂{Li[N(SO 2OR f )2],R f =CH 2CF 3,CH(CF 3)2},电化学性能测试结果表明,这类锂盐在碳酸酯体系中具有较高的耐氧化电位和铝箔腐蚀电位.进一步的原型锂离子电池性能测试结果表明,基于Li[N(SO 2OR f )2]电解液的石墨/LiCoO 2锂离子电池在室温下有较好的循环性能[15~17].但目前对含有这类阴离子的碱金属盐的物理化学性质(如熔点二热稳定性等)的研究极少,而这些基础数据是评价其能否实际应用于电解质材料时必不可少的.另一方面,由于这类阴离子在结构上具有

温度对磷酸铁锂电池的影响分析

温度对磷酸铁锂电池的影响分析 锂离子电池具有工作电压高(是镍氢、镍镉电池的3倍)、比能大(可达165Wh/kg,是镍氢电池的3倍)、体积小、质量轻、循环寿命长、自放电低、无记忆效应、无污染等众多优点。在新能源行业磷酸铁锂电池被看好,电池循环寿命可达到6000次左右,放电稳定,被广泛应用在动力电池和储能等领域。 但其推广的速度及应用领域广度、深度却不尽如意。阻碍其快速推广的因素除了价格、电池材料自身引起的批次一致性等因素外,其温度性能也是重要因素。此文考察了温度对磷酸铁锂电池性能的影响,同时考察了电池组在高低温情况下的充放电情况。 一、单体(模组)常温循环汇总 常温测试电池的循环寿命可以看出,磷酸铁锂电池的长寿命优势,目前做到3314个循环,容量保持率依然在90%,而达到80%的寿命终止可能要做到4000次左右。 1、单体循环 目前已完成:3314cyc,容量保持率为90%。 受电芯的加工工艺和模组的成组工艺影响,电池在PACK完成后其中的不一致性已经形成,工艺越精湛成组的内阻越小,电芯间的差异性越小。以下模组

的循环寿命是目前大部分磷酸铁锂能做到的基本数据,这样在使用过程中就需要BMS对电池组定期进行均衡,减小电芯间差异,延长使用寿命。 2、模组循环 目前已完成:2834cyc,容量保持率为67.26%。 二、单体高温循环汇总 高温工况下加速电池的老化寿命。 1、单体充放电曲线 2、高温循环

高温循环完成1100cyc,容量保持率为73.8%。 三、低温对充放电性能影响 电池在0~-20℃温度下,放电容量分别相当于25℃温度下放电容量的88.05%、65.52%和38.88%;放电平均电压依次为3.134、2.963 V和2.788 V,一20℃放电平均电压比25℃时降低了0.431 V。从上述分析可知,随着温度的降低,锂离子电池的放电平均电压和放电容量均有所降低,尤其当温度为-20℃时,电池的放电容量和放电平均电压下降较快。

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

锂电池、磷酸铁锂电池类-名词解析

电池名词解释 最近发现有许多人对电池的专有名词有一些误解,因此笔者在此 对这些名词做一些整理,希望能帮助大家正确的了解,而不要产生一些认知的误会。 一次电池 顾名思义为只可使用一次性的电池,当电池内以化学能转变为电 能来提供电力,也无法透过充电或其它方式将原有电能补充回来,因此完全放电后将不可再使用,这是电化学反应为不可逆转。一般市面上常见的干电池、碳锌电池、碱性电池、水银电池、锌空气电池等, 皆属此一次性电池。不同的一次性电池种类有不同的使用方式,但都局限于单次的使用。在制造上许多电池种类的原料使用及制程上所使用的材料具有污染性,对环境以及人体具有相当大的影响。 二次电池 二次电池是可以再重复使用的电池,可持续的充电、放电使用, 二次电池一样是经过化学能转换成电能,但可以藉由充电方式,将电能重新转化成化学能,便可让电池再次使用,而使用的次数随着材料与设计有其差异性。市面上常见的有铅酸电池、胶体电池、镍镉电池、镍氢电池、锂离子电池、锂离子聚合物电池、磷酸铁锂电池等。不同种类的二次电池因为其额定电压、额定容量、使用温度以及安全性, 有其不同的使用。在制造上许多电池种类的原料使用及制程上所使用的材料具有污染性,对环境以及人体具有相当大的影响。 碳锌电池 碳锌电池又称碳锌干电池、碳性电池、碳性电芯,外壳由锌构成。 既可以作为电池的容器,又可以作为电池的负极。碳锌电池是从液体Leelanche电池发展而来。传统或一般型以氯化铵为电解质;电池则

