当前位置:文档之家› 压力传感器数据采集

压力传感器数据采集

压力传感器数据采集
压力传感器数据采集

压力传感器数据采集公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

题目:压力传感器数据采集

摘要

压力传感器是自动控制中使用最多的测量装置之一。在大型的化工项目中,几乎包含了所有压的应用:差压、绝压、表压、高压、微差压、高温、低温,以及各种材质及特殊加工的远传法兰式压力。近年来压力传感器在市

场上大热,在各类消费产品中都可以看到传感器的应用,既丰富了产品的功

能又提高了产品的方便性和易用性,成为吸引消费者关注的新亮点。压力传

感器具有全密封不锈钢焊接结构、小体积、高灵敏度、零点满度可调节应可

用于液压、压铸、中央空调系统、恒压供水、机车制动系统轻工、机械、冶金、石化、环保、空压机等其他自动控制系统。

无线技术能在短距离内用发射、接收模块代替有线电缆的连接。本文给

出了一种基于无线技术的智能压力传感器数据采集系统,由数据采集发射端

和接收端两部分组成。主要介绍了硬件结构设计、软件系统工作流程及测试

结果,并且应用多项式标准化拟合的方法对压力值作了热零点漂移补偿,提高

了传感器的测量精度及温度稳定性。该系统可以在一些特殊的场所实现信号

的采集、处理和发送,解决了复杂的现场连线,并且具有成本低、可靠性好、

实用性强等优点。?

关键词:压力传感器无线技术数据采集

Abstract

Pressure sensor is one of the most frequently used measuring devices in automatic control. In large-scale chemical projects, including almost all the pressure sensor application: differential pressure, absolute pressure, gauge pressure, high pressure,

differential pressure, high temperature, low temperature, and a

variety of materials and special processing transmission flange type pressure sensor. In recent years, pressure sensor in the market hot,

in a wide range of consumer products can see sensor application, not only enrich the functions of the product and improve the products of the convenience and ease of use, become to attract consumer attention, a new bright spot. The pressure sensor has the whole sealing

stainless steel welded structure, small volume, high sensitivity, zero full adjustable should be used for hydraulic, die-casting, central air-conditioning system, constant pressure water supply, locomotive brake system light industry, machinery, metallurgy, petrochemical, environmental protection, air compressor and other automatic control system.

Wireless technology can be used in a short distance to transmit and receive module instead of cable connection. In this paper, a data acquisition system based on wireless technology is presented, which

is composed of two parts, the transmitter and receiver. This paper mainly introduces the hardware structure design, software system work flow and test results, and applies the method of polynomial fitting. The thermal zero drift compensation is used to improve the measurement accuracy and temperature stability of the sensor. The system can realize the signal acquisition, processing and transmission in some special places, which can solve the complicated scene connection, and has the advantages of low cost, good

reliability and strong practicability.

Key words: pressure sensor, wireless technology, data collection

目录

一、实验目的 (1)

二、实验条件 (1)

开发软件 (1)

实验设备 (1)

三、实验设计原理与步骤 (1)

压力传感器信号采集设计原理 (1)

传感器的选用条件 (1)

压力传感器的特点 (2)

A/D转换原理 (2)

无线发射部分 (3)

无线接收部分 (4)

软件部分设计 (5)

四、实验结果分析及总结 (7)

参考文献 (8)

一、实验目的

1、由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。通过压力传感器将需要测量的位置的压力信号转化为电信号。

2、通过本次实验,同学们可以加深对A/D转换器、单片机及系统仿真软件的了解。

二、实验条件

开发软件

Keil C51 是Keil software 公司出品的51系列兼容单片机C语言软件开发系统。Keil C51软件提供了丰富的库数据和功能强大的集成开发调试工具μVision2全是windows界面。keil C51生成的目标代码的效率之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优

