当前位置:文档之家› 基于AVRmega128的modbus程序

基于AVRmega128的modbus程序

基于AVRmega128的modbus程序
基于AVRmega128的modbus程序

可读性非常好的MODBUS源代码

(1)为了加快发送采用了:数据空中断

(2)为了保证最后一个字节能够发送到上位机采用了:发送完成中断

#include

#include

#define _USART1_H

#include "DMS2000.h"

const UCHAR auchCRCHi[] = {

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40,

0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1,

0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,

0x80, 0x41, 0x00, 0xC1, 0x81, 0x40

};

const UCHAR auchCRCLo[] = {

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06,

0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,

0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,

0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,

0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,

0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3,

0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,

0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,

0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,

0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED,

0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,

0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60,

0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,

0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,

0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,

0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E,

0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,

0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71,

0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,

0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,

0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B,

0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B,

0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,

0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,

0x43, 0x83, 0x41, 0x81, 0x80, 0x40

};

BOOL volatile USART1_send_mark = FALSE;

UCHAR volatile USART1_sendPosi = 0;

SHORT volatile USART1_receCount = 0;

UCHAR volatile USART1_receTimeOut = 0;

UCHAR volatile USART1_checkoutError = 0;

UCHAR volatile USART1_sendCount = 0;

UCHAR USART1_ch_type = 0;

UCHAR USART1_set_number = 0;

UCHAR USART1_send_buffer[MSCOMM_BUFFER_LENGTH]; UCHAR USART1_mscomm_buffer[MSCOMM_BUFFER_LENGTH];

USHORT CRC16(UCHAR *puchMsg, USHORT usDataLen)

{

UCHAR uchCRCHi = 0xFF;

UCHAR uchCRCLo = 0xFF;

ULONG uIndex;

while (usDataLen--)

{

uIndex = uchCRCHi ^ *puchMsg++;

uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];

uchCRCLo = auchCRCLo[uIndex];

}

return (uchCRCHi << 8 | uchCRCLo);

}

void USART1_Init(SHORT MSCOMM_baud)

{

UCHAR me_STOP = (UCHAR)(MSCOMM_baud & 0x01); UCHAR me_UPM = (UCHAR)(MSCOMM_baud & 0x06) >> 0x01; UCHAR me_Baud = (UCHAR)(MSCOMM_baud & 0x38) >> 0x03;

UCSR1B = 0x00;

UCSR1A = 0x00;

UCSR1C = (1 << UCSZ10) | (1 << UCSZ11);

switch (me_STOP)

{

case 0:

UCSR1C |= (0 << USBS1);

break;

case 1:

UCSR1C |= (1 << USBS1);

break;

}

switch (me_UPM)

{

case 0:

case 1:

UCSR1C |= ((0 << UPM11) | ( 0 << UPM10));

break;

case 2:

UCSR1C |= ((1 << UPM11) | ( 0 << UPM10));

break;

case 3:

UCSR1C |= ((1 << UPM11) | ( 1 << UPM10));

break;

}

switch (me_Baud)

{

case 0:

UBRR1L = 0x3F;

UBRR1H = 0x02;

break;

case 1:

UBRR1L = 0x1F;

UBRR1H = 0x01;

break;

case 2:

UBRR1L = 0x8F;

UBRR1H = 0x00;

break;

case 3:

UBRR1L = 0x47;

UBRR1H = 0x00;

break;

case 4:

UBRR1L = 0x23;

UBRR1H = 0x00;

break;

case 5:

UBRR1L = 0x11;

UBRR1H = 0x00;

break;

case 6:

UBRR1L = 0x0B;

UBRR1H = 0x00;

break;

default:

UBRR1L = 0x05;

UBRR1H = 0x00;

break;

}

UCSR1B = (1 << RXEN1) | (1 << RXCIE1) | (1 << TXEN1);

}

BOOL USART1_CoilRegistersAddr(SHORT startAddr,SHORT registerAmount) {

if (registerAmount >= 1 && registerAmount <= 2000)

{

if (startAddr >= 0 && startAddr <= 4)

{

if ((startAddr + registerAmount - 1) <= 4)

return (TRUE);

}

}

return (FALSE);

}

void USART1_GetCoilVal(SHORT *tempData,SHORT tempAddr)

{

switch (tempAddr)

{

case 0:

*tempData = 0;

break;