通常是使用氯化锌为电解质的碳锌电池,是一般使用的廉价电池的一种改良版。电池的正极主要是由粉末状的二氧化锰和碳构成。电解液 是把氯化锌和氯化铵溶于水中所形成的糊状溶液。碳锌电池是最便宜的原电池,因此成为很多厂商的首选,因为这些厂商所销售的设备中常常需要配送电池。锌碳电池可以用于遥控器、闪光灯、玩具或晶体管收音机等功率不大的设备。此电池正极的碳棒与二氧化锰中所混合的碳只负责引出电流,并不参与反应,正极实际参与还原反应并提供正电的是二氧化锰中的锰,因此,又称为锰锌电池、锌锰电池或锌一 氧化锰电池,也有简称锰干电池的。碳锌电池的电压为。 锌空气电池 锌空气电池(Zinc-air battery) 是一类结构特殊的品种。负极采用了锌合金。而正极材料,则是空气中的氧。在储存时一般保持密封, 所以基本上没有自放电。又称锌氧电池,有时也被称为锌空电池。由于锌空电池内部含有高浓度的电解质 (氢氧化钾具有强碱性、强腐蚀

磷酸铁锂生产配方及工艺

正极材料调试详细工艺流程 1.原材料检验 1.1磷酸铁:纯度99.5%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量检 测报告) 1.2碳酸锂:纯度99.5%以上,D90粒度小于5um ; 1.3蔗糖:纯度99.5%以上,D90粒度小于5um ; 1.4纯水:电导率大于10兆欧。 1.5氮气:99.999% 1.6分散剂:聚乙二醇(PEG) 2.工艺过程 2.1磷酸铁烘干除水 (1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。 (2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。 2.2研磨机混料工序 正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同(调试时一台单独运行亦可),程序如下: (1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。 (2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。 (3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。 2.3分散机机物料分散工序

(1)将2.2两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg(包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。 2.4喷雾干燥工序 (1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。 (2)可以按照喷雾粒度大小调节固含量为15%~30%。 2.5液压机物料压块装料 分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。 2.6推板炉烧结 先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。 2.7辊压超细磨 将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。 2.8筛分、包装 将研磨物料进行筛分、包装。5Kg、25Kg两种规格。 2.9检验、入库 产品检验、贴标签入库。包括:产品名称、检验人、物料批次、日期。