势。Keil的版

本目前是V7版本,他是很优秀的8051C编译器。

实验设备

(1)传感器

(2)程控放大器

(3)A/D转换器 ICL7135

(4)无线发射与接收电路

(5)计算机

三、实验设计原理与步骤

压力传感器信号采集设计原理

数据采集系统是指将温度、压力、流量、位移等模拟量进行采集、量化转换成数字量后,以便由计算机进行存储、处理、显示或打印的装置。

图一为压力传感器通过无线来进行信号采集的系统图。

传感器的选用条件

(1)转换范围与被测量实际变化范围相一致

(2)转换精度转换速度应符合整机要求

(3)能满足被测介质和使用环境的特殊要求

(4)能满足用户对可靠性和可维护性的要求

压力传感器的特点

(1).传感器的量程和功能都得到了进一步扩展,能实现对基本参数和特殊参数的测量,满足不同场合的需要。

(2).传感器的灵敏度和测量精度也同时得到了提高,对于微弱信号测量,各种信号的校正和补偿都可以实现,测量数据可以根据需要进行存储。

(3).数据测量的稳定性和可能性得到提升,减小外界环境对压力传感器输出干扰,可以对测量有选择性地进行。

(4).能够实现自我诊断功能,对发生故障的部位能及时且准确地进行锁定,故障状态迅速识别,解决一些通过硬件不能实现的问题。

(5).信号输出形式和接口选择更为多样,通信距离得到更大提高。

A/D转换原理

ICL7135是高精度四位半 CMOS双积分型 A /D 转换器 ,具有如下特点: (1)转换速度为 3 ~ 10次/s ,分辨率相当于 14 位二进制数, 转换误差为±1 LSB ,转换精度高。(2)量程范围0 ~ 1. 999 9 V 。(3)对输入的模拟信号过(欠)量程能够识别 ; 具有自动转换和自动调零功能 ,可保证零点在常温下的长期稳定性。(4)与单片机可直接连接,不需地址选择信号。当ICL7135工作于双极性情况时 ,时钟最高频率为 125 kHz ,可采用 555定时器作为 ICL7135的CLK 时钟输入。当 ICL7135的积分器在积分过程中(对信号积分和反向积分),

其 BUSY 端输出高电平 ,积分器反向积分过零后输出低电平。ICL7135的 POL 端为极性输出端。当输入信号为正时POL 输出高电平; 当输入信号为负时

POL 输出为低电平。B1 、 B2 、 B4 、 B8是 BCD 码输出端。A /D 转换器

的基准电压的精度和稳定性是影响转换精度的主要因素。为保证ICL7135的转换精度 ,我们采用高准确度、低温漂的带隙基准电压源 MC1403向其提供 1 V 的基准电压。A /D 转换器与单片机的基本连线见图 2 。

无线发射部分

发射电路部分由 PT2262 编码器和 F05 发射模块组成。其中 PT2262是一种 CMOS 工艺制造的低功耗低价位通用编码电路 ,能将数据和地址编译成代码的波形。它最大有 12位(A0 ~ A11)三态地址端管脚(悬空 ,接高电平,接低电平),共有 531441 种地址代码。最大有 6 位(D0 ~D5)数据端管脚, 设定的地址码和数据码从 17 脚串行输出。

F05具有较宽的工作电压范围及低功耗特性 ,当发射电压为 3 V 时 ,发射电流约 2 mA ,发射功率较小, 12 V 为最佳工作电压 , 具有较好的发射效果, 发射电流约 5 ~8 mA ,大于 12 V 直流功耗增大 ,有效发射功率不再明显提高。F05系列采用 AM 方式调制以降低功耗 ,数据信号停止,发射电流降为

零。数据电平应接近 F05的实际工作电压以获得较高的调制效果 , F05 对过宽的调制信号易引起调制效率下降, 收发距离变近。当高电平脉冲宽度在0.

08 ~ 1 ms时发射效果较好,大于 1 ms后效率开始下降;当低电平区大于 10 ms ,接收到的数据第一位极易被干扰(即零电平干扰)而引起不解码。如采用CPU 编译码可在

数据识别位前加一些乱码以抑制零电平干扰 ,若是通用编解码器 ,可调整振荡电阻使每组码中间的低电平区小于10 ms 。平时 F05输入端应处于低电平状态 ,输入的数据信号应是正逻辑电平, 幅度最高不应超过 F05 的工作电压。

F05 应垂直安装在印刷电路板边部,应离开周围器件5 mm 以上 ,以免受分布参数影响而停振。发射部分电路见图 3。

图3 发射电路部分设计

无线接收部分

接收电路部分主要由P T2272解码器和 J05接收模块组成。其中 PT2272最多可有 12位(A0 ~ A11)三态地址端管脚,任意组合可提供 531441地址码,最多可有6位(D0 ~D5)数据端输出管脚, 17 脚为解码有效指示输出, PT2272分为锁存型输出或非锁存型输出。J05接收模块采用超外差 ,二次变频结构 ,所有的射频接收、混频、滤波、数据解调,放大整形全部在芯片内完成,接收功能高度集成化。具有二种工作方式选择,以适合解调不同的数据速率。当第3脚悬空(内部已上拉为高电平)时,射频接收带宽较宽,可适应发射频率精度误差较大的声表谐振器稳频的发射机及一般的 LC 发射机。当第3脚接地时,射频接收带宽较窄 ,解调滤波器带宽较大 ,但要求配套的发射机必须具有较高的频率精度及稳定度 ,发射频率必须由晶体或精度较高的声表谐振器稳频。接收部分电路见图 4 。