}

}

void USART1_SetCoilVal(SHORT OnOff,SHORT tempAddr)

{

}

BOOL USART1_DiscreteRegistersAddr(SHORT startAddr,SHORT registerAmount) {

if (registerAmount >= 1 && registerAmount <= 2000)

{

if (startAddr >= 0 && startAddr <= 7)

{

if ((startAddr + registerAmount - 1) <= 7)

return (TRUE);

}

}

return (FALSE);

}

void USART1_GetDiscreteVal(SHORT *tempData,SHORT tempAddr)

{

switch (tempAddr)

{

case 0:

*tempData = 0;

break;

}

}

BOOL USART1_InputRegisterAddr(SHORT startAddr,SHORT registerAmount)

if (registerAmount >= 1 && registerAmount <= 125)

{

if (startAddr >= 0 && startAddr <= 7)

{

if ((startAddr + registerAmount - 1) <= 7)

return (TRUE);

}

}

return (FALSE);

}

void USART1_GetInputRegisterVal(SHORT *tempData,SHORT tempAddr)

{

switch (tempAddr)

{

case 0:

*tempData = 0;

break;

}

}

BOOL USART1_HoldingRegisterAddr(SHORT startAddr,SHORT registerAmount,UCHAR *set_number) {

if (registerAmount >= 1 && registerAmount <= 125)

{

if (startAddr >= 0 && startAddr < BUFFER_LENGTH)

{

if ((startAddr + registerAmount - 1) < BUFFER_LENGTH)

{

*set_number = startAddr + 1;

return (TRUE);

}

}

}

return (FALSE);

}

void USART1_GetHoldingRegisterVal(SHORT *tempData,UCHAR set_number)

{

}

BOOL USART1_SetHoldingRegisterVal(SHORT tempData,SHORT tempAddr) {

return (FALSE);

}

void USART1_Time_Proc(void)

{

if (USART1_receTimeOut > 0)

{

USART1_receTimeOut--;

if (USART1_receTimeOut == 0 && USART1_receCount > 0)

{

USART1_receCount = 0;

USART1_checkoutError = 0;

if (!USART1_send_mark)

RS485_RECIVE();

}

}

}

void USART1_Begin_Send(void)

{

RS485_SEND();

NOP(); // --------|

NOP(); // |

NOP(); // |-----------等待总线释放

NOP(); // |

NOP(); // --------|

NOP(); // --------|

NOP(); // |

NOP(); // |-----------等待总线释放

NOP(); // |

NOP(); // --------|

USART1_send_mark = TRUE;

USART1_sendPosi = 0;

UCSR1B |= BIT(5);

}

void USART1_MODBUS_Error(UCHAR error_code)

{

USHORT crcData;

USART1_send_buffer[0] = USART1_mscomm_buffer[0];

USART1_send_buffer[1] = USART1_mscomm_buffer[1] | 0x80;

USART1_send_buffer[2] = error_code;

crcData = CRC16(USART1_send_buffer,3);

USART1_send_buffer[3] = crcData >> 8;

USART1_send_buffer[4] = crcData & 0xff;

USART1_sendCount = 5;

USART1_Begin_Send();

}

void USART1_ReadCoilRegisters(void)

{

UCHAR i,k;

UCHAR byteCount;

SHORT registerAmount;

SHORT startAddr;

SHORT tempAddr;

SHORT tempData;

USHORT crcData;

startAddr = (SHORT)(USART1_mscomm_buffer[2] << 8) + (SHORT)USART1_mscomm_buffer[3]; registerAmount = (SHORT)(USART1_mscomm_buffer[4] << 8) + (SHORT)USART1_mscomm_buffer[5]; if (USART1_CoilRegistersAddr(startAddr,registerAmount))

{

tempAddr = startAddr;

byteCount = registerAmount >> 0x03;

if (registerAmount & 0x07)

byteCount++;

for (k = 0 ; k < byteCount ; k++)

{

USART1_send_buffer[k + 3] = 0;

for (i = 0 ; i < 8 ; i++)

{

USART1_GetCoilVal(&tempData,tempAddr++);

USART1_send_buffer[k + 3] |= (tempData << i);

if (tempAddr >= startAddr + registerAmount)

break;

}

USART1_send_buffer[0] = USART1_mscomm_buffer[0];

USART1_send_buffer[1] = USART1_mscomm_buffer[1];