LiFSI(双氟磺酰亚胺锂)分析报告

2016年7月出版

正文目录 1、需求持续增长,传统锂盐供给仍将紧张 (4) 1.1、受益新能源汽车产业发展,六氟磷酸锂需求持续增长 (4) 1.2、受制产能扩张速度,年底前锂盐持续紧张 (5) 1.3、供给扩产加速,但形成有效供给需要时间 (6) 2、新型溶质开始产业化 (7) 2.1、目前锂电池电解液所面临的问题 (7) 2.1.1、电池高低温性能波动很大,带来车辆使用的不便 (8) 2.1.2、电池中水分含量影响电池使用寿命 (10) 2.2、LiFSI(双氟磺酰亚胺锂)概述 (11) 2.3、LiFSI的性能及比较优势 (12) 3、新型溶质应用现状及展望 (15) 3.1、LiFSI当前行业发展现状 (15) 3.2、LiFSI 有望在固态电池领域大显身手 (16) 3.3、LiFSI 市场空间测算 (17) 4、主要公司分析 (18) 4.1、天赐材料 (18) 4.2、长园集团 (19) 4.3、天际股份 (20) 4.4、其他公司 (20) 图表目录 图表 1:六氟磷酸锂在电解液中成本占比(涨价之前) (4) 图表 2:2015-2020年六氟磷酸锂需求量测算 (4) 图表 3:2012-2016年6月六氟磷酸锂现货价格走势 (5) 图表 4:上市公司关于六氟磷酸锂的投建信息 (6) 图表 5:2015年六氟磷酸锂主要生产企业及产能规模 (6) 图表 6:电解液是电池结构中正负极的导电载体 (7) 图表 7:锂离子电池高温性能比较 (8) 图表 8:锂离子电池低温性能比较 (9) 图表 9:电解液溶质LIPF6(六氟磷酸锂)与水发生反应生产强腐蚀的HF(氢氟酸) (10) 图表 10:水分对电池内阻的影响 (10) 图表 11:水分对电池寿命的影响 (11) 图表 12:LiFSI 介绍 (11) 图表 13:LiFSI 与LiPF6 分子式比较 (12) 图表 14:LiFSI 生产工艺示意 (12) 图表 15:早期锂电池电解液溶质的比较与选择 (13) 图表 16:LiFSI与LiPF6的性能比较 (13) 图表 17:相比LIPF6,LiFSI 遇水有更好的稳定性 (13) 图表 18:LiFSI 关键性能优势对下游应用的改变 (14) 图表 19:LiFSI离产业化应用需要解决的问题 (15)

浅析磷酸铁锂电池的优点及缺点

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/582424584.html,)浅析磷酸铁锂电池的优点及缺点 磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池。 一、工作原理 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。 二、意义 金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)存储量较多。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是挺便宜的。它的另一个特点是对环境环保无污染。 作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C 放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 三、结构与工作原理

LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。 LiFePO4电池在充电时,正极中的锂离子Li通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。 四、主要性能 LiFePO4电池的标称电压是3.2V、终止充电电压是3.6V、终止放电压是2.0V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。 这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。 磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。 五、过放电到零电压试验: 采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。

磷酸铁锂概况

磷酸铁锂概况 1.1 磷酸铁锂的基本概况 磷酸铁锂英文名:LITHIUM IRON PHOSPHATE CARBON COATED;简称LFP; 分子式:LiFePO4; 分子量:157.76; CAS:15365-14-7; 磷酸铁锂(分子式LiFePO4,简称LFP),是锂离子电池的一种正极材料,其特点是原料价格低廉丰富,工作电压适中、电容量大、高放电功率、可快速充电且循环寿命长、稳定性高,自90年代被发现后,成为了引发了锂电池革命的新材料,是当前电池发展领域的前沿。 磷酸铁锂电极材料主要用于各种锂离子电池。采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池,由于磷酸铁锂电池的众多优点,被广泛使用于各个领域。 目前全球已经有很多厂家开始了工业化生产磷酸铁锂,国外加拿大Phostech Lithium公司、美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。世界各国正竞相实现产业化生产。 目前,国内的磷酸铁锂产业投资热正在兴起,其势头超过了其他任何国家。 1.2 磷酸铁锂性能特点 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂电池正极材料其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,

寿命长等优点,是新一代锂离子电池的理想正极材料。 磷酸铁锂优势性能主要有: 1、比容量大,高效率输出,高能量密度。磷酸铁锂标准放电为2~5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C;理论比容量为170mAh/g,产品实际比容量可超过140 mAh/g(0.2C,25℃); 2、结构稳定、安全性能好。磷酸铁锂是目前最安全的锂离子电池正极材料;不含任何对人体有害的重金属元素;即使电池内部或外部受到伤害,电池不燃烧、不爆炸、安全性最好。 3、循环寿命长。经500次循环,其放电容量仍大于95%;实验室制备的磷酸铁锂单体电池在进行IC的循环测试时,循环寿命高达2000次。在100%DOD 条件下,可以充放电2000次以上;(原因:磷酸铁锂晶格稳定性好,锂离子的嵌入和脱出对晶格的影响不大,故而具有良好的可逆性。存在的不足是电子离子传到率差,不适宜大电流的充放电,在应用方面受阻。解决方法:在电极表面包覆导电材料、掺杂进行电极改性。) 4、资源丰富、成本低廉。磷酸铁锂原材料来源广泛、价格便宜。 5、充电性能好。磷酸铁锂正极材料的锂电池,可以使用大倍率充电,最快可在1小时内将电池充满。可快速充电,自放电少,无记忆效应。可大电流2C 快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C。过放电到零伏也无损坏,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 6、工作温度范围宽广(-20℃~+75℃)。高温时性能良好:外部温度65℃时内部温度则高达95℃,电池放电结束时温度可达160℃,电池内部结构安全、完好。 磷酸铁锂性能缺点主要有: 1、导电性能差。目前在实际生产过程中通过在前驱体添加有机碳源和高价金属离子联合掺杂的办法来改善材料的导电性(A123、烟台卓能正采用这种方法),研究表明,磷酸铁锂的电导率提高了7个数量级,使磷酸铁锂具备了和钴

