当前位置:文档之家› The 2dF Galaxy Redshift Survey The dependence of galaxy clustering on luminosity and spectr

The 2dF Galaxy Redshift Survey The dependence of galaxy clustering on luminosity and spectr

The 2dF Galaxy Redshift Survey The dependence of galaxy clustering on luminosity and spectr
The 2dF Galaxy Redshift Survey The dependence of galaxy clustering on luminosity and spectr

a r X i v :a s t r o -p h /0112043v 3 24 J a n 2002

Mon.Not.R.Astron.Soc.000,000–000(0000)Printed 1February 2008

(MN L A T E X style ?le v2.2)

The 2dF Galaxy Redshift Survey:The dependence of

galaxy clustering on luminosity and spectral type.

Peder Norberg 1,Carlton M.Baugh 1,Ed Hawkins 2,Steve Maddox 2,Darren Madgwick 3,Ofer Lahav 3,Shaun Cole 1,Carlos S.Frenk 1,Ivan Baldry 4,Joss Bland-Hawthorn 5,Terry Bridges 5,Russell Cannon 5,Matthew Colless 6,Chris Collins 7,Warrick Couch 8,Gavin Dalton 9,Roberto De Propris 8,Simon P.Driver 10,George Efstathiou 3,Richard S.Ellis 11,Karl Glazebrook 4,Carole Jackson 6,Ian Lewis 5,Stu-art Lumsden 12,John A.Peacock 13,Bruce A.Peterson 6,Will Sutherland 13,9,Keith Taylor 11,5

1Department

of Physics,University of Durham,South Road,Durham DH13LE,UK 2School of Physics &Astronomy,University of Nottingham,Nottingham NG72RD,UK

3Institute of Astronomy,University of Cambridge,Madingley Road,Cambridge CB30HA,UK

4Department of Physics &Astronomy,Johns Hopkins University,Baltimore,MD 21218-2686,USA 5Anglo-Australian Observatory,P.O.Box 296,Epping,NSW 2121,Australia

6Research School of Astronomy &Astrophysics,The Australian National University,Weston Creek,ACT 2611,Australia 7Astrophysics Research Institute,Liverpool John Moores University,Twelve Quays House,Birkenhead,L141LD,UK 8Department of Astrophysics,University of New South Wales,Sydney,NSW 2052,Australia 9Department of Physics,University of Oxford,Keble Road,Oxford OX13RH,UK

10School of Physics and Astronomy,University of St Andrews,North Haugh,St Andrews,Fife,KY69SS,UK 11Department of Astronomy,California Institute of Technology,Pasadena,CA 91125,USA 12Department of Physics,University of Leeds,Woodhouse Lane,Leeds,LS29JT,UK

13Institute for Astronomy,University of Edinburgh,Royal Observatory,Blackford Hill,Edinburgh EH93HJ,UK

1February 2008

ABSTRACT

We investigate the dependence of galaxy clustering on luminosity and spectral type using the 2dF Galaxy Redshift Survey (2dFGRS).Spectral types are assigned using the principal component analysis of Madgwick et al.We divide the sample into two broad spectral classes:galaxies with strong emission lines (‘late-types’),and more quiescent galaxies (‘early-types’).We measure the clustering in real space,free from any distortion of the clustering pattern due to peculiar velocities,for a series of volume-limited samples.The projected correlation functions of both spectral types are well described by a power law for transverse separations in the range 2<(σ/h ?1Mpc)<15,with a marginally steeper slope for early-types than late-types.Both early and late types have approximately the same dependence of clustering strength on luminosity,with the clustering amplitude increasing by a factor of ~2.5between L ?and 4L ?.At all luminosities,however,the correlation function amplitude for the early-types is ~50%higher than that of the late-types.These results support the view that luminosity,and not type,is the dominant factor in determining how the clustering strength of the whole galaxy population varies with luminosity.

Key words:methods:statistical -methods:numerical -large-scale structure of Universe -galaxies:formation

1

INTRODUCTION

One of the major goals of large redshift surveys like the 2de-gree Field Galaxy Redshift Survey (2dFGRS)is to make an accurate measurement of the spatial distribution of galaxies.The unprecedented size of the 2dFGRS makes it possible to quantify how the clustering signal depends on intrinsic galaxy properties,such as luminosity or star formation rate.The motivation behind such a program is to character-ize the galaxy population and to provide constraints upon theoretical models of structure formation.In the current paradigm,galaxies form in dark matter haloes that are built

up in a hierarchical way through mergers or by the accre-tion of smaller objects.The clustering pattern of galaxies is therefore determined by two processes:the spatial dis-tribution of dark matter haloes and the manner in which dark matter haloes are populated by galaxies (Benson et al.2000b;Peacock &Smith 2000;Seljak 2000;Berlind &Wein-berg 2002).The evolution of clumping in the dark matter has been studied extensively using N-body simulations of the growth of density ?uctuations via gravitational instabil-ity (e.g.Jenkins et al.1998;2001).With the development of powerful theoretical tools that can follow the formation and evolution of galaxies in the hierarchical scenario,the issue of

2The2dFGRS collaboration

how galaxies are apportioned amongst dark matter haloes can be addressed,and detailed predictions of the clustering of galaxies are now possible(Kau?mann,Nusser&Stein-metz1997;Kau?mann et al.1999;Benson et al.2000a,b; Somerville et al.2001).

The?rst attempt to quantify the di?erence between the clustering of early and late-type galaxies was made us-ing a shallow angular survey,the Uppsala catalogue,with morphological types assigned from visual examination of the photographic plates(Davis&Geller1976).Elliptical galax-ies were found to have a higher amplitude angular corre-lation function than spiral galaxies.In addition,the slope of the correlation function of ellipticals was steeper than that of spiral galaxies at small angular separations.More recently,the comparison of clustering for di?erent types has been extended to three dimensions using redshift surveys. Again,similar conclusions have been reached in these stud-ies,namely that ellipticals have a stronger clustering ampli-tude than spirals(Lahav&Saslaw1992;Santiago&Strauss 1992;Iovino et al.1993;Hermit et al.1996;Loveday et al. 1995;Guzzo et al.1997;Willmer et al.1998).

The subjective process of visual classi?cation can now be superseded by objective,automated algorithms to quan-tify the shape of a galaxy.One recent example of such a scheme can be found in Zehavi et al.(2002),who measured a“concentration parameter”for30000galaxy images from the Sloan Digital Sky Survey,derived from the radii of di?er-ent isophotes.Again,based upon cuts in the distribution of concentration parameter,early-types are found to be more clustered than late-types.

In this paper,we employ a di?erent method to classify galaxies,based upon a principal component analysis(PCA) of galaxy spectra,which is better suited to the2dFGRS data(Madgwick et al.2002).This technique has a number of attractive features.First,the PCA approach is completely objective and reproducible.An equivalent analysis can,for example,be applied readily to spectra produced by theo-retical models of galaxy formation or to spectra obtained in an independent redshift survey.Secondly,the PCA can be applied over the full magnitude range of the2dFGRS, whenever the spectra are of su?cient signal to noise(see Section2.2).For the2dFGRS,the image quality is adequate to permit a visual determination of morphological type only for galaxies brighter than b J?17,which comprise a mere 5%of the spectroscopic sample.