图 4 接收部分电路设计

软件部分设计

智能压力传感器前端系统软件包括初始化程序、压力和温度的数据采集程序、数字滤波程序、测量算法程序、发送程序等部分组成。系统初始化程序包括堆栈指针的设置、中断源控制字设置和有关工作单元的初始化等。本系统采用的是复合滤波方法 ,此法首先将 n 次采样值按大小排队,然后去掉最大值和最小值 ,再对剩下的 n- 2个采样值求算术平均值。复合滤波法既可以去掉脉冲干扰,又可以对采样值进行平滑加工 ,它兼有中值滤波和算术平均滤波的优点。关于温度引起的压力传感器热零点漂移现象 ,我们采用的是非线性函数多项式拟合的规范化方法。在程序中通过拟合出的规范化多项式 ,对压力值进行温度漂移的补偿计算。最后得到的压力值数据经 P1 口发送到 PT 2262数据端, 由PT2262编码送 F05发射数据。接收端的软件实现比较简单,主要是解码器 PT2272将 J05接收来的数据发送到单片机的P1 口,经单片机处理后由 P2 口发送给 LED 显示。

图5 接收端程序流程图

四、实验结果分析及总结

测试时将数据采集发射电路与信号接收装置相距20 m左右,将压力传感器置于恒温槽中 ,在不同的温度下进行了分组压力测试,实验结果如表 1所示。

从实验结果可以看出,由于在智能传感器系统中融入了温度信息 ,并且应用多项式拟合的算法对压力值进行了零点漂移补偿计算 ,所以基本消除了温度对压力传感器输出信号的影响。

该压力传感器系统由于采用了无线技术来传送采集到的数据信息 ,因此应用起来更加灵活可靠。尤其在一些环境恶劣的场所,较之传统的有线压力监测系统更具优势,有利于实现远程监测。该压力传感器无线数据采集系统具有广泛的应用前景。

实验中总是遇到各种问题,此时我们需要及时翻阅资料询问老师,将问题迅速解决,不把问题留到明天。只有这样我们才能更快的进步,更快的解决问题。

在进行数据采集部分时,我们还考虑到温度对实验的影响,并且进行数据处理计算,消除温度对信号的影响,使数据更加精确。

参考文献

[1]《智能无线数据采集系统》苏亚杜晨红孙以材张超河北工业大学

[2]《基于 AT89C2051 单片机压力传感与检测系统》林延畅, 颜志国, 刘佳明

[3]《智能仪表技术》北京师范大学出版社柳桂国,葛鲁波

[4]《无线信号传输装置及传输方法》张默晗,,王天亮

[5]《电子测量技术基础》张永瑞

[6]《无间断无线信号传输方法及装置》李羿承, 林俊嘉

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

集成压力传感器

湘潭大学论文题目:集成压力传感器 学院:材料与光电物理学院专业:微电子 学号:2010700527 姓名:向俊霖 完成日期:2014年2月24日

目录 摘要 (1) 关键词 (1) 引言 (1) 一、压力传感器的原理 (1) 二、压力传感器的特性以及参数 (2) 三、放大器的原理 (2) 四、集成压力传感器的发展趋势 (3) 五、集成压力传感器的应用 (4) 六、结语 (4) 参考文献 (5)

集成压力传感器 摘要:传感器一般是指具有电输出的装置,由于集成电路技术的发展人们已经研究开发了性能更好的传感器。从市场上来看,压力传感器将保持较大的需求量,本文将对集成压力传感器进行介绍并加以总结。 关键词:集成压力传感器 引言 压力传感器是工业实践中最为常用的一种传感器,集成压力传感器就是通过集成电路(IC)技术将压力传感器与后续的放大器等电路制作在半导体表面,使其变得测量精度高、使用方便。 一、压力传感器的原理 以压阻式压力传感器为例,如下图 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受

MEMS压力传感器原理与应用.

MEMS压力传感器原理与应用 摘要:简述MEMS压力传感器的结构与工作原理,以及应用技术,MEMS压力传感器Die的设计、生产成本分析,从系统应用到销售链。 关键词:MEMS压力传感器 惠斯顿电桥 硅薄膜应力杯 硅压阻式压力传感器硅电容式压力传感器 MEMS(微电子机械系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者 都是在硅片上生成的微机械电子传感器。 硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空

