当前位置:文档之家› 计算机操作系统典型例题解析之一

计算机操作系统典型例题解析之一

计算机操作系统典型例题解析之一
计算机操作系统典型例题解析之一

计算机操作系统典型例题解析之一

【例1】操作系统是对()进行管理的软件。

A、软件

B、硬件

C、计算机资源

D、应用程序

分析:操作系统是系统的一个系统软件,不但管理计算机系统的硬件资源,还管理软件资源,是整个计算机系统的硬、软件资源的总指挥部,所以本题的答案是C。

【例2】从用户的观点看,操作系统是()

A、用户与计算机硬件之间的接口

B、控制和管理计算机资源的软件

C、合理地组织计算机工作流程的软件

D、计算机资源的管理者

分析:研究操作系统有多种观点,有软件的观点、计算机系统资源管理的观点、进程的观点、虚机器观点、服务提供者观点以及用户的观点。从用户的观点看,操作系统是用户与计算机硬件系统之间接口。所以本题的答案是A。

【例3】如果分时操作系统的时间片一定,那么(),则响应时间越长。

A、用户数越少

B、用户数越多

C、内存越少

D、内存越多

分析:在分时系统中采用了分时技术,即把处理机的时间划分成

很短的时间片(如几百毫秒),轮流地分配给各个终端作业使用。若在分配给它的时间片内,作业没有执行完,它必须将CPU交给下一个作业使用,并等下一轮得到CPU时再继续执行。系统的响应时间和用户的数量成反比,即用户数越多,响应时间越长。所以本题的答案是B。

【例4】并发和是操作系统的两个最基本的特征,两者之间互为存在条件。

分析:操作系统共有四个主要特征:并发、共享、虚拟和异步性。其中并发和共享是操作系统最基本的特征。一方面,资源的共享以程序(进程)的并发执行为条件,若系统不允许程序并发执行,自然不存在资源共享问题;另一方面,若系统不能对资源共享实施有效管理,协调好诸进程对共享资源的访问,也必将影响程序的并发执行,甚至根本无法并发执行。

所以本题的答案是:共享。

【例5】如果操作系统在用户提交作业后,不提供交互能力,它所追求的是计算机资源的高利用率,大吞吐量和作业流程的自动化,则属于类型;如果操作系统具有很强的交互性,可同时供多个用户使用,但时间响应不太及时,则属于类型;如果操作系统可靠性高,时间响应及时,但仅有简单的交互能力则属于类型。

分析:操作系统的基本类型有三种:批处理系统、分时系统和实时系统。其中,批处理系统是最早出现的操作系统类型,目的是为了

提高计算机资源的利用率和系统的吞吐量;分时系统的产生和发展则是为了满足用户的需要,实现了人机交互,分时系统采用分时技术,使多个用户可以共享主机并与自己的作业进行很好的交互;实时系统是为了满足实时监控和实时信息处理两方面要求而产生的,所以具有很高的可靠性并能对各种情况作出及时的响应,实时系统也具有交互性,但紧紧限于访问系统中某些特定的专业服务程序。所以本题的答案是:批处理、分时、实时。

【例6】操作系统为用户提供三种类型的用户接口,它们是接口、接口和图形接口。

分析:为了便于用户直接或间接地控制自己的作业,操作系统向用户提供了命令接口,用户可通过该接口向作业发出命令以控制作业的运行;程序接口是为用户程序在执行中访问系统资源而设置的,是用户程序取得操作系统服务的惟一途径;图形接口采用了图形化的操作界面,用非常容易识别的各种图标来将系统的各项功能、各种应用程序和文件直观、逼真地表示出来。用户可通过鼠标、菜单和对话框来完成各种应用程序和文件的操作。所以,本题的答案是:命令、程序。

【例7】试说明操作系统与硬件、其它系统软件以及用户之间的关系。

答:操作系统是覆盖在硬件上的第一层软件,它管理计算机的硬件和软件资源,并向用户提供良好的界面。操作系统与硬件紧密相关,它直接管理着硬件资源,为用户完成所有与硬件相关的操作,从而极

大地方便了用户对硬件资源的使用,并提高了硬件资源的利用率。操作系统是一种特殊的系统软件,其它系统软件与运行在操作系统地基础之上,可获得操作系统提供的大量服务,也就是说,操作系统是其它系统软件和硬件的接口。而一般用户使用计算机除了需要操作系统支持外,还需要用到大量的其它系统软件和应用软件,以使其工作更加方便和高效。可见,硬件、操作系统、其它系统软件、应用程序和用户之间存在着图1-1所示的层次关系。

图1-1计算机系统的层次结构

【例8】详细说明研究操作系统有哪几种主要观点?