Two previous clustering studies have used spectral in-formation to select galaxy samples.Loveday,Tresse&Mad-dox(1999)grouped galaxies in the Stromlo-APM redshift survey into three classes based upon the equivalent width of either the Hαor OII lines,and found that galaxies with prominent emission lines display weaker clustering than more quiescent galaxies.Tegmark&Bromley(1999)mea-sured the relative bias between di?erent spectral classes in the Las Campanas redshift survey(Shectman et al.1996), using a classi?cation derived from PCA analysis(Bromley et al.1998),and also found that early spectral types are more strongly clustered than late spectral types.(See also Blan-ton2000for a revision of Tegmark&Bromley’s analysis, which takes into account the e?ect of errors in the survey selection function.)

Here,we use the2dFGRS survey to measure the depen-dence of galaxy clustering jointly on luminosity and spectral type,adding an extra dimension to the analysis carried out by Norberg et al.(2001).Previously,a pioneering study of bivariate galaxy clustering,in terms of luminosity and mor-phological type,was carried out using the Stromlo-APM redshift survey(Loveday et al.1995).To place the analy-sis presented here in context,the samples that we consider cover a larger volume and,despite being volume-limited(see Section2.4),typically contain over an order of magnitude more galaxies than those available to Loveday et al.

We give a brief overview of the2dFGRS in Section2, along with details of the spectral classi?cation and an ex-planation of how the samples used in the clustering analy-sis were constructed.The estimation of the redshift space correlation function and its real space counterpart,the pro-jected correlation function,are outlined in Section3.A brief overview of the clustering of2dFGRS galaxies in redshift space,selected by luminosity and spectral type,is given in Section4;a more detailed analysis of the redshift space clus-tering can be found in Hawkins et al.(2002).We present the main results of the paper in Section5and conclude in Sec-tion6.

2THE DATA

2.1The2dFGRS sample

Detailed descriptions of the construction of the2dFGRS and its properties are given by Colless et al.(2001).In summary, galaxies are selected down to a magnitude limit of b J≈19.45from the APM Galaxy Survey(Maddox et al.1990a,b, 1996,2002).The sample considered in this paper consists of over160000redshifts measured prior to May2001.We focus our attention on the two large contiguous volumes of the survey,one centred on the Southern Galactic Pole(hereafter SGP)and the other close to the direction of the Northern Galactic Pole(NGP).

2.2Spectral classi?cation of2dFGRS galaxies The spectral properties of2dFGRS galaxies are charac-terized using the principal component analysis(PCA)de-scribed by Madgwick et al.(2002).This analysis makes use of the spectral information in the rest-frame wavelength range3700?A to6650?A,thereby including all the major op-tical diagnostics between OII and Hα.For galaxies with z>0.15,sky absorption bands contaminate the Hαline. Since this can a?ect the stability of the classi?cation,we re-strict our analysis to galaxies with z<0.15following Madg-wick et al.(2002).

The2dFGRS spectra are classi?ed by a single parame-ter,η,which is a linear combination of the?rst and second principal components.This combination has been chosen speci?cally to isolate the relative strength of emission and absorption lines present in each galaxy’s spectrum,thereby providing a diagnostic which is robust to the instrumental uncertainties that a?ect the calibration of the continuum. Physically,this parameter is related to the star formation rate in a galaxy,as is apparent from the tight correlation ofηwith the equivalent width of Hαin emission line galax-ies(Bland-Hawthorn et al.2002).In this paper,we divide

The 2dF Galaxy Redshift Survey:The dependence of galaxy clustering on luminosity and spectral type.

3

Figure 1.A comparison between the morphological classi?cation of bright (b J <17.0)APM galaxies by Loveday (1996)with the 2dFGRS spectral classi?cation,as quanti?ed by the continuous variable η(see text and Madgwick et al.2002for the de?nition).The morphological classi?cation distinguishes between elliptical (Ell),lenticular (S0),spiral (Sp)and irregular (Irr)galaxies.All galaxies with both a morphological classi?cation and a spectral classi?cation are plotted.The Non-classi?ed (Nc)class contains objects for which morphological classi?cation was attempted but for which Loveday was unable to assign a type.The squares show the median value of ηfor each morphological class de?ned by Loveday,and the error bars show the 10-90percentile

range.

Figure 2.The histograms,plotted with Poisson error bars,show the success rate for assigning a spectral type to a targeted galaxy as a function of apparent magnitude.Two ?eld completeness (c F ,de?ned in text)ranges are shown,as indicated by the values at the top of each panel.The redshift completeness,i.e.the fraction of targeted galaxies for which a redshift is measured,is shown by the dotted lines.The spectral classi?cation completeness,i.e.the fraction of galaxies with measured redshifts below z =0.15that have spectra of su?cient signal-to-noise to be used in the PCA,is shown by the dashed lines.(The dotted and dashed curves show parametric ?ts to the inferred redshift completeness and spectral classi?cation completeness respectively.)The model for the spectral classi?cation success rate,shown by the solid lines,is the product of the dotted and dashed lines in each panel,and is a good ?t to the histogram in each case.

the 2dFGRS sample into two broad,distinct classes:galax-ies with spectra for which the PCA returns η?1.4,which we call late-type.The distri-bution of ηfor 2dFGRS spectra displays a shoulder feature at this value (see Fig.4of Madgwick et al.2002).

The spectral type of a galaxy,as given by the value of η,clearly depends upon its physical properties and is there-fore a useful and e?ective way in which to label galaxies.Nevertheless,it is still instructive to see how well,if at all,ηcorrelates with the morphogical type assigned in a sub-jective fashion from a galaxy image.Madgwick et al.(2002)show that there is a reasonable correspondence between ηand morphological type,using high signal-to-noise spectra and photometry taken from Kennicutt (1992);η??1.4approximately delineates the transition between early and late morphological types in b J .We revisit the comparison between classi?cations based on spectral and morphological types in Fig.1,this time using 2dFGRS spectra and UK Schmidt images.The horizontal axis shows the morpholog-ical type assigned to a subset of bright APM galaxies by Loveday (1996).Although there is a substantial amount of scatter in the ηvalues of spectra that lie within a given morphological class,it is reassuring to see that the median ηdoes correlate with morphological class.Moreover,the me-dian ηvalues match up well with the broad division that we employ to separate early and late types.Galaxies denoted “early-type”on the basis of their morphology have a median ηthat is smaller than our ?ducial value of η=?1.4and vice-versa for late-types.In practice,for the samples analysed in this paper,the correspondence between morphological type and spectral class will be better than suggested by Fig.1.This is because the sample used in the comparison in Fig.1consists of nearby extended galaxies,and so the distribution of spectral types is distorted somewhat by aperture e?ects (see e.g.Kochanek,Pahre &Falco 2002;Madgwick et al.2002).This e?ect arises because the ?bres used to collect the galaxy spectra are of ?nite size (subtending 2”on the sky).For this reason,when we measure the spectrum of a nearby galaxy it is possible that a disproportionate amount of light will be sampled from the bulge,thereby making the galaxy appear systematically redder or “earlier”in type.We ?nd that this e?ect is only signi?cant for the most nearby galaxies (z <0.05)and should be completely negligible be-yond z ~0.1(Madgwick et al.2002).2.3

Sample Selection

In order to construct an optimal sample for the measure-ment of the two point correlation function,we select regions with high completeness in terms of measured redshifts,us-ing a redshift completeness mask for the 2dFGRS,similar to the one described in Colless et al.(2001;see also Norberg et al.2002).Such a mask is required because of the tiling strat-egy adopted to make the best use of the allocated telescope time,along with the fact that the survey is not yet ?nished.An additional consideration is the success rate with which spectral types have been assigned to galaxies,which depends upon the signal-to-noise ratio of the galaxy spectrum.