多传感器数据融合技术研究进展_黄漫国

2010年第29卷第3期 传感器与微系统(T r a n s d u c e r a n dM i c r o s y s t e mT e c h n o l o g i e s) 多传感器数据融合技术研究进展* 黄漫国1,2,樊尚春1,2,郑德智1,邢维巍1 (1.北京航空航天大学仪器科学与光电工程学院精密光机电一体化教育部重点实验室,北京100191; 2.传感技术联合国家重点实验室,上海200050) 摘 要:多传感器数据融合是信息领域一个前景广阔的研究方向。由于单一的数据融合算法具有一定的 局限性,将2种或2种以上的数据融合算法进行优势集成已逐渐成为数据融合领域的研究热点。介绍了 数据级、特征级和决策级融合3种数据融合方式的主要特点、方法及应用,归纳了常用的数据融合方法,并 重点阐述了几种多传感器数据融合集成算法的研究进展,简单介绍了多传感器数据融合技术的应用。 关键词:多传感器;数据融合;算法;集成 中图分类号:T P274 文献标识码:A 文章编号:1000—9787(2010)03—0005—04 R e s e a r c hp r o g r e s s o f m u l t i-s e n s o r d a t a f u s i o n t e c h n o l o g y* H U A N GM a n-g u o1,2,F A NS h a n g-c h u n1,2,Z H E N GD e-z h i1,X I N GW e i-w e i1 (1.K e yL a b o r a t o r y o f P r e c i s i o nO p t o-m e c h a n i c s T e c h n o l o g yo f Mi n i s t r y o f E d u c a t i o n,D e p t a r t m e n t o f I n s t r u m e n t S c i e n c e&O p t o-e l e c t r o n i c s E n g i n e e r i n g,B e i h a n gU n i v e r s i t y,B e i j i n g100191,C h i n a; 2.S t a t e K e yL a b o r a t o r i e s o f T r a n s d u c e r T e c h n o l o g y,S h a n g h a i200050,C h i n a) A b s t r a c t:M u l t i-s e n s o r d a t af u s i o ni s w i d er e s e a r c hb r a n c hi ni n f o r m a t i o nf i e l d.A s s i n g l ed a t a f u s i o na l g o r i t h m a l w a y s h a s s o m e l i m i t a t i o n s,t h e i n t e g r a t i o no f t w o o r m o r e d a t a f u s i o na l g o r i t h m s i s b e c o m i n g a r e s e a r c h i n t e r e s t. A d v a n t a g e s o f d a t af u s i o na r ei n t r o d u c e d;m a i nc h a r a c t e r i s t i c s,a l g o r i t h m s a n da p p l i c a t i o n s o f t h r e ed a t af u s i o n m o d e l t y p e s(d a t a l e v e l,c h a r a c t e r i s t i c l e v e l a n d d e c i s i o nl e v e l)a r e p r e s e n t e d.C o m m o n d a t a f u s i o n a l g o r i t h m s a r e c l a s s i f i e d.R e s e a r c h d e v e l o p m e n t s o f s e v e r a l d a t a f u s i o ni n t e g r a t i o na l g o r i t h m s a r e r e v i e w e d.A p p l i c a t i o n so f d a t a f u s i o n t e c h n o l o g ya r e a l s o d i s c u s s e d. K e yw o r d s:m u l t i-s e n s o r;d a t a f u s i o n;a l g o r i t h m s;i n t e g r a t i o n 0 引 言 根据J D L(j o i n t d i r e c t o r so f l a b o r a t o r i e s d a t af u s i o nw o r-k i n gg r o u p)的定义,多传感器数据融合是一种针对单一传感器或多传感器数据或信息的处理技术,通过数据关联、相关和组合等方式以获得对被测环境或对象的更加精确的定位、身份识别以及对当前态势和威胁的全面而及时的评估[1]。 “数据融合”一词出现在20世纪70年代初期,当时并未引起人们的足够重视,只是局限于军事应用方面的研究[2]。指令控制和通信一体化(c o m m a n dc o n t r o l a n dc o m-m u n i c a t i o ni n t e g r a t i o n,C3I)系统率先采用多传感器数据融合技术来采集和处理战场信息并获得成功[3]。而随着工业系统的复杂化和智能化,数据融合近三十多年来取得了迅速发展。如今世界各国都有学者和技术人员在开展数据融合技术的研究,这一领域的研究内容和成果已大量出现在各种学术会议和公开的学术期刊上[4]。近几年,我国对数据融合方面的研究也日益重视,国家自然科学基金和“863”计划已将其列入重点支持项目。各大学、研究机构都在进行学术与工程应用的研究,并做了大量的基础研究工作[5]。 1 数据融合的层次及其分类 1.1 数据融合的层次 多传感器数据融合与经典信号处理方法之间也存在本质的区别,其关键在于数据融合所处理的多传感器信息具有更复杂的形式,而且,可以在不同的信息层次上出现,每个层次代表了对数据不同程度的融合过程,这些信息抽象层次包括数据层(像素级)、特征层和决策层[6]。相应的数据融合也主要有数据级、特征级和决策级融合3种方式,表1对其所属层次、主要特点、方法及应用进行了总结归纳。 收稿日期:2009—07—08 *基金项目:国家“863”计划资助项目(2008A A042207) 5

压力传感器工作原理

压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、压阻式压力传感器原理与应用: 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器结构 压阻式压力传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压力传感器工作原理