答:(1)软件的观点。从软件的观点来看,操作系统有其作为软件的外在特性和内在特性。所谓外在特性是指,操作系统是一种软件,它的外部表现形式,即它的操作命令定义集和它的界面,完全确定了操作系统这个软件的使用方式。所谓内在特性是指,操作系统是一种软件,它具有一般软件的结构特点,然而这种软件不是一般的应用软件,它具有一般软件所不具备的特殊结构。

(2)计算机系统资源管理的观点。操作系统是计算机资源的管理者,管理着计算机的处理机、存储器、I/O设备和文件,所以操作系统也就有这四大功能:处理机管理、存储器管理、设备管理和文件管理。

(3)进程的观点。这种观点把操作系统看作由若干个可以同时独立运行的程序和一个对这些程序进行协调的核心所组成,这些同时运行的程序称为进程。

(4)用户与计算机硬件系统之间接口的观点。操作系统作为用户和计算机硬件系统之间接口的含义是,操作系统处于用户与计算机硬件系统之间,用户通过操作系统来使用计算机。或者说,用户在操作系统的帮助下能够方便、快捷、安全、可靠地操纵计算机硬件和运行自己的程序。

(5)虚机器观点。从服务用户的机器扩充的观点来看,操作系统为用户使用计算机提供了许多服务功能和良好的工作环境。用户不再直接使用硬件机器(称为棵机),而是通过操作系统来控制和使用计算机,从而把计算机扩充为功能更强、使用更加方便的计算机系统(称为虚拟计算机)。

(6)服务提供者观点。在操作系统以外,从用户角度看操作系统,则它应能为用户提供比裸机功能更强、服务质量更高、使用户更觉方便的灵活的虚拟机器。操作系统能为用户提供一组功能强大的、方便、好用的广义指令(系统调用)。

【例9】操作系统具有哪些特征?它们之间有何关系?

答:操作系统的特征有并发、共享、虚拟和异步性。它们的关系如下:

(1)并发和共享是操作系统最基本的特征。为了提高计算机资源的利用率,操作系统必然要采用多道程序设计技术,使多个程序共享系统的资源,并发的执行。

(2)并发和共享互为存在的条件。一方面,资源的共享以程序(进程)的并发执行为条件,若系统不允许程序并发执行,自然不存在资源的共享问题;另一方面,若系统不能对资源共享实施有效管理,协调好各个进程对共享资源的访问,也必将影响到程序的并发执行,甚至根本无法并发执行。

(3)虚拟以并发和共享为前提条件。为了使并发进程能更方便、更有效地共享资源,操作系统经常采用多种虚拟技术来在逻辑上增加CPU和设备的数量以及存储器的容量,从而解决众多并发进程对有限的系统资源的竞争问题。

(4)异步性是并发和共享的必然结果。操作系统允许多个并发进程共享资源、相互合作,使得每个进程的运行过程受到其他进程的制约,不再“一气呵成”,这必然导致异步性特征的产生。

【例10】简述并发与并行的区别。

答:并行性和并发性是既相似又有区别的两个概念。并行性是指两个或多个事件在同一时刻发生;而并发性是指两个或多个事件在同一时间间隔内发生。

【例11】简述网络操作系统的主要功能。

答:计算机网络是通过通信设施将物理上分散的具有自治功能的多个计算机系统互连起来的,实现信息交换、资源共享、可互操作和协作处理的系统。网络操作系统用于管理网络中各种资源,为用户提供各种服务。其主要功能如下:

(1)网络通信。这是网络最基本的功能,其任务是在源主机和目标主机之间实现无差错的数据传输。

(2)资源管理。对网络中的共享资源(硬件和软件)实施有效的管理、协调诸用户对共享资源的使用、保证数据的安全性和一致性。

(3)网络服务。这是在前两个功能的基础上,为了方便用户而又直接向用户提供的多种有效服务。主要的网络服务有:电子邮件服务;文件传输、存取和管理服务;共享硬盘服务;共享打印服务。