锂硫电池用聚硫化物正极材料、设备制作方法及应用与设计方案

图片简介: 本技术介绍了一种锂硫电池用聚硫化物正极材料、制备方法及应用,属于锂硫电池电极材料技术领域。该制备方法为:以氢氧化钠、硫粉和卤代烷为原料,调控结构导向剂的种类以及界面反应,制备具有高能量、高功率、高稳定性的锂硫电池用聚硫化物电极材料。本技术的材料应用于锂硫电池正极,不仅提高了材料的导电性,而且有效的缓解了体积膨胀,抑制了多硫化锂的产生,将穿梭效应减少至接近零,保证了优异的循环性能和倍率性能,使复合材料达到了较长的循环稳定性。是一种工艺流程简单、安全、环保,具有大规模生产潜力的锂硫电池正极材料。 技术要求 1.一种锂硫电池用聚硫化物正极材料的制备方法,其特征在于,包括以下步骤: (1)将硫粉加入氢氧化钠溶液中,氢氧化钠溶液的浓度为0.5~2.0mol/L,硫粉质量与氢氧 化钠溶液体积的比值为1-5g:30-80ml,温度为90-120℃,搅拌溶解; (2)向步骤(1)的溶液中加入去离子水和无水乙醇,搅拌均匀; (3)向步骤(2)中加入氯烷烃,所述的氯烷烃体积用量与硫粉质量比值为0.5-2.0ml:1-5g,反应温度为30-90℃,反应时间为3-10h; (4)待反应完成后,离心、洗涤、干燥,得到锂硫电池聚硫化物正极材料。

2.根据权利要求1所述的制备方法,所述的步骤(2)的去离子水和无水乙醇的体积用量与硫粉质量的比值为10-20ml:3-10ml:1-5g。 3.根据权利要求1或2所述的制备方法,其特征在于,所述的步骤(2)中还加入结构导向剂,搅拌均匀。 4.根据权利要求3所述的制备方法,其特征在于,所述的步骤(2)的结构导向剂为表面活性剂、氧化石墨烯、碳纳米管、导电炭黑中的一种或两种以上;所述表面活性剂为F127、聚乙烯吡咯烷酮或十六烷基三甲基溴化铵中的一种或两种以上。 5.根据权利要求1或2或4所述的制备方法,其特征在于,所述的步骤(3)的氯烷烃为氯甲烷、氯乙烷、氯丙烷、氯丁烷中的一种或两种以上。 6.根据权利要求3所述的制备方法,其特征在于,所述的步骤(3)的氯烷烃为氯甲烷、氯乙烷、氯丙烷、氯丁烷中的一种或两种以上。 7.权利要求1-6任一所述方法制备的锂硫电池用聚硫化物正极材料,其特征在于,所述聚硫化物中硫含量为45-85wt%,多硫键中硫数量为2-8。 8.根据权利要求7所述的聚硫化物正极材料,其特征在于,所述聚硫化物的形貌为球形、纤维状和片状,其片状聚硫化物为多孔结构。 9.权利要求1-6任一所述方法制备的锂硫电池用聚硫化物正极材料的应用,其特征在于,聚硫化物应用于锂硫电池,所用的电解液无需任何添加剂。 技术说明书 一种锂硫电池用聚硫化物正极材料、制备方法及应用 技术领域 本技术属于锂电池电极材料领域,具体涉及一种聚硫化物纳米材料作锂电池正极材料及制备方法和应用。 背景技术