USART1_send_buffer[2] = byteCount;

byteCount += 3;

crcData = CRC16(USART1_send_buffer,byteCount);

USART1_send_buffer[byteCount] = crcData >> 8;

byteCount++;

USART1_send_buffer[byteCount] = crcData & 0xff;

USART1_sendCount = byteCount + 1;

USART1_Begin_Send();

}

else

USART1_MODBUS_Error(2);

}

void USART1_ReadDiscreteRegisters(void)

{

UCHAR i,k;

UCHAR byteCount;

SHORT registerAmount;

SHORT startAddr;

SHORT tempAddr;

SHORT tempData;

USHORT crcData;

startAddr = (SHORT)(USART1_mscomm_buffer[2] << 8) + (SHORT)USART1_mscomm_buffer[3]; registerAmount = (SHORT)(USART1_mscomm_buffer[4] << 8) + (SHORT)USART1_mscomm_buffer[5]; if (USART1_DiscreteRegistersAddr(startAddr,registerAmount))

{

tempAddr = startAddr;

byteCount = registerAmount >> 0x03;

if (registerAmount & 0x07)

byteCount++;

for (k = 0 ; k < byteCount ; k++)

{

USART1_send_buffer[k + 3] = 0;

for (i = 0 ; i < 8 ; i++)

{

USART1_GetDiscreteVal(&tempData,tempAddr++);

USART1_send_buffer[k + 3] |= (tempData << i);

if (tempAddr >= startAddr + registerAmount)

break;

}

}

USART1_send_buffer[0] = USART1_mscomm_buffer[0];

USART1_send_buffer[1] = USART1_mscomm_buffer[1];

USART1_send_buffer[2] = byteCount;

byteCount += 3;

crcData = CRC16(USART1_send_buffer,byteCount);

USART1_send_buffer[byteCount] = crcData >> 8;

byteCount++;

USART1_send_buffer[byteCount] = crcData & 0xff;

USART1_sendCount = byteCount + 1;

USART1_Begin_Send();

}

else

USART1_MODBUS_Error(2);

}

void USART1_ReadHoldingRegisters(void)

{

UCHAR i;

SHORT startAddr;

SHORT registerAmount;

SHORT byteCount;

SHORT tempData;

USHORT crcData;

startAddr = (SHORT)(USART1_mscomm_buffer[2]<<8) + (SHORT)USART1_mscomm_buffer[3]; registerAmount = (SHORT)(USART1_mscomm_buffer[4]<<8) + (SHORT)USART1_mscomm_buffer[5]; if (USART1_HoldingRegisterAddr(startAddr,registerAmount,&USART1_set_number))

{

byteCount = registerAmount << 0x01;

for (i = 0 ; i < registerAmount ; i++)

{

USART1_GetHoldingRegisterVal(&tempData,USART1_set_number++);

USART1_send_buffer[2*i+3] = tempData >> 8;

USART1_send_buffer[2*i+4] = tempData & 0xff;

}

USART1_send_buffer[0] = USART1_mscomm_buffer[0];

USART1_send_buffer[1] = USART1_mscomm_buffer[1];

USART1_send_buffer[2] = byteCount;

byteCount += 3;

crcData = CRC16(USART1_send_buffer,byteCount);

USART1_send_buffer[byteCount] = crcData >> 8;

byteCount++;

USART1_send_buffer[byteCount] = crcData & 0xff;

USART1_sendCount = byteCount + 1;

USART1_Begin_Send();

}

else

USART1_MODBUS_Error(2);

}

void USART1_ReadInputRegisters(void)

{

UCHAR i;

SHORT startAddr;

SHORT tempAddr;

SHORT registerAmount;

SHORT byteCount;

SHORT tempData;

USHORT crcData;

startAddr = (SHORT)(USART1_mscomm_buffer[2]<<8) + (SHORT)USART1_mscomm_buffer[3]; registerAmount = (SHORT)(USART1_mscomm_buffer[4]<<8) + (SHORT)USART1_mscomm_buffer[5]; if (USART1_InputRegisterAddr(startAddr,registerAmount))

{

tempAddr = startAddr;

byteCount = registerAmount << 0x01;

for (i = 0 ; i < registerAmount ; i++)

{

USART1_GetInputRegisterVal(&tempData,tempAddr++);

USART1_send_buffer[2*i+3] = tempData >> 8;