(4)网络管理。网络管理最基本的任务是安全管理。通过“存取控制”来确保存取数据的安全性;通过“容错技术”来保证系统故障时数据的安全性。此外,还应对网络性能进行监视、对使用情况进行统计,以便为提高网络性能、进行网络维护和记账等提供必要的信息。

(5)互操作能力。在20世纪80年代后期所推出的操作系统都已提供了联网功能,从而便于将微机连接到网络上。在90年代推出的网络操作系统又提供了一定范围的互操作能力。所谓互操作,在客户机/服务器模式的LAN环境下,是指连接在服务器上的多种客户机和主机不仅能与服务器通信,而且还能以透明的方式访问服务器上的文件系统;而在互连网络环境下的互操作,是指不同网络间的客户机不仅能通信,而且也能以透明的方式访问其他网络中的文件服务器。

练习题及参考答案

一、单项选择题

1.操作系统是一种()。

A、应用软件

B、系统软件

C、通用软件

D、工具软件

2.操作系统的()管理部分负责对进程进行调度

A、存储器

B、设备

B、文件D、处理机

3.()要保证系统有较高的吞吐能力。

A、批处理系统

B、分时系统

C、网络操作系统

D、分布式操作系统

4.操作系统的基本类型主要有()。

A、批处理系统、分时系统和多任务系统

B、单用户系统、多用户系统和批处理系统

C、批处理操作系统、分时操作系统及实时操作系统

D、实时系统、分时系统和多用户系统

5.使多个用户通过与计算机相连的终端、以交互方式同时使用计算机的操作系统是()。

A、单道批处理系统

B、多道批处理系统

C、分时系统

D、实时系统

6.计算机操作中,最外层的是()。

A、硬件系统

B、系统软件

C、支援软件

D、应用软件

7.所谓()是指将一个以上的作用放入主存,并且同时处于运行状态,这些作业共享处理机和外围设备等其他资源。

A、多重处理

B、多道程序设计

C、实时处理

D、共同执行

8.下面关于操作系统的叙述中正确的是()

A、批处理作业必须具有作业控制信息

B、分时系统不一定都具有人机交互能力

C、从响应时间的角度看,实时系统与分时系统差不多

D、由于采用了分时技术,用户可以独占计算机的资源

9.分时操作系统通常采用()策略为用户服务。

A、时间片加权分配

B、短作业优先

C、时间片轮转

D、可靠性和灵活性

10.若把操作系统看作计算机资源的管理者,下列的()不属于操作系统所管理的资源。

A、磁盘

B、内存

C、CPU

D、中断

11.在下列操作系统的各个功能组成部分中,()不需要硬件支持。

A、进程调度

B、时钟管理

C、地址映射

D、中断系统

12.在指令系统中只能由操作系统使用的指令称为()。

A、系统指令

B、设备指令

C、非特权指令

D、特权指令

二、多项选择题

1.操作系统的主要设计目标是()

A、可扩充性

B、使得计算机使用方便

C、管理计算机资源

D、计算机系统能高效工作。

E、可靠性

2.计算机的软件分为()。

A、操作系统

B、系统软件

C、计算软件

D、支援软件

E、应用软件

3.设计实时操作系统必须首先考虑系统的()。

A、可移值性

B、使用方便

C、实时性

D、效率

E、可靠性

4.由于资源的属性不同,故多个进程对资源的共享方式也不同,可分为()。

A、虚拟共享

B、同时访问

C、互斥共享

D、异步共享

E、并发共享

5.下述指令中()属于特权指令。

A、置中断屏蔽位指令

B、条件转移指令

C、PV操作指令

D、送程序状态字寄存器指令

E、I/O指令

三、填空题

1.计算机系统由和两大部分组成。硬件子系统软件子系统

2.操作系统的基本功能包括________管理、________管理、________管理、________管理。除此以外还为用户使用操作体统提供了用户接口。处理机存储器设备文件

3.如果一个操作系统兼有批处理、分时和实时操作系统三者或其中两者的功能,这样的操作系统称为_____________。通用操作系统

4.计算机系统能及时处理过程控制数据并做出响应的操作系统称为。实时操作系统

5.分时操作系统的主要特征有、、和。多路性独立性及时性交互性

6.允许若干个作业同时装入主存储器,使一个中央处理器轮流地执行各个作业,各作业可以同时使用各自所需的外围设备,提高资源利

用率,但作业执行时用户不能直接干预的操作系统是。批处理操作系统

7.实时系统的引入主要是为了满足和两个领域的要求。实时控制实时信息处理

8.在分时和批处理系统结合的操作系统中引入“前台”和“后台”的概念,其目的是。为了提高CPU的利用率

四、问答题

1.什么是计算机操作系统?