In Fig.2,we show histograms of the spectral classi-?cation success rate for two di?erent ranges of ?eld com-pleteness,c F ,which is de?ned as the ratio of the number

4The2dFGRS collaboration

of measured redshifts in a given2dF?eld to the number of targets.The spectral classi?cation success rate has two contributions.The?rst of these is the redshift complete-ness,shown by the dotted curve.This incompleteness arises because we do not always succeed in measuring a redshift for a targeted object.The redshift incompleteness is nec-essarily small for the high completeness?elds contributing to the histograms.The second contribution is the spectral classi?cation completeness.Galaxies do not recieve a spec-tral classi?cation when a redshift is measured with z≤0.15 (and is therefore within the redshift range over which the PCA can be carried out),but the spectrum has too small a signal-to-noise ratio for the PCA to be applied success-fully(typically S/N<10).The spectral classi?cation suc-cess rate is given by the product of these two contributions. Our model for this e?ect,plotted as the solid curves in each panel of Fig.2,is in good agreement with the success rate realised in the2dFGRS,shown by the histograms.

Rather than weight the data to compensate for a spec-tral classi?cation success rate below100%,we instead mod-ulate the number of unclustered or random points laid down in each?eld in the clustering analysis to take into account the varying success rate.We have conducted a number of tests in which we varied the completeness thresholds used, adopted di?erent weighting schemes using samples of higher completeness,and we have also compared our results with those from Norberg et al.(2001),whose samples are not sub-ject to spectral classi?cation incompleteness.The results of these tests con?rm that our clustering measurements are robust to changes to the details of how we model the incom-pleteness;this is largely due to our practice of restricting the analysis to high completeness?elds.Excluding areas below our relatively high sector completeness threshold(see Colless et al.2001for a de?nition),we estimate that the e?ective solid angle used in the SGP region is~3802?,and in the NGP2502?.

2.4Constructing a volume-limited sample

We analyse a series of volume-limited samples drawn from the2dFGRS,following the strategy adopted by Norberg et al.(2001).The chief advantage of this approach is simplic-ity;the radial distribution of galaxies is uniform apart from modulations in space density due to clustering.Therefore, the complication of modelling the radial selection function in a?ux-limited survey is avoided.This is particularly appeal-ing for the current analysis,as separate selection functions would be required for each class of spectral type studied, since Madgwick et al.(2002)have demonstrated that galax-ies with di?erent spectral types have di?erent luminosity functions.

The disadvantage of using volume-limited samples is that a large fraction of galaxies in the?ux-limited cata-logue do not satisify the selection criteria.As Norberg et al.(2001)point out,a volume-limited sample speci?ed by a range in absolute magnitude has both a lower(z min)and an upper redshift cut(z max),because the?ux-limited cata-logue has,in practice,bright and faint apparent magnitude limits.This seemingly pro?igate use of galaxy redshifts was a serious problem for previous generations of redshifts sur-veys.This is not,however,the case for the2dFGRS,which contains su?cient galaxies to permit the construction of large volume-limited samples de?ned both by luminosity and spectral type.As we demonstrate in section5,the volume-limited samples we analyse are large enough,both in terms of volume and number of galaxies,to give extremely robust clustering measurements.

To construct a volume-limited sample,it is necessary to estimate the absolute magnitude that each galaxy would have at z=0.This requires assumptions about the variation of galaxy luminosity with wavelength and with redshift,or equivalently,with cosmic time.We make use of the class dependent k-corrections derived by Madgwick et al.(2002). The mean weighted k-corrections are given by the following expressions:

k(z)=2.6z+4.3z2(early?types)(1) k(z)=1.5z+2.1z2(late?types)(2) k(z)=1.9z+2.7z2(full sample).(3)

These k-corrections have the appeal that they are extracted directly in a self-consistent way from2dFGRS spectra.How-ever,no account is taken of evolution in the galaxy spectrum. The explicit inclusion of evolution could lead to the am-biguous situation whereby a galaxy’s spectral type changes with redshift.We have checked that our results are,in fact, insensitive to the precise choice of k-correction,comparing clustering results obtained with the spectral type dependent k-corrections given above with those obtained when a global k+e-correction(i.e.making an explicit attempt to account for galaxy evolution,albeit in an average sense)is applied (as in Norberg et al.2001).

Since the k-corrections are class dependent,the z min and z max values corresponding to a given absolute magni-tude range are also slightly class dependent.Hence,the vol-umes de?ning the samples for two di?erent spectral classes for the same bin in absolute magnitude will not coincide ex-actly.In addition to this subtle class dependent de?nition of the volumes,the values of z min and z max vary slightly with position on the sky.This is due to revisions made to the map of galactic extinction(Schlegel,Finkbeiner&Davis1998) and to the CCD recalibration of APM plate zero-points since the de?nition of the original input catalogue.

Finally,throughout the paper,we adopt an?0=0.3,Λ0=0.7cosmology to convert redshift into comoving dis-tance.The relative clustering strength of our samples is in-sensitive to this choice.

3ESTIMATING THE TWO-POINT

CORRELATION FUNCTION

The galaxy correlation function is estimated on a two dimen-sional grid of pair separation parallel(π)and perpendicular (σ)to the line-of-sight.To estimate the mean density of galaxy pairs,a catalogue of randomly positioned points is generated with the same angular distribution and the same values of z min and z max as the data,taking into account the completeness of the survey as a function of position on the sky,as described in Section2.3.The correlation function is estimated using

ξH=

DD RR

The2dF Galaxy Redshift Survey:The dependence of galaxy clustering on luminosity and spectral type.5

(a)?18.0≥M b

?5log10h≥?19.0

J

?5log10h≥?21.0

(b)?20.0≥M b

J

Figure3.The spatial distribution of2dFGRS galaxies in the SGP.The panels show the redshift and right ascension of galaxies in a

three degree thick strip in declination for di?erent magnitude ranges.To expand the scale of the plot,the redshift range shown has been restricted;note that the redshift scales are di?erent in the two panels.Blue stars mark the locations of late-type galaxies and red circles

the positions of early-type galaxies.The boxes show the two structures which are referred to in the text.