电阻应变式压力传感器工作原理细解 2011-10-14 15:37元器件交易网 字号: 中心议题: 电阻应变式压力传感器工作原理 微压力传感器接口电路设计 微压力传感器接口系统的软件设计 微压力传感器接口电路测试与结果分析 解决方案: 电桥放大电路设计 AD7715接口电路设计 单片机接口电路设计 本文采用惠斯通电桥滤出微压力传感器输出的模拟变量,然后用INA118放大器将此信号放大,用7715A/D 进行模数转换,将转换完成的数字量经单片机处理,最后由LCD 将其显示,采用LM334 做的精密5 V 恒流源为电桥电路供电,完成了微压力传感器接口电路设计,既能保证检测的实时性,也能提高测量精度。 微压力传感器信号是控制器的前端,它在测试或控制系统中处于首位,对微压力传感器获取的信号能否进行准确地提取、处理是衡量一个系统可靠性的关键因素。后续接口电路主要指信号调节和转换电路,即能把传感元件输出的电信号转换为便于显示、记录、处理和控制的有用电信号的电路。由于用集成电路工艺制造出的压力传感器往往存在:零点输出和零点温漂,灵敏度温漂,输出信号非线性,输出信号幅值低或不标准化等问题。本文的研究工作,主要集中在以下几个方面:

(1)介绍微压力传感器接口电路总体方案设计、系统的组成和工作原理。 (2)系统的硬件设计,介绍主要硬件的选型及接口电路,包括A/D 转换电路、单片机接口电路、1602显示电路。 (3)对系统采用的软件设计进行研究,并简要阐述主要流程图,包括主程序、A/D 转换程序、1602显示程序。 1 电阻应变式压力传感器工作原理 电阻应变式压力传感器是由电阻应变片组成的测量电路和弹性敏感元件组合起来的传感器。当弹性敏感元件受到压力作用时,将产生应变,粘贴在表面的电阻应变片也会产生应变,表现为电阻值的变化。这样弹性体的变形转化为电阻应变片阻值的变化。把4 个电阻应变片按照桥路方式连接,两输入端施加一定的电压值,两输出端输出的共模电压随着桥路上电阻阻值的变化增加或者减小。一般这种变化的对应关系具有近似线性的关系。找到压力变化和输出共模电压变化的对应关系,就可以通过测量共模电压得到压力值。 当有压力时各桥臂的电阻状态都将改变,电桥的电压输出会有变化。 式中:Uo 为输出电压,Ui 为输入电压。 当输入电压一定且ΔRi <

压力传感器数据采集程序

//date:2010/09/04 //VERSION: U2.0 //#include #include #include //nop //#include //扩展外部 //#include //***********EEPROM 地址************ //16位处理 //00H 零点 //01H 放大倍数 //02H 报警点 //03H 解报点 //04H 断电点 //05H 复电点 //06H 0度补偿 //07H 40度补偿 //08H 自检点 //09H //0AH //0BH //0CH //0DH //********************************** //------------------------------------------- //以下管脚定义 #define EECS P3_5 //EEPROM选通 #define ADCS P3_4 //EEPROM,A/D选通 #define SCLK P2_4 //EEPROM,A/D时钟 #define SDAT P2_5 //EEPROM,A/D数据输入#define DOG P3_2 //看门狗 #define FMQ P0_4 //报警输出 #define BJ P0_5 //报警输出 #define POFF P2_7 //断电输出 #define FOUT P3_7 //频率输出 #define PDT P0_7 //温度 //------------------------------------------- sfr T2MOD = 0xC9;

压力传感器提升抗干扰性的方法

尤其是压电式压力传感器和电容式压力传感器很容易受干扰。压力传感器抗干扰措施一般从结构上下手。智能压力传感器还可以从软件上着手解决。 改进压力传感器的结构,在一定程度上可避免干扰的引入,可有如下途径:将信号处理电路与传感器的敏感元件做成一个整体,即一体化。这样,需传输的信号增强,提高了抗干扰能力。同时,因为是一体化的,也就减少了干扰的引入;集成化传感器具有结构紧凑、功能强的特点,有利于提高抗干扰能力;智能化传感器可以从多方面在软件上采取抗干扰措施,如数字滤波、定时自校、特性补偿等措施。 压力传感器一旦抗干扰性差容易受外界干扰,那么它的价值就打了折扣,其应用范围受到很大的限制。压力传感器是传感器中应用最多的传感器之一,其广泛应用在工业、农业以及服务业。在各种环境下都有应用,所以抗干扰性必须要相当可靠。目前压力传感器已能适应很多环境在使用但是在有的环境中压力传感器的抗干扰性还是不够好,我们必须从多角度,结合高新科技来使得压力传感器的抗干扰性进一步提高。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/5817168431.html,/