2.叙述操作系统在计算机系统中的地位。

3.批处理操作系统、分时操作系统和实时操作系统的特点各是什么?4.操作系统的目标是什么?

5.试对分时操作系统和实时操作系统进行比较。

答:

1.操作系统是计算机系统的一种系统软件,它统一管理计算机系统的资源,控制程序的执行,是配置在计算机硬件上的第一层软件,是对硬件系统的首次扩充。

2.操作系统是运行在计算机硬件系统上的最基本的系统软件。它控制和管理着所有的系统硬件资源和软件资源,操作系统对计算机使用者提供了一种良好的操作环境,也为其他各种应用系统提供了最基本的支撑环境。操作系统是用户和计算机硬件之间的一个接口。

3.批处理操作系统的特点:成批处理、系统吞吐量高、资源利用率高,用户不能直接干预作业的执行。

分时操作系统的特点:多路性、独立性、及时性、交互性。

实时操作系统的特点:及时响应、快速处理;高可靠性和安全性;不要求系统资源利用率。

4.方便性、有效性、可扩充性、开放性

5.我们将从多路性、独立件、及时性、交互性和可靠性五个方面对它们进行比较。

(1)多路性。实时信息处理系统与分时系统一样具有多路性,系统按分时原则为多个终端用户服务;而对实时控制系统而言,其多路性则主要表现在:经常对多路的现场信息进行采集,以及对多个对象或多个执行机构进行控制。

(2)独立性。实时信息处理系统与分时系统一祥具有独立性。每个终端用户在向实时系统提出服务请求时,是彼此独立地操作,互不干扰;而在实时控制系统中信息的采集和对对象的控制,也都是被此互不干扰。

(3)及时性。实时信息系统对实时性的要求与分时系统类似,都是以人所能接受的等待时间来确定;而实时控制系统的及时性,则是以控制对象所要求的开始截止时间或完成截止时间来确定的。

(4)交互性。实时信息处理系统虽也具有交互性,但这里人与系统的交互,仅限于访问系统中某些特定购专用服务程序。它不像分时系统那样能向终端用户提供数据处理服务、资源共享等服务。

(5)可靠性。分时系统虽然也要求系统可靠,相比之下,实时系统则要求系统高度可靠。因为任何差错都可能带来巨大的经济损失、甚至无法预料的灾难性后果。因此,在实时系统中,往往都采取了多级容错措施.来保证系统的安全及数据的安全。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

等差数列经典题型

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

人教课标版高中数学必修5典型例题剖析:等差数列的通项与求和

等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若 a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

小学奥数等差数列经典练习题

小学奥数等差数列经 典练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少 三、求等差数列8,14,20,26,……302的末项是第几项 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几 4、求等差数列46,52,58……172共有多少项 5、求等差数列245,238,231,224,……中,105是第几项 6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项 7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x 2,y=x ??? ??21,y=x 10,y=x ?? ? ??101的图象 . 我们观察y=x 2,y=x ?? ? ??21,y=x 10,y= x ?? ? ??101图象特征,就可以得到)10(≠>=a a a y x 且的图象和性质。 a>1 0

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+, ∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ?? + ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数216x y -=-的定义域和值域. 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

等差数列典型例题及分析

第四章 数列 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2; (2) 1+4+…+(3n -5)是该数列的前n -1项的和. [例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12 ++=n n S n 求数列{}n a 的通项公式。 正解: ①当1=n 时,1 11==S a 当2≥n 时,3 4)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,3 11==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。 正解:由题意:??? ????=?+=?+70 2293030102 9101011d a d a 得152,521= =d a 代入得S 40 =120402 39 40401=??+ d a 。 [例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和; 正解: ??? ????≥+--≤-6,502)5)(520(5,2 ) 545(n n n n n n [例6]已知一个等差数列的前10项的和是310,前20项的和是1220, 由此可以确定求其前n 项和的公式吗? [例7]已知:n n a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

相关主题
文本预览
相关文档 最新文档