6The 2dFGRS collaboration

where DD ,DR and RR are the numbers of data-data,data-random and random-random pairs respectively in each bin (Hamilton 1993).This estimator does not require an explicit estimate of the mean galaxy density.We have also cross-checked our results using the estimator proposed by Landy &Szalay (1993):ξLS =

DD ?2DR +RR

σ

=

1

σ

=

2

(r 2?σ2)1/2

,(7)

(Davis &Peebles 1983).If we assume that the real space correlation function is a power law (which is a fair ap-proximation for APM galaxies out to

separations around r ~10h ?1Mpc,see e.g.Baugh 1996),then Eq.7can be written as Ξ(σ)

σ

γΓ(1/2)Γ([γ?1]/2)

σ

γ

A (γ),(8)

where Γ(x )is the usual Gamma function,and we have used ξ(r )=(r 0/r )γ,where r 0is the real space correlation length and γis equal to the slope of the projected correlation func-tion Ξ(σ)/σ.As we demonstrate in Section 4.2,the projected correlation function is well described by a power law.

We study a range of samples containing di?erent num-bers of galaxies and covering di?erent volumes of the Uni-verse.It is imperative to include sampling ?uctuations when estimating the errors on the measured correlation function,to allow a meaningful comparison of the results obtained from di?erent samples.This contribution to the errors has often been neglected in previous work.Following Norberg et al.(2001),we employ a sample of 22mock 2dFGRS cat-alogues drawn from the ΛCDM Hubble Volume simulation (Evrard et al.2002)to estimate the error bars on the mea-sured correlation functions.The construction of these mock

catalogues is explained in Baugh et al.(2002,in preparation;see also Cole et al.1998and Norberg et al.2002).These cat-alogues have the same selection criteria and the same clus-tering amplitude as measured for galaxies in the ?ux-limited 2dFGRS.We have experimented with ensembles of mock catalogues constructed with di?erent clustering strengths to ascertain how best to assign error bars when the measured clustering has a di?erent amplitude from that of our ?ducial sample of 222dFGRS mocks.We found that the error bars obtained directly by averaging over a test ensemble of mocks are reproduced most closely by using the scaled fractional rms scatter derived from the ?ducial ensemble of 22mocks,rather than by taking the absolute error.

4CLUSTERING IN REDSHIFT SPACE

In this section we give a brief overview of the clustering of 2dFGRS galaxies in redshift space,for samples selected by luminosity and spectral type.First,in Section 4.1,we give a qualitative impression of the clustering di?erences by plot-ting the spatial distribution of galaxies in volume-limited samples.Then we quantify these di?erences by measuring the spherically averaged correlation function,ξ(s ).A more comprehensive analysis of the clustering of 2dFGRS galaxies in redshift space will be presented by Hawkins et al.(2002).

4.1Spatial distribution of 2dFGRS galaxies

It is instructive to gain a visual impression of the spa-tial distribution of 2dFGRS galaxies before interpreting the measured correlation functions.In Fig.3,we show the spa-tial distribution of galaxies in two ranges of absolute mag-nitude:in panel (a)we show a sample of faint galaxies (?18.0≥M b J ?5log 10h ≥?19.0)and in panel (b)a sam-ple of bright galaxies (?20.0≥M b J ?5log 10h ≥?21.0).Within each panel,early and late type galaxies,as distin-guished by their spectral types,are plotted with di?erent symbols;the positions of early-types are indicated by circles and the late-types are marked by stars.For clarity,we show only a three degree slice in declination cut from the SGP re-gion and we have sparsely sampled the galaxies,so that the space densities of the two spectral classes are equal.In order to expand the scale of the plot,the range of redshifts shown is restricted,taking a subset of the full volume-limited sam-ple in each case.(Note also that the redshift ranges di?er between the two panels.)

A hierarchy of structures is readily apparent in these plots,ranging from isolated objects,to groups of a handful of galaxies and on through to rich clusters containing over a hundred members.It is interesting to see how structures are traced by galaxies in the di?erent luminosity bins by comparing common structures between the two panels.For example,the prominent structure (possibly a supercluster of galaxies)seen at α?0h and z ?0.061is clearly visible in both panels.The same is true for the overdensity seen at α?03h 15′at z ?0.068.

This is the ?rst time that a large enough survey has been available,both in terms of the volume spanned and the number of measured redshifts,to allow a comparison of the clustering of galaxies of di?erent spectral types and

The 2dF Galaxy Redshift Survey:The dependence of galaxy clustering on luminosity and spectral type.

7

luminosities in representative volume-limited samples,with-out the complication of the strong radial gradient in number density seen in ?ux-limited samples.

It is apparent from a

comparison of the distribution of the di?erent spectral types in Fig.3(a),that the faint early-type galaxies tend to be grouped into structures on small scales whereas the faint late-types are more spread out.One would therefore anticipate that the early-types should have a stronger clustering amplitude than the late-types,an expectation that is borne out in Section 4.2.

In Fig.3(b),the distinction between the distribution of the spectral types is less apparent.This is partly due to the greater importance of projection e?ects in the declination direction,as the cone extends to a greater redshift than in Fig.3(a).However,close examination of the largest struc-tures suggests that early-types are more abundant in them than late-types,again implying a stronger clustering ampli-tude.

4.2

ξ(s )as function of luminosity and spectral type

In Fig.4,we show the spherically averaged redshift space correlation function,ξ(s ),as a function of luminosity and spectral type.Results are shown for samples selected in bins of width one magnitude,as indicated by the legend in each panel.The top panel shows the correlation functions of all galaxies that have been assigned a spectral type,the mid-dle panel shows results for galaxies classi?ed as early-types (η?1.4).Note that,at present,there are insu?cient num-bers of late-type galaxies to permit a reliable measurement of the correlation function for the brightest magnitude bin ?21.0≥M b J ?5log 10h ≥?22.0.

Several deductions can be made immediately from Fig. 4.In all cases,the redshift space correlation func-tion is well described by a power-law only over a fairly limited range of scales.The correlation functions of early-type galaxies are somewhat steeper than those of late-types.However,the main di?erence is that the early-type galaxies have a stronger clustering amplitude than the late-type galaxies.The correlation length,de?ned here as the pair separation for which ξ(s 0)=1,varies for early-types from s 0=7.1±0.7h ?1Mpc for galaxies with ab-solute magnitudes around M b J ?5log 10h ~?19.5to s 0=8.9±0.7h ?1Mpc for the brightest sample with ?21.0≥M b J ?5log 10h ≥?22.0.The faintest early-types,with magnitudes ?17.5≥M b J ?5log 10h ≥?18.5,display a clustering amplitude that is similar to that of the bright-est early-types.However,the measurement of the correlation function for this faint sample is relatively noisy,as the vol-ume in which galaxies are selected is small compared with the volumes used for brighter samples.The late-type galax-ies show,by contrast,little change in clustering amplitude with increasing luminosity,with a redshift space correlation length of s 0=5.6±0.6h ?1Mpc.Only a slight steepen-ing of the redshift space correlation function is apparent with increasing luminosity,until the brightest sample,which displays a modest increase in the redshift space correlation length.The correlation lengths of all our samples of early-type galaxies are larger than those of late-type galaxies.