最小二乘法在二传感器信息融合中的应用

最小二乘法在传感器信息融合中的应用 摘要本文用多维回归方程建立被测目标参量与传感器输出量 之间的对应关系。并进行多维标定/校准试验,然后,按 最小二乘法原理由试验标定/校准数据计算出均方误差最 小条件的回归方程中的系数。用已知系数的多维回归方程 计算出相应的输入被测目标参数。 关键词最小二乘法信息融合传感器 1引言 通常传感器都存在交叉灵敏度,表现在传感器的输出值不仅决定于一个参量,当其他参量变化时输出值也要发生变化。传感器信息融合技术就是通过对多个参数的监测并采用一定的信息处理方法达到提高每一个参量测量精度的目的。在只要求测量一个目标参量的场合,为达到提高被测目标参量的测量精度的目的,其他参量都是干扰量,其影响应被消除,既然检测了多个参量,每一个参量测量精度都获得提高。 压阻式压力传感器存在对静压、温度的交叉灵敏度,尤其是对温度的敏感成为它最大的缺点。人们为了消除温度对它的影响付出了长期的努力和高昂的代价。近来此类传感器采用了信息融合处理技术使得温度附加误差小于±0.25%FS/55℃,测量精度达到(0.1-0.075)%FS。 本文用多维回归方程建立被测目标参量与传感器输出量之间的对应关系。并进行多维标定/校准试验,然后,按最小二乘法原理由试验标定/校准数据计算出均方误差最小条件的回归方程中的系数。这样,测量时当测得了传感器的输出值,就可用已知系数的多维回归方程计算出相应的输入被测目标参数。 2二传感器信息融合智能传感器 已知压力传感器输出电压U,且存在温度灵敏度。因此只对压力传感器进行一维标定实验,并由此获得输入(压力P)与输出(电压U)特性曲线来求取被测压力值会有较大误差。因为被测压力P不是输出值U的一元函数。现在由另一温度传感器输出电压Ut代表温度信息t,则压力参量P可以用U及Ut二元函数来表示才较完备,即 ) , (Ut P f P=① 同理,可将压力传感器输出电压U描述为压力参量P和温度传感器输出Ut 的二元函数,即 ) , (Ut P g U=② 由二维坐标(U k ,U tk )决定的P k 在一平面上,可利用曲面拟合方程,即二维回 归方程来描述,同样,由二维坐标(P k ,U tk )决定的U k 也在一个平面上,也可由 二维回归方程来描述。 如果回归方程中的各个系数已知,那么用于检测压力P和输出U的二元输入-输出特性,即曲面拟合方程就确定了。为此,首先要进行二维标定实验,然后

MEMS压力传感器

MEMS压力传感器 姓名:唐军杰 学号:09511027 班级: _09511__

目录 引言 (1) 一、压力传感器的发展历程 (2) 二、MEMS微压力传感器原理 (3) 1.硅压阻式压力传感器 (3) 2.硅电容式压力传感器 (4) 三、MEMS微压力传感器的种类与应用范围 (5) 四、MEMS微压力传感器的发展前景 (7) 参考文献 (8)

内容提要 在整个传感器家族中,压力传感器是应用最广泛的产品之一, 每年世界性的压力传感器的专利就有上百项。微压力传感器作为微 型传感器中的一种,在近几年得到了快速广泛的应用。本文详细介 绍了MEMS压力传感器的原理与应用。 [关键词]:MEMS压力传感器微型传感器微电子机械系统 引言 MEMS(Micro Electromechanical System,即微电子机械系统) 是指集微型传感器、执行器以及信号处理和控制电路、接口电路、 通信和电源于一体的微型机电系统。它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器在航空、航天、汽车、生物医学、环境 监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的 应用前景。 MEMS微压力传感器可以用类似集成电路的设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过 程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使 压力控制变得简单、易用和智能化。传统的机械量压力传感器是基 于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此 它不可能如MEMS微压力传感器那样,像集成电路那么微小,而且 成本也远远高于MEMS微压力传感器。相对于传统的机械量传感器,MEMS微压力传感器的尺寸更小,最大的不超过一个厘米,相对于 传统“机械”制造技术,其性价比大幅度提高。

压力传感器数据采集

压力传感器数据采集公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

题目:压力传感器数据采集

摘要 压力传感器是自动控制中使用最多的测量装置之一。在大型的化工项目中,几乎包含了所有压的应用:差压、绝压、表压、高压、微差压、高温、低温,以及各种材质及特殊加工的远传法兰式压力。近年来压力传感器在市 场上大热,在各类消费产品中都可以看到传感器的应用,既丰富了产品的功 能又提高了产品的方便性和易用性,成为吸引消费者关注的新亮点。压力传 感器具有全密封不锈钢焊接结构、小体积、高灵敏度、零点满度可调节应可 用于液压、压铸、中央空调系统、恒压供水、机车制动系统轻工、机械、冶金、石化、环保、空压机等其他自动控制系统。 无线技术能在短距离内用发射、接收模块代替有线电缆的连接。本文给 出了一种基于无线技术的智能压力传感器数据采集系统,由数据采集发射端 和接收端两部分组成。主要介绍了硬件结构设计、软件系统工作流程及测试 结果,并且应用多项式标准化拟合的方法对压力值作了热零点漂移补偿,提高 了传感器的测量精度及温度稳定性。该系统可以在一些特殊的场所实现信号 的采集、处理和发送,解决了复杂的现场连线,并且具有成本低、可靠性好、 实用性强等优点。? 关键词:压力传感器无线技术数据采集 Abstract Pressure sensor is one of the most frequently used measuring devices in automatic control. In large-scale chemical projects, including almost all the pressure sensor application: differential pressure, absolute pressure, gauge pressure, high pressure, differential pressure, high temperature, low temperature, and a variety of materials and special processing transmission flange type pressure sensor. In recent years, pressure sensor in the market hot, in a wide range of consumer products can see sensor application, not only enrich the functions of the product and improve the products of the convenience and ease of use, become to attract consumer attention, a new bright spot. The pressure sensor has the whole sealing