2019年氟精细化学品龙头永太科技专题研究:六氟磷酸锂具备成本优势,LiFSI有望产业化

2019年氟精细化学品龙头永太科技专题研究:六氟磷酸锂具备成本优势,LiFSI有望产业化

正文目录 核心观点 (4) 区别于市场的观点 (4) 盈利预测和投资建议 (4) 国内领先的氟精细化学品龙头 (5) 传统业务稳中求进 (8) 液晶化学品有望保持平稳增长 (8) CF光刻胶进口替代空间广阔 (10) 农药化学品阶段性受益于响水爆炸事故 (10) 农化产业链持续延伸 (13) 医药业务进入收获期 (14) 含氟新医药发展趋势向好 (14) 外延并购延伸产业链至原料药制剂领域 (15) 六氟磷酸锂具备成本优势,LiFSI有望产业化 (18) 六氟磷酸锂价格逼近成本线,邵武永太工艺先进有望扭亏为盈 (18) 双氟磺酰亚胺锂性能优势显著,有望逐步产业化 (19) 公司具备柔性综合生产平台,内蒙项目有望进一步完善产业链 (20) 首次覆盖给予“增持”评级 (21) 风险提示 (23) PE/PB – Bands (23) 图表目录 图表1:永太科技主要产品类别及用途 (5) 图表2:公司分业务营收以及同比增速变化情况 (6) 图表3:公司分业务毛利以及同比增速变化情况 (6) 图表4:公司分业务毛利率变化情况 (6) 图表5:公司期间费用率变化情况 (6) 图表6:公司股权结构相对稳定(截至2019年9月30日) (6) 图表7:永太科技主要子公司经营情况 (7) 图表8:公司液晶化学品业务历年营收以及毛利情况 (8) 图表9:公司农药化学品业务历年营收以及毛利情况 (8) 图表10:液晶电视面板出货量持续增长 (8) 图表11:笔记本电脑面板出货量整体平稳 (8) 图表12:平板电脑面板出货量整体平稳 (9) 图表13:液晶显示器面板出货量止跌回升 (9) 图表14:近两年国内将投产的高世代液晶面板生产线 (9) 图表15:2012年以来国内混晶材料国产化率迅速提升 (9)

磷酸铁锂电池配方以及制作工艺

磷酸铁锂电池配方以及制作工艺 关于材料应用的一些建议和方法 一、我们推荐的配方: LiFePO4:SP:KS-6:PVDF:NMP=(90-92):(1-2):(2-1):(5-6):(120-140) 二、我们推荐的混合方案: 1.)pvdf母液的配制,5%的pvdf的nmp溶液,搅拌溶解pvdf母液时,一定要充分溶解,最好能高温(50-60度)搅拌一小时,并真空静置2小时,使高分子链充分的伸展,这时的成膜性能最好。 2.)在配置好的母液中添加KS-6,充分润湿并高速搅拌1小时,使其充分分散。利用其片状石墨的润滑作用,为下一步的SP和主材料的分散做准备。 3.)在上述溶液中加入SP,充分湿润,高速搅拌一小时,充分分散后,低速搅拌并抽真空,消除SP的加入引入的气泡。 4.)在上述溶液中加入需要加入量一半的磷酸铁锂,充分湿润,高速(转速3500转以上、线速度350-500之间)搅拌30分钟后,再加入余下材料的一半,高速搅拌60分钟,加入相当于固体材料质量20%-40%的nmp,搅拌30分钟,粘度降低后,加入余下的材料,高速搅拌2-3个小时。加入适量nmp调整浆料粘度,慢速搅拌并抽真空。 三、我们推荐的涂布参数设置、面密度设置、压实密度 涂布参数我们建议烤箱前段温度在90-100度之间,中间温区在110-120度,尾端温区在80-90度,这样极片不易出现开裂和水痕装,粘接效果也较好,关于涂布速度,以充分干燥为标准设置。我们推荐