Figure 4.The spherically averaged redshift space correlation function of galaxies in disjoint absolute magnitude bins,as in-dicated by the key in each panel.The panels show the results for di?erent samples:the top panel shows the correlation func-tions for all galaxies that have been assigned a spectral type,the middle panel show the clustering of galaxies with η?1.4.The error bars are obtained using 2dFGRS mock catalogues,as de-scribed in the text.For clarity,error bars are plotted only on the ?18.5≥M b J ?5log 10h ≥?19.5sample curve and for the brightest sample in each panel.

5CLUSTERING IN REAL SPACE 5.1

Robustness of clustering results

The approach adopted to study the dependence of galaxy clustering on luminosity relies upon being able to compare correlation functions measured in di?erent volumes.It is im-portant to ensure that there are no systematic e?ects,such

8The2dFGRS collaboration

as signi?cant sampling?uctuations,that could undermine such an analysis.In Norberg et al.(2001)we demonstrated the robustness of this approach in two ways.First,we con-structed a volume-limited sample de?ned using a broad mag-nitude range,that could be divided into co-spatial subsam-ples of galaxies in di?erent luminosity bins,i.e.subsamples within the same volume and therefore subject to the same large-scale structure?uctuations.A clear increase in clus-tering amplitude was found for the brightest galaxies in the volume,establishing the dependence of clustering on galaxy luminosity(see Fig.1a of Norberg et al.2001).Secondly, we demonstrated that measuring the correlation function of galaxies in a?xed luminosity bin,but using samples taken from di?erent volumes,gave consistent results(see Fig.1b of Norberg et al.2001).

In this section we repeat these tests.The motivation for this exercise is that the samples considered here contain fewer galaxies than those used by Norberg et al.(2001)as only galaxies with z<0.15are suitable for PCA spectral typing,and because the samples are more dilute as they have been selected on the basis of spectral type as well as luminosity.In Fig.5(a)we plot the projected correlation function of late-type galaxies in a?xed absolute magnitude bin(?19.0≥M b

J

?5log

10

h≥?20.0),but measured for samples taken from volumes de?ned by di?erent z min and z max.The clustering results are in excellent agreement with one another.In Fig.5(b),we compare the projected cor-relation function of late-type galaxies in di?erent absolute magnitude ranges but occupying the same volume.A clear di?erence in the clustering amplitude is seen.We have also performed these tests for early-type galaxies and arrived at similar conclusions.

As an additional test,we also show in Fig.5the cor-relation function measured in what we refer to as the opti-mal sample for a given magnitude bin.The optimal sample contains the maximum number of galaxies for the speci?ed

The 2dF Galaxy Redshift Survey:The dependence of galaxy clustering on luminosity and spectral type.

9

Figure 5.(a)The projected correlation function of late-type galaxies in a ?xed absolute magnitude bin taken from di?erent,almost independent volumes.We show the correlation function of galaxies with ?19.0≥M b J ?5log 10h ≥?20.0taken from volumes de?ned by ?18.0≥M b J ?5log 10h ≥?20.0and ?19.0≥M b J ?5log 10h ≥?21.0(both shown by heavy dashed lines).The thin solid line shows the estimate from the optimal sample for the ?19.0≥M b J ?5log 10h ≥?20.0magnitude bin.The di?erent measurements are in almost perfect agreement.(b)The projected correlation function measured for late-type galaxies in two di?erent absolute magnitude bins taken from the same volume.The volume is de?ned by the magnitude range ?19.0≥M b J ?5log 10h ≥?21.0.Within a ?xed volume,there is clear evidence for an increase (albeit small)in the clustering amplitude with luminosity.The two thin solid lines show esti-mates obtained from the corresponding optimal samples for the stated magnitude bins.In both panels the error bars come from the analysis of mock 2dFGRS catalogues.

magnitude bin.The correlation functions of galaxies in op-timal samples are shown by thin solid lines in both panels and are in excellent agreement with the other measurements shown.

5.2Projected correlation function

Fig.6shows how the real space clustering of galaxies of dif-ferent spectral type depends on luminosity.We use the opti-mal sample for each magnitude bin,i.e.the volume-limited sample with the maximum possible number of galaxies,the properties of which are listed in Tables 1(early &late types together),2(early-types only)and 3(late-types only).

The top panel of Fig.6con?rms the results found by Norberg et al.(2001),namely that the clustering strength of the full sample increases slowly with increasing luminosity for galaxies fainter than M ?,and then shows a clear,strong increase for galaxies brighter than M ?.(We take M ?to be M b J ?5log 10h ??19.7,following Folkes et al.1999and Norberg et al.2002.)Furthermore,the projected correla-tion functions are well described by a power law with a slope that is independent of luminosity.The middle panel of Fig.6shows the projected correlation function of early-type galax-ies for di?erent absolute magnitude ranges.The clustering amplitude displays a non-monotonic behaviour,with the faintest sample having almost the same clustering strength as the brightest sample.The signi?cance of this result for the faintest galaxies will be discussed further in the next section.Early-type galaxies with M b J ?5log 10h ??19.5,display weaker clustering than the faint and bright samples.The bottom panel of Fig.6shows the real space clustering of late-type galaxies as a function of luminosity.In this case,the trend of clustering strength with luminosity is much simpler.There is an increase in clustering amplitude with luminosity,and also some evidence that the projected cor-relation function of the brightest subset is steeper than that of the other late-type samples.In general,for the luminosity ranges for which a comparison can be made,the clustering strength of early-type galaxies is always stronger than that of late-types.

The comparison of the correlation functions of di?er-ent samples is made simpler if we divide the curves plot-ted in Fig.6by a ?ducial correlation function.As a ref-erence sample we choose all galaxies that have been as-signed a spectral type,with absolute magnitudes in the range ?19.5≥M b J ?5log 10h ≥?20.5(the short-dashed line in the top panel of Fig.6).In Fig.7,we plot the ratio of the correlation functions shown in the panels of Fig.6,to the reference correlation function,with error bars obtained from the mock catalogues.The trends reported above for the variation of clustering strength with luminosity and spec-tral type are now clearly visible (see Fig.7),particularly the di?erence in clustering amplitude between early-types and late-types.In the upper and lower panels,the ratios of correlation functions are essentially independent of σ,indi-cating that a single power-law slope is a good description over the range of scales plotted.The one exception is the brightest sample of late-type galaxies,which shows some evidence for a steeper power-law.In the middle panel,the ratios for early-type galaxies show tentative evidence for a slight steepening of the correlation function at small pair separations,σ<2h ?1Mpc,which is most pronounced for the brightest sample.5.3

Real space correlation length

In the previous subsection,we demonstrated that the pro-jected correlation functions of galaxies in the 2dFGRS have a power-law form with a slope that varies little as the sample selection is changed,particularly for pair separations in the range 2.0≤σ/(h ?1Mpc)≤15.0.To summarize the trends in clustering strength found when varying the spectral type and luminosity of the sample,we ?t a power-law over this range of scales.We follow the approach,based on Eq.8,used by Norberg et al.(2001),who performed a χ2minimisation