智能压力传感器的设计

密级: NANCHANG UNIVERSITY 学士学位论文 THESIS OF BACHELOR (2009—2013年) 题目智能化压力传感器的设计 学院:环化学院系测控系 专业班级:测控技术与仪器093班 学生姓名:钟刚学号: 5801209114 指导教师:刘诚职称:讲师 起讫日期: 2013.3.15—2013.6.6 南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

传感器及转换器形成系统的“前端”,没有它,许多现代化的电子系统都无法正常工作。传感器已广泛的应用于工业控制系统和能源工业装置当中(如石油和天然气的生产、配电工业)。它们也是制造录音机和录像机这些原始设备产品的重要内在组成部分。大多数这些数字电子系统之所以具有普遍性和强大优势是得益于传感器广泛应用于这些电子电路中。 本课题将深入研究智能压力传感器系统理论及其在压力测试方面的应用,对新型智能压力传感器系统的智能化功能、智能化软件和硬件配置进行全面的设计。提出了一种差动电容式传感器的前置电路,基于电容/ 电压转换的原理,对微小电容变化量进行测量。电路输出的直流电压与差动电容变化量成线性关系,且能对偏差电容和电路的漂移进行自动补偿。 完善智能化软件,实现温度补偿、自动校准、总线数字通讯、自动增益控制等多种智能化特性,使智能化程度尽可能的提高。 关键词:传感器;压力;智能化。

基于BP网络的智能压力传感器系统研究与设计

第24卷第10期2011年10月 传感技术学报 CHINESE JOURNAL OF SENSORS AND ACTUATORS Vol.24No.10Oct.2011 项目来源:陕西省教育厅基金项目(09JK636) 收稿日期:2011-06-01修改日期:2011-07-16 The Research and Design of Intelligent Sensor System Based on BP Network * CUI Jingya ,LV Huimin *,CHENG Sai (Department of Applied physics ,Xi ’an University of Technology ,Xi ’an 710048,China ) Abstract :An intelligent high precision sensor was designed by combining STM32F101C8microprocessor with μC / OS-Ⅱoperating system ,meanwhile ,the corresponding hardware structure and software design were given.By using BP neural network ,two target parameters ,pressure and temperature ,were made do the data combination to reduce the sensitivity of cross-interference.The results show that the sensor can meet the real-time demand under multitask ,and get the performance more accurate ,stable and reliable.Key words :pressure sensor ;BP network ;μC /OS-Ⅱ;STM32F101C8EEACC :1295;7230 doi :10.3969/j.issn.1004-1699.2011.10.011 基于BP 网络的智能压力传感器系统研究与设计 * 崔静雅,吕惠民* , 程赛 (西安理工大学应用物理系,西安710048) 摘要:将STM32F101C8微处理器与μC /OS-Ⅱ操作系统相结合,设计出了一种高精度智能传感器系统,给出了相应的硬件 结构和软件设计。利用BP 神经网络对压力和温度两个目标参量进行数据融合处理,减小了两者相互交叉干扰敏感度。实测结果显示该传感器能满足多任务下的实时性要求,并具有更加精确、稳定、可靠的性能。 关键词:压力传感器;BP 神经网络;μC /OS-Ⅱ;STM32F101C8 中图分类号:TP24 文献标识码:A 文章编号:1004-1699(2011)10-1426-05压力的测控在现代工业自控环境中广泛应用, 涉及水利水电、铁路交通、智能建筑、航空航天、军工等众多行业。随着通讯技术和计算机技术的发展,智能压力传感器技术的发展相对滞后,呈现出“头 脑(计算机)发达,感觉(传感器)迟钝”的现象[1]。为了提高测量精度,如何抑制压力传感器对温度的 交叉敏感性是亟待解决的核心问题 [2] 。 压力传感器的工作原理已经基本定型,通过发 现新的特殊敏感材料[3] 来提高性能已经很困难。目前,国内外常用的解决方法基本有两种:一种是硬件法,但硬件电路大都存在电路复杂、精度低、成本高等缺点 [4] ;另一种是软件法,此类方法是将微处理器与传感器结合起来,利用丰富的软件功能、结合 一定的算法对参量进行数据融合,主要有回归法、最小二阶乘法、神经网络、小波等,其中神经网络具有层次性、联想记忆和并行处理等优点,应用前景良好[5-6] 。近几年,相关文献中多选用BP 神经网络来 提高压力测量的精度[5,7-8] ,但是忽略了温度测量的 准确,且收敛速度慢。本智能传感器系统针对压力 和温度相互交叉干扰的问题,利用BP 神经网络的Levenberg-Marquardt 算法提高了网络收敛速率以及温度和压力两个参量的测量精度,同时在μC /OS -Ⅱ操作平台上,将BP 网络融合算法 嵌入到STM32F101C8微处理器中,实现显示、报警、与PC 机通信等功能,使功能更加完善。 1智能压力传感器的硬件设计 硬件电路的系统方框图如图1所示。 图1 硬件电路系统方框图