的面密度pd60在300左右,压实密度2.1-2.4,pt30在260左右,压实密度2.0-2.2。可以保证加工性能,并兼顾到电池容量和功率。对于分切时边缘脱粉的问题,可以考虑调整辊压、分切的顺序,采用先分切,后辊压的方式,这样会降低生产效率,可以弥补粘接性能不好造成整批报废的问题。 四、我们对电池装配的建议 电芯组装是电池生产的关键环节,对电池容量的发挥、电池首次效率、电池的存储性能有较大的影响。因此在这个过程中,一定要对一些关键因素做一些重点控制,如车间粉尘控制、电池装配比控制(电池松紧度)、电池短路测试,隔膜的选择等。我们建议电池的装配比最好不要超过91%、测试电池短路时绝缘测试仪电压应该不低于200v。由于磷酸铁锂超细粉和一次颗粒很小,国产隔膜或者走私过来的次优隔膜可都能对电池的首次效率和荷电存储有较大的影响。 五、我们对电池化成和分容制度的建议 对于磷酸铁锂电池的化成,由于磷酸铁锂本征导电率较低,活化相对困难。因此应该考虑在化成前,电解液充分的浸润电极,常温搁置7个小时以上,高温(50-60)老化2个小时以上。化成时最好考虑小电流高电压化成,我们建议化成制度是: 1)0.1c恒流充电5小时,上线电压4v 2)0.2c恒流恒压充电6小时,上限电压4v 3)搁置30分钟 4)0.2c恒流放电至2.0v。

磷酸铁锂公司企业名录

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司 十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

磷酸铁锂电池的安全性能研究.docx

磷酸铁锂电池的安全性能研究 电动车应用最基本的要求是保证安全。电池的安全性归根到底体现的是温度问题。任何安全性问题最终的结果就是温度升高直至失控,直至出现安全事故。电池的安全性检测通常包括过充电、过放电、穿刺、挤压、跌落、加热、短路等,在这些情况下,会引起电池温度上升或部分区域温度过高,达到某一底限温度值,大量的热产生由于不能及时被消散引发一系列放热副反应,从而出现热失控。热失控一旦被引发就完全不能停止,直到所有反应物被完全地消耗,在大多数情况下导致电池的破裂,随之伴有火焰和浓烟,有时甚至是电池的爆炸。在锂电池当中,公认的以LiFePO4为正极材料的锂电池具有最好的安全性能。主要是由于LiFePO4在高温条件下的氧保持能力好,即使在超过500℃的高温也不会失氧,比钴酸锂、锰酸锂及三元材料等药高得多。但在滥用条件下,即使LiFePO4为正极的锂电池,也会出现安全性问题。本文主要研究和分析不同的安全性检测条件对磷酸铁锂电池的安全性能检测结果的影响。 安全性问题最终的反映是热量累积或能量短时释放引起的温度迅速升高出现失控。在电池滥用过程中,产生热的原因有以下几个方面:(1)负极SEI膜的分解;(2)负极与电解质的反应;(3)电解液的热分解;(4)电解液在正极的氧化反应;(5)正极的热分解;(6)负极的热分解;(7)隔膜的溶解以及引起的内部短路。电池抵抗各种滥用的能力主要取决于产热和散热的相对速度。当电池的散热速度低于产热速度时,它可能会遭受热失控。 1. 测试对象与设备 2. 试验 3. 结果与分析 3.1过充电 锂离子电池在充电时发生式(1)所示的反应,Li 不完全脱出,生成物为 LiFePO4和 FePO4。LiFePO4—— LiFePO4+ FePO4+ Li +xe 电池过充时,Li+大量脱出,生成的 FePO4增多,引起较大的极化电阻和极化电势,使电池的电压快速升高;过多的锂脱出,极片上的粘结剂被破坏,使正极膏片从集流体上脱离,出现大面积掉膏,脱出的 Li 聚集在负极片上,形成点状白点;电池正极附近的高氧化氛围引起电解液氧化分解使过充电池剩余的电解液较少,电解液分解产生更多的热量和气体,使电池鼓胀加剧,爆炸的可能性加大;LiFePO4在过充时发生了不可逆分解,有氧气和含 Fe 的

相关主题
文本预览
相关文档 最新文档