10The 2dFGRS

collaboration

Figure 6.The projected galaxy correlation function for sam-ples of di?erent spectral type,split into one absolute magnitude wide bins.The top panel shows the correlation function measured for all galaxies with an assigned spectral type.The middle panel shows correlation functions for early-types and the bottom panel shows the results for late-types.The absolute magnitude range of each sample is indicated in the legend on each panel.The error bars are derived from the 2dFGRS mock catalogues and,for clarity,are only plotted on the correlation functions of the ?18.5≥M b J ?5log 10h ≥?19.5sample and of the brightest samples in each panel.

to extract the best ?tting values of the parameters in the power-law model for the real space correlation function:the correlation length,r 0,and the power law slope,γ.As pointed out by Norberg et al.(2001),a simple χ2approach does not give reliable estimates of the errors on the ?tted parameters because of the correlation between the estimates of the cor-relation function at di?ering pair separations.We

therefore

Figure 7.The ratio of the projected correlation function mea-sured for galaxies selected by luminosity and spectral type to the projected correlation function of a reference sample.The refer-ence sample consists of all galaxies with an assigned spectral type that lie within the magnitude range ?19.5≥M b J ?5log 10h ≥?20.5.The top panel shows the ratios for di?erent luminosity bins for all galaxies with a spectral type,the middle panel shows the ratios obtained for early-types and the bottom panel shows the ratios for late-types.The same line styles plotted in Fig.6are used to indicate di?erent luminosities.The error bars,which take into account the correlation between the samples (but not between the bins),are from the mock 2dFGRS catalogues,and for clarity,are only plotted on two curves in each panel:the ratio for the sample with ?18.5≥M b J ?5log 10h ≥?19.5and the ratio for the brightest sample in each panel.

use the mock 2dFGRS catalogues to estimate the errors on the ?tted parameters in the following manner.The best ?t-ting values of r 0and γare found for each mock individually,using the χ2analysis.The estimated error is then taken to be the fractional rms scatter in the ?tted parameters over the ensemble of mock catalogues.The best ?tting parame-ters for each 2dFGRS sample are listed in Tables 1(early &late types together),2(early-types only)and 3(late-types only).The results for the correlation length are plotted in the top panel of Fig.8.

The correlation lengths estimated for the full sample with assigned spectral types (shown by the open squares in Fig.8)are in excellent agreement with the results of Nor-berg et al.(2001)(shown by the ?lled circles).The bright samples constructed by Norberg et al.(2001)have z max val-ues in excess of the limit of z max =0.15enforced upon the samples analysed in this paper by the PCA.The bright sam-ples used in this paper therefore cover smaller volumes than those used by Norberg et al.and so the error bars are sub-

The 2dF Galaxy Redshift Survey:The dependence of galaxy clustering on luminosity and spectral type.

11

Figure 8.Top panel:the real space correlation length,r 0,as a function of the absolute magnitude of the sample,for galaxies of di?erent spectral type.The stars show the r 0values ?tted to the projected correlation function of late-type galaxies and the open circles show the r 0values for early-types.The squares show r 0for the full sample with spectral types.The latter results are in excellent agreement with those obtained from the larger sam-ple analysed by Norberg et al.(2001),which are plotted as ?lled circles.The horizontal bars on the ?lled circles show the mag-nitude range used to de?ne the volume-limited samples.Lower

panel:the di?erence ?r η0=r η

0(M b J )?r η0(M ref b J )for each spec-tral type.This quantity gives the signi?cance of the variation of

the correlation length with luminosity for each spectral type with respect to a reference sample,chosen to be the sample de?ned by ?19.5≥M b J ?5log 10h ≥?20.5.The error bars take into account the correlation between the two samples.

stantially larger.A cursory inspection of Fig.8would give the misleading impression that we ?nd weaker evidence for an increase in correlation length with luminosity.It is im-portant to examine this plot in conjunction with Tables 1to 3,which reveals that there is signi?cant overlap in the volumes de?ned by the four brightest magnitude slices,be-cause of the common z max =0.15limit.

In this case,the error bars inferred directly from the mocks do not take into account that our samples are corre-

lated.The errors fully incorporate cosmic variance,i.e.the variance in clustering signal expected when sampling a given volume placed at di?erent,independent locations in the Uni-verse.The volumes containing the four brightest samples listed in Table 2contain long-wavelength ?uctuations in common and so clustering measurements from these di?er-ent volumes are subject to a certain degree of coherency.The clearest way to show this is by calculating the di?er-ence between the correlation lengths ?tted to two samples.The error on the di?erence,derived using the mock cata-logues,has two components:the ?rst comes from adding the individual errors in quadrature;the second is from the cor-relation of the samples.For correlated samples,this second term is negative and,therefore lowers the estimated error on the di?erence.This is precisely what is seen in the lower

panel of Fig.8,where we plot ?r η0=r η0(M b J )?r η

0(M ref b J )for each spectral type as a function of absolute magnitude,with error bars taking into account the correlation of the samples.For all samples brighter than M ?,the increase in clustering length with luminosity is clear.

There is a suggestion,in the top panel of Fig.8,of a non-monotonic dependence of the correlation length on luminos-ity for early-type galaxies.The evidence for this behaviour is

less apparent on the ?r η

0panel,where a di?erence in r 0for the faintest sample is seen at less than the 2σlevel.These volumes are small compared to those de?ning the brighter samples.Furthermore,when analyzing the faintest sample for SGP and NGP separately,our results are somewhat sen-sitive to the presence of single structures in each region (at α?0h and z ?0.061for the SGP,as shown in Fig.3(a)).Thus we conclude that the upturn at faint magnitudes in the correlation length of early-types is not signi?cant.

The projected correlation function of early-type galax-ies brighter than M ?is well ?tted by a power-law real space correlation function,with a virtually constant slope of γ?1.87and a correlation length which increases with luminosity,from r 0=5.7±0.6h ?1Mpc for M ?galaxies to r 0=9.7±1.2h ?1Mpc for brighter galaxies (M b J ?5log 10h ??21.2).This represents an increase in clustering strength by a factor of 2.7,as seen in Fig.7.The projected correlation functions of late-type galaxies are also consistent with a power-law in real space,with an essentially constant slope.There is a very weak trend for γto increase with lu-minosity,although at little more than the 1σlevel.Ignoring this e?ect,the ?tted slope of the late-type correlation func-tion is γ?1.76.The correlation length increases with lumi-nosity from a value of r 0=3.7±0.8h ?1Mpc for faint galax-ies (M b J ?5log 10h ??18.4)to r 0=6.3±1.0h ?1Mpc for bright galaxies (M b J ?5log 10h ??20.7),a factor of 2.5increase in clustering strength.It should be pos-sible to extend the analysis for late-type galaxies beyond M b J ?5log 10h ??21when the 2dFGRS is complete.

The top panel of Fig.8con?rms our earlier conclu-sion that the clustering of early-type galaxies is stronger than that of late-type galaxies.At M ?,early-types typically have a real space clustering amplitude that is 1.5?1.7times greater than that of late-types.

12The 2dFGRS

collaboration

Figure 9.The fraction of galaxies in the two broad spectral classes,early-type and late-type,as a function of absolute magni-tude.The fractions are derived from the volume-limited samples listed in Tables 1,2and 3.The error bars show the Poisson errors on the fractions.