USART1_send_buffer[2*i+4] = tempData & 0xff;

}

USART1_send_buffer[0] = USART1_mscomm_buffer[0];

USART1_send_buffer[1] = USART1_mscomm_buffer[1];

USART1_send_buffer[2] = byteCount;

byteCount += 3;

crcData = CRC16(USART1_send_buffer,byteCount);

USART1_send_buffer[byteCount] = crcData >> 8;

byteCount++;

USART1_send_buffer[byteCount] = crcData & 0xff;

USART1_sendCount = byteCount + 1;

USART1_Begin_Send();

}

else

USART1_MODBUS_Error(2);

}

void USART1_ForceSingleCoil(void)

{

UCHAR i;

SHORT OnOff;

SHORT startAddr;

startAddr = (SHORT)(USART1_mscomm_buffer[2] << 8) + (SHORT)USART1_mscomm_buffer[3]; if (USART1_CoilRegistersAddr(startAddr,1))

{

OnOff = (SHORT)(USART1_mscomm_buffer[4] << 8) + (SHORT)USART1_mscomm_buffer[5]; switch (OnOff)

{

case 0x00:

USART1_SetCoilVal(0,startAddr);

break;

case 0xFF:

USART1_SetCoilVal(1,startAddr);

break;

}

if (USART1_mscomm_buffer[0] == module_addr)

{

for (i = 0 ; i < 8 ; i++)

USART1_send_buffer[i] = USART1_mscomm_buffer[i];

USART1_sendCount = 8;

USART1_Begin_Send();

}

}

else if (USART1_mscomm_buffer[0] == module_addr)

USART1_MODBUS_Error(2);

}

void USART1_PresetSingleHoldingRegister(void)

{

UCHAR i;

SHORT startAddr;

SHORT tempData;

startAddr = (SHORT)(USART1_mscomm_buffer[2]<<8) + (SHORT)USART1_mscomm_buffer[3];

tempData = (SHORT)(USART1_mscomm_buffer[4]<<8) + (SHORT)USART1_mscomm_buffer[5];

if (USART1_HoldingRegisterAddr(startAddr,1,&USART1_set_number))

{

if (USART1_mscomm_buffer[0] == module_addr)

{

for (i = 0 ; i < 8 ; i++)

USART1_send_buffer[i] = USART1_mscomm_buffer[i];

USART1_sendCount = 8;

USART1_Begin_Send();

}

if (USART1_SetHoldingRegisterVal(tempData,startAddr))

{

QUEUE_In_CRC16();

EEPROM_START();

}

}

else if (USART1_mscomm_buffer[0] == module_addr)

USART1_MODBUS_Error(2);

}

void USART1_ForceMultipleCoil(void)

{

UCHAR i,k;

UCHAR byteCount;

SHORT registerAmount;

SHORT startAddr;

SHORT tempAddr;

SHORT OnOff;

USHORT crcData;

startAddr = (SHORT)(USART1_mscomm_buffer[2]<<8) + (SHORT)USART1_mscomm_buffer[3]; registerAmount = (SHORT)(USART1_mscomm_buffer[4] << 8) + (SHORT)USART1_mscomm_buffer[5]; if (USART1_CoilRegistersAddr(startAddr,registerAmount))

{

tempAddr = startAddr;

byteCount = (SHORT)USART1_mscomm_buffer[6];

if (USART1_mscomm_buffer[0] == module_addr)

{

for (i = 0 ; i < 6 ; i++)

USART1_send_buffer[i] = USART1_mscomm_buffer[i];

crcData = CRC16(USART1_send_buffer,6);

USART1_send_buffer[6] = crcData >> 8;

USART1_send_buffer[7] = crcData & 0xff;

USART1_sendCount = 8;

USART1_Begin_Send();

}

for (k = 0 ; k < byteCount ; k++)

{

for (i = 0 ; i < 8 ; i++)

{

OnOff = USART1_mscomm_buffer[k+7] >> i;

if (OnOff & 0x01)

USART1_SetCoilVal(1,tempAddr++);

else

USART1_SetCoilVal(0,tempAddr++);

if (tempAddr >= startAddr + registerAmount)

break;

}

}

}

else if (USART1_mscomm_buffer[0] == module_addr)

USART1_MODBUS_Error(2);

}

void USART1_PresetMultipleHoldingRegisters(void)

{

UCHAR i;

SHORT registerAmount;