压力传感器(大学物理)

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ = (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?- ?+ ?=?ρ ρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

压力传感器信号采集电路

1 引言 压力测量对实时监测和安全生产具有重要的意义。在工业生产中,为了高效、安全生产,必须有效控制生产过程中的诸如压力、流量、温度等主要参数。由于压力控制在生产过程中起着决定性的安全作用,因此有必要准确测量压力。为了测到不同位置的压力值,研制了基于C8051F020单片机的测量仪。通过压力传感器将需要测量的位置的压力信号转化为电信号,再经过OP07运算放大器进行信号放大,送至C805lF020单片机内部的高速率12位A/D转换器,然后将模拟信号转换成单片机可以识别的数字信号,再经单片机转换成液晶显示器可以识别的信息,最后显示输出。与此同时,可以利用SD卡存储器将各通道设定的压力值、系统参数存储起来,以便在系统断电或复位后,能使其继续运行,增强系统的抗干扰性能。 2 硬件电路 图l给出多路压力测量仪的系统框图。其硬件部分主要由压力传感器、 C8051F020单片机、SD卡存储器、液晶显示器、键盘及信号调理电路等组成。 2.1 压力传感器信号采集电路 图2给卅压力传感器信号采集电路。它选用了测量范围广,精度较高,性能价格比好的电阻应变式压力传感器;信号放大部分采用功耗低,输入失调电压小,线性度好的OP07运算放大器:A/D转换模块采用C8051F020内部设置的高速率12位A/D转换器。图2中OP07的输出失调电压为2 mV,通过滑动变阻器R8可调节输出失调电压的大小。

2.2 单片机处理电路 单片机处理电路是测量仪的核心。在此采用美国Cygnal公司生产的 C805lF020 微控制器。该器件采用独特的CIP-8051结构,对指令运行实行流水作业,大大提高了指令的运行速度,可在25 MHz时钟频率下提供高达25 MI/s 的输出,并具有下述独特功能:①真正12位、100 Ks/s的8通道A/D转换器,并带PGA和模拟多路开关;②64 K字节可在系统编程的Flash存储器,其扇区为512字节;③两个12位D/A转换器,具有可编程数据更新方式;④工作电压为2.7~3.6V;⑤用于硬件实现的SPI,SMBus/I2C和两个UART串行接口; ⑥片内看门狗定时器、VDD监视器和温度传感器。 2.3 SD卡存储电路 将SD卡作为外部掉电存储介质用于多路压力测量仪中,利用C8051F020单片机的SPI接口,实现单片机与SD卡存储数据的扩展,并设计了单片机的 SD 卡驱动电路.以满足测量仪对存储大容量数据的要求。SD卡的工作模式有SD模式和SPI模式两种。在此,多路压力测量仪选用SD卡.且工作在SPI模式下。表1给出SD卡各引脚功能定义。图3给出SD卡与单片机的连接电路。其中,CS 是SD卡的片选线,在SPI模式下,CS必须保持低电平有效;DI不但传输数据,还发送命令,其传输方向是由单片机到SD卡;D0除了发送数据,还传送应答信号,其传输方向是由SD卡到单片机;SCLK是操作SD卡的时钟线。相应地将 C805lF020的交叉开关配置成SPI模式,与SD卡所对应的引脚连接,并针对SPI 总线电路设计了上拉电阻。

无线传感器网络作业

无线传感器作业 :传感器网络节点使用的限制因素有哪些? 1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。 2.通信能力有限 3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些 限制必然导致其携带的处理器能力比较弱,存储器容量比较小。 :网络传感器有哪些特点? 1.自组织性 2.数据为中心 3.应用相关性 4.动态性 5.网络规模 6.可靠性 :按照节点功能和结构层次划分,将传感器网络的结构有哪几种?各有什么特点? 答: 1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c 网络结构的形成。由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。 2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提 高网络覆盖率和可靠性。 3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。 4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少 可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。 :传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。 :WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么? 媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。 误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。 :传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么? Event-to-sink 由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。 Sink-to-Sensors

相关主题
文本预览
相关文档 最新文档