6DISCUSSION AND CONCLUSIONS

We have used the 2dFGRS to study the dependence of clus-tering on spectral type for samples spanning a factor of twenty in galaxy luminosity.The only previous attempt at a bivariate luminosity-morphology/spectral type analysis of galaxy clustering was performed by Loveday et al.(1995)using the Stromlo-APM redshift survey.They were able to probe only a relatively narrow range in luminosity around L ?,which is more readily apparent if one considers the me-dian magnitude of each of their magnitude bins (see Fig.3b of Norberg et al.2001).The scatter between spectral and morphological types illustrated in Fig.1precludes a more detailed comparison of our results with those of earlier stud-ies,based on morphological classi?cations.

In Norberg et al.(2001),we used the 2dFGRS to make a precise measurement of the dependence of galaxy clustering on luminosity.The clustering amplitude was found to scale linearly with luminosity.One of the aims of the present pa-per is to identify the phenomena that drive this relation.In particular,there are two distinct hypotheses that we wish to test.The ?rst is that there is a general trend for clustering strength to increase with luminosity,regardless of the spec-tral type of the galaxy.The second is that di?erent types of galaxies have di?erent clustering strengths,which may vary relatively little with luminosity,but a variation of the mix of galaxy types with luminosity results in a dependence of the clustering strength on luminosity.

Madgwick et al.(2002)estimated the luminosity func-tion of 2dFGRS galaxies for di?erent spectral classes,and found that,in going from early-type to late-types,the slope of the faint end of the luminosity function becomes steeper while the characteristic luminosity becomes fainter.Another representation of the variation of the luminosity function with spectral class is shown in Fig.9,where we plot the frac-tion of early and late type galaxies in absolute magnitude

bins.The plotted fractions are derived from the volume-

Figure 10.The relative bias (on the scale of r =4.89h ?1Mpc)of the di?erent spectral classes as a function of luminosity,as in-dicated by the key.The de?nition of relative bias is given in the text.The reference sample covers the absolute magnitude range ?19.5≥M b J ?5log 10h ≥?20.5.The ?ducial luminosity,L ?,is taken to be M b J ?5log 10h =?19.7.The solid line shows the ?t to the results of Norberg et al.(2001),b/b ?=0.85+0.15L/L ?,whereas the dashed line shows the ?t to the data analyzed here.All the error bars plotted take into account the correlation be-tween the various samples.

limited samples listed in Tables 1,2and 3.The mix of spec-tral types changes dramatically with luminosity;faint sam-ples are dominated by late-types,whereas early-types are the most common galaxies in bright samples.Similar trends were found for galaxies labelled by morphological type in the SSRS2survey by Marzke et al.(1998).

We ?nd that the change in the mix of spectral types with luminosity is not the main cause for the increase in the clustering strength of the full sample with luminosity.To support this assertion,we plot in Fig.10the variation of clustering strength with luminosity normalized,for each spectral class,to the clustering strength of a ?ducial sample of M ?galaxies,i.e.the sample which covers the magnitude range ?19.5≥M b J ?5log 10h ≥?20.5.For a galaxy

sample with best ?tting correlation function parameters r i

0and γi ,we de?ne the relative bias with respect to the M ?sample of the same type by b i

(r i 0)

γi

The2dF Galaxy Redshift Survey:The dependence of galaxy clustering on luminosity and spectral type.13

Norberg et al.(2001),which is de?ned in a slightly di?erent way to the e?ective bias computed here.

From Fig.10,we see that the trend of increasing clus-tering strength with luminosity in both spectral classes is very similar for galaxies brighter than L>0.5L?.At the brightest luminosity,corresponding to~4L?,the cluster-ing amplitude is a factor of2?2.5times greater than at L?. This increase is much larger than the o?set in the relative bias factors of early and late types at any given luminosity. We conclude that the change in correlation length with ab-solute magnitude found by Norberg et al.(2001)is primarily a luminosity e?ect rather than a re?ection of the change in the mix of spectral types with luminosity.

Benson et al.(2001)showed that a dependence of clus-tering strength on luminosity is expected in hierarchical clustering cold dark matter universes because of the pref-erential formation of the brightest galaxies in the most mas-sive,strongly clustered dark halos.The close connection be-tween the spectral characteristics of galaxies and their clus-tering properties discussed in this paper provides further evidence that the galaxy type is also related to the mass of the halo in which galaxy forms. ACKNOWLEDGMENTS

The2dFGRS is being carried out using the2degree?eld facility on the3.9m AngloAustralian Telescope(AAT).We thank all those involved in the smooth running and contin-ued success of the2dF and the AAT.We thank the referee, Dr.J.Loveday,for producing a speedy and helpful report. PN is supported by the Swiss National Science Foundation and an ORS award,and CMB acknowledges the receipt of a Royal Society University Research Fellowship.This work was supported in part by a PPARC rolling grant at Durham. REFERENCES

Baugh,C.M.,1996,MNRAS,280,267.

Benson,A.J.,Baugh,C.M.,Cole,S.,Frenk,C.S.,Lacey,C.G., 2000a,MNRAS,316,107.

Benson,A.J.,Cole,S.,Frenk,C.S.,Baugh,C.M.,Lacey,C.G., 2000b,MNRAS,311,793.

Benson,A.J.,Frenk,C.S.,Baugh,C.M.,Cole,S.,Lacey,C.G., 2001,MNRAS,327,1041.

Berlind, A.A.,Weinberg, D.H.,2002,ApJ submitted(astro-ph/0109001)

Bland-Hawthorn,J.,et al.(the2dFGRS Team),2002,in prepa-ration.

Blanton,M.,2000,ApJ,544,63.

Bromley,B.C.,Press,W.H.,Lin,H.,Kirshner,R.P.,1998,ApJ, 505,25.

Cole,S.,Fisher,K.B.,Weinberg,D.H.,1994,MNRAS,267,785. Cole,S.,Hatton,S.,Weinberg,D.H.,Frenk,C.S.,1998,MNRAS, 300,945.

Colless,M.,et al.(the2dFGRS Team),2001,MNRAS,328,1039. Davis,M.,Geller,M.J.,1976,ApJ,208,13.

Davis,M.,Peebles,P.J.E.,1983,ApJ,267,465.

Evrard,A.,et al.(the Virgo Consortium),2002,ApJ,submitted, astro-ph/0110246.

Folkes,S.,et al.(the2dFGRS Team),1999,MNRAS,308,459. Guzzo,L.,Strauss,M.A.,Fisher,K.B.,Giovanelli,R.,Haynes, M.P.,1997,ApJ,489,37.

Hamilton,A.J.S.,1993,ApJ,417,19.Hawkins,E.,et al.(the2dFGRS Team),2002,in preparation. Hermit,S.,Santiago,B.X.,Lahav,O.,Strauss,M.A.,Davis,M., Dressler,A.,Huchra,J.P.,1996,MNRAS,283,709. Iovino,A.,Giovanelli,R.,Haynes,M.,Chincarini,G.,Guzzo,L., 1993,MNRAS,265,21.