SHORT startAddr;

SHORT tempData;

USHORT crcData;

BOOL Enable = FALSE;

startAddr = (SHORT)(USART1_mscomm_buffer[2]<<8) + (SHORT)USART1_mscomm_buffer[3]; registerAmount = (SHORT)(USART1_mscomm_buffer[4]<<8) + (SHORT)USART1_mscomm_buffer[5]; if (USART1_HoldingRegisterAddr(startAddr,registerAmount,&USART1_set_number))

{

if (USART1_mscomm_buffer[0] == module_addr)

{

for (i = 0 ; i < 6 ; i++)

USART1_send_buffer[i] = USART1_mscomm_buffer[i];

crcData = CRC16(USART1_send_buffer,6);

USART1_send_buffer[6] = crcData >> 8;

USART1_send_buffer[7] = crcData & 0xff;

USART1_sendCount = 8;

USART1_Begin_Send();

for (i = 0 ; i < registerAmount ; i++)

{

tempData = (SHORT)(USART1_mscomm_buffer[i*2+7]<<8) + (SHORT)USART1_mscomm_buffer[i*2+8]; if (USART1_SetHoldingRegisterVal(tempData,startAddr++))

Enable = TRUE;

}

if (Enable)

{

QUEUE_In_CRC16();

EEPROM_START();

}

}

else

USART1_MODBUS_Error(2);

}

void USART1_Modbus_Analyze(void)

{

SHORT tempData;

USHORT crcData;

if (USART1_receCount > 5)

{

switch (USART1_mscomm_buffer[1])

{

case 1:

if (USART1_receCount >= 8)

{

UCSR1B &= ~BIT(7);

if (USART1_mscomm_buffer[0] == module_addr && USART1_checkoutError == 0)

{

crcData = CRC16(USART1_mscomm_buffer,6);

if (crcData == (USHORT)(USART1_mscomm_buffer[6] << 8) + (USHORT)USART1_mscomm_buffer[7]) USART1_ReadCoilRegisters();

}

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

break;

case 2:

if (USART1_receCount >= 8)

UCSR1B &= ~BIT(7);

if (USART1_mscomm_buffer[0] == module_addr && USART1_checkoutError == 0)

{

crcData = CRC16(USART1_mscomm_buffer,6);

if (crcData == (USHORT)(USART1_mscomm_buffer[6] << 8) + (USHORT)USART1_mscomm_buffer[7]) USART1_ReadDiscreteRegisters();

}

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

break;

case 3:

if (USART1_receCount >= 8)

{

UCSR1B &= ~BIT(7);

if (USART1_mscomm_buffer[0] == module_addr && USART1_checkoutError == 0)

{

crcData = CRC16(USART1_mscomm_buffer,6);

if (crcData == (USHORT)(USART1_mscomm_buffer[6] << 8) + (USHORT)USART1_mscomm_buffer[7]) USART1_ReadHoldingRegisters();

}

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

break;

case 4:

if (USART1_receCount >= 8)

{

UCSR1B &= ~BIT(7);

if (USART1_mscomm_buffer[0] == module_addr && USART1_checkoutError == 0)

{

crcData = CRC16(USART1_mscomm_buffer,6);

if (crcData == (USHORT)(USART1_mscomm_buffer[6] << 8) + (USHORT)USART1_mscomm_buffer[7]) USART1_ReadInputRegisters();

}

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

break;

case 5:

if (USART1_receCount >= 8)

{

UCSR1B &= ~BIT(7);

if ((USART1_mscomm_buffer[0] == module_addr || USART1_mscomm_buffer[0] == 0) && USART1_checkout Error == 0)

{

crcData = CRC16(USART1_mscomm_buffer,6);

if (crcData == (USHORT)(USART1_mscomm_buffer[6] << 8) + (USHORT)USART1_mscomm_buffer[7]) USART1_ForceSingleCoil();

}

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

break;

case 6:

if (USART1_receCount >= 8)

{

UCSR1B &= ~BIT(7);

if ((USART1_mscomm_buffer[0] == module_addr || USART1_mscomm_buffer[0] == 0) && USART1_checkout Error == 0)

{

crcData = CRC16(USART1_mscomm_buffer,6);

if (crcData == (USHORT)(USART1_mscomm_buffer[6] << 8) + (USHORT)USART1_mscomm_buffer[7]) USART1_PresetSingleHoldingRegister();

}

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

break;

case 15:

if ((USART1_mscomm_buffer[0] == module_addr || USART1_mscomm_buffer[0] == 0) && USART1_checkout Error == 0)

{

tempData = (SHORT)(USART1_mscomm_buffer[6]);

tempData += 9;

if (USART1_receCount >= tempData && USART1_receCount < MSCOMM_BUFFER_LENGTH)

{

UCSR1B &= ~BIT(7);

crcData = CRC16(USART1_mscomm_buffer,tempData - 2);

if (crcData == (USHORT)(USART1_mscomm_buffer[tempData - 2] << 8) + (USHORT)USART1_mscomm_buff er[tempData - 1])

USART1_ForceMultipleCoil();

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

}

break;

case 16:

if ((USART1_mscomm_buffer[0] == module_addr || USART1_mscomm_buffer[0] == 0) && USART1_checkout Error == 0)

{

tempData = (SHORT)(USART1_mscomm_buffer[4]<<8) + (SHORT)USART1_mscomm_buffer[5];

tempData <<= 0x01;

tempData += 9;

if (USART1_receCount >= tempData && USART1_receCount < MSCOMM_BUFFER_LENGTH)

{

UCSR1B &= ~BIT(7);

crcData = CRC16(USART1_mscomm_buffer,tempData - 2);

if (crcData == (USHORT)(USART1_mscomm_buffer[tempData - 2] << 8) + (USHORT)USART1_mscomm_buff er[tempData - 1])

USART1_PresetMultipleHoldingRegisters();

USART1_receCount = 0;

USART1_checkoutError = 0;

UCSR1B |= BIT(7);

}

}

break;

}

}

}

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// 可靠地判断帧结束,防止通信停滞

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

// 利用单独的软件定时器,来判断一帧接收报文结束,可以防止若报文接收不完整,该帧通信任务无法结束而影响下一帧的接收。

//由于一帧报文中字节与字节之间的时间间隔和帧与帧之间的时间间隔相比要小得多,因此每当接收一个新字节,就启动软件定时器

//开始计时,定时器的时间设定为帧与帧的最小时间间隔。波特率不同,该时间间隔也不同。

// (1).若不到预定的时间内又接收到下一个字节,则说明一帧报文未结束,定时器重新计时;若定时器顺利计数到预定时间,就

//会触发相应的中断号,在该定时器中断子程序中设定帧结束标志字节,表明一帧报文接收完毕。

// (2).当主程序内检测到一帧报文接收完毕后,会通过核查从方地址及循环冗余校验字节是否正确来判断

该帧的有效性。若确定

//接收到的是一帧发送给已方的正确报文,则会根据报文内的功能码对该帧命令进行相应的处理,并准备发送帧。

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#pragma interrupt_handler USART1_RI_ISR:iv_USART1_RX

void USART1_RI_ISR(void)

{

UCHAR ch;

UCHAR status;

status = UCSR1A;

ch = UDR1;

if (USART1_receCount < MSCOMM_BUFFER_LENGTH)

USART1_mscomm_buffer[USART1_receCount++] = ch;

else

USART1_receCount = 0;

if (status & 0x1c)

USART1_checkoutError = 2;

USART1_receTimeOut = 3;

}

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//由于USART1通讯模式=RS232,因此发送完最后一个字节后,无需允许《发送完成中断》,只在在RS485时才会。因为需要确认最后

//一个字节发送出去后,才能将总线置为接收状态。否则,如果不使用《发送完成中断》,而在《数据空中断》中判断如果是发送

//最后一个字节时,立即置总线为接收状态,会导致最后一个字节无法回送给上位机,导致上位机接收不到最后一个字节。

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

#pragma interrupt_handler USART1_UDRE_ISR:iv_USART1_UDRE

void USART1_UDRE_ISR(void)

{

UDR1 = USART1_send_buffer[USART1_sendPosi++];

if (USART1_sendPosi >= USART1_sendCount)

{

UCSR1B &= ~BIT(5);

UCSR1B |= BIT(6);

}

}

#pragma interrupt_handler USART1_TX_ISR:iv_USART1_TX

void USART1_TX_ISR(void)

{

USART1_checkoutError = 0; USART1_receCount = 0;

RS485_RECIVE();

USART1_send_mark = FALSE; }

相关主题
文本预览
相关文档 最新文档