Jenkins,A.,Frenk,C.S.,Pearce,F.R.,Thomas,P.A.,Colberg, J.M.,White,S.D.M.,Couchman,H.M.P.,Peacock,J.A.,Ef-stathiou,G.,Nelson,A.H.,1998,ApJ,499,20.

Jenkins,A.,Frenk,C.S.,White,S.D.M.,Colberg,J.,Cole,S., Evrard,A.E.,Couchman,H.M.P.,Yoshida,N.,2001,MN-RAS,321,372.

Kaiser,N.,1987,MNRAS,227,1.

Kau?mann,G.,Nusser,A.,Steinmetz,M.,1997,MNRAS,286, 795.

Kau?mann,G.,Colberg,J.M.,Diaferio,A.,White,S.D.M.,1999, MNRAS,303,188.

Kennicutt,R.C.,1992,ApJ,388,310.

Kochanek C.S.,Pahre M.A.,Falco E.E.,2002,ApJ submitted, astro-ph/0011458

Landy,S.D.,Szalay,A.S.,1993,ApJ,412,64.

Lahav,O.,Saslaw,W.C.,1992,ApJ,396,430.

Loveday,J.,1996,MNRAS,278,1025

Loveday,J.,Maddox,S.J.,Efstathiou,G.,Peterson,B.A.,1995, ApJ,442,457.

Loveday,J.,Tresse,L.,Maddox,S.J.,1999,MNRAS,310,281. Maddox,S.J.,Efstathiou,G.,Sutherland,W.J.,Loveday,J., 1990a,MNRAS,243,692

Maddox,S.J.,Efstathiou,G.,Sutherland,W.J.,Loveday,J., 1990b,MNRAS,246,433

Maddox,S.J.,Efstathiou,G.,Sutherland,W.J.,Loveday,J.,1996, MNRAS,283,1227

Maddox,S.J.,et al.(the2dFGRS Team),2002,in preparation. Madgwick,D.S.,et al.(the2dFGRS Team),2002,submitted to MNRAS,astro-ph/0107197.

Marzke,R.O.,da Costa,L.N.,Pellegrini,P.S.,Willmer,C.N.A., Geller,M.J.,1998,ApJ,503,617.

Norberg,P.,et al.(the2dFGRS Team),2001,MNRAS,328,67. Norberg,P.,et al.(the2dFGRS Team),2002,MNRAS,submit-ted,astro-ph/0111011.

Padilla,N.D.,Merchan,M.E.,Valotto, C.A.,Lambas, D.G., Maia,M.A.G.,2001,ApJ,554,873.

Peacock,J.A.,Smith,R.E.,2000,MNRAS,318,1144 Peacock,J.A.,et al.(the2dFGRS team),2001,Nature,410,169. Santiago,B.X.,Strauss,M.A.,1992,ApJ,387,9.

Shectman,S.A.,Landy,S.D.,Oemler,A.,Tucker,D.L.,Lin,H., Kirshner,R.P.,Schechter,P.L.,1996,ApJ,470,172. Schlegel,D.J.,Finkbeiner,D.P.,Davis,M.,1998,ApJ,500,525. Seljak,U.,2000,MNRAS,318,203.

Somerville,R.S.,Lemson,G.,Sigad,Y.,Dekel,A.,Kau?mann,

G.,White,S.D.M.,2001,MNRAS,320,289.

Tegmark,M.,Bromley,B.C.,1999,ApJ,518,L69.

Willmer,C.N.A.,Da Costa,L.N.,Pellegrini,P.S.,1998,AJ,115, 869.

Zehavi,I.,et al.(the SDSS Collaboration),2002,submitted to ApJ,astro-ph/0106476.

14The2dFGRS collaboration

Table1.Properties of the combined NGP&SGP volume-limited samples for all galaxies with a spectral type.Column1lists the absolute magnitude range which de?nes the volume-limited samples.Columns2and3list the median magnitude and the number of galaxies in the sample.Columns4and5give the redshift limits of the sample.Columns6and7list the best?tting correlation length, r0,and power-law slope,γ,of the real space correlation function,and column8gives A(γ),as de?ned by Eq.8.

?17.5?18.5?17.9885100.01640.07245.19±0.951.68±0.12 4.14

?18.0?19.0?18.46137950.02040.08864.36±0.891.83±0.10 3.58

?18.5?19.5?18.93192070.02550.10774.65±0.611.80±0.08 3.68

?19.0?20.0?19.40246750.03170.13024.93±0.501.79±0.10 3.71

?19.5?20.5?19.85225550.03940.15004.89±0.481.79±0.05 3.71

?20.0?21.0?20.30103990.04870.15005.37±0.611.78±0.11 3.75

?20.5?21.5?20.7434230.06020.15006.57±0.831.83±0.23 3.58

?21.0?22.0?21.197510.07390.15008.47±0.971.80±0.29 3.68

Table2.Properties of the combined NGP&SGP volume-limited samples of early-type galaxies.See Table1for column de?nitions.

?17.5?18.5?18.0519090.01630.07078.33±1.821.87±0.23 3.46

?18.0?19.0?18.5337170.02030.08616.28±1.461.98±0.11 3.19

?18.5?19.5?18.9864050.02530.10415.92±1.001.83±0.10 3.58

?19.0?20.0?19.44101350.03140.12495.71±0.571.87±0.09 3.46

?19.5?20.5?19.89113460.03880.14865.66±0.561.87±0.09 3.46

?20.0?21.0?20.3364340.04800.15006.10±0.721.80±0.12 3.68

?20.5?21.5?20.7725870.05900.15007.60±1.021.87±0.26 3.46

?21.0?22.0?21.216860.07220.15009.74±1.161.95±0.37 3.26

Table3.Properties of the combined NGP&SGP volume-limited samples of late-type galaxies.See Table1for column de?nitions. Note that the brightest sample listed contains too few galaxies to permit a reliable measurement of the projected correlation function.

?17.5?18.5?17.9666740.01640.07344.27±0.811.65±0.12 4.29

?18.0?19.0?18.4499920.02050.09013.71±0.771.76±0.11 3.82

?18.5?19.5?18.90126190.02560.10994.17±0.641.79±0.10 3.71

?19.0?20.0?19.37144200.03190.13334.45±0.471.76±0.09 3.82

?19.5?20.5?19.82111220.03970.15004.59±0.441.76±0.07 3.82

?20.0?21.0?20.2643000.04920.15005.52±0.881.87±0.13 3.46

?20.5?21.5?20.7111180.06080.15006.33±1.012.01±0.29 3.12

?21.0?22.0?21.171980.07490.1500???

联想乐Pad A1刷机详细图文教程

联想乐Pad A1刷机详细图文教程 联想乐Pad A1刷机教程,教你如何刷机此帖是一个较为粗略的教程,不过分三种方法,这里是针对第一种方法进行详细说明。 针对一些不太懂刷机的朋友,我这里针对上面帖子里的第一种方法写一篇更为详细的教程,对联想乐Phone刷机不太清楚的机油可以看看。 首先,要下载一个刷机包A107W0_A234_001_008_2375_SC.zip点击下载。值得说明的是,在最早的2035教程中提到的“压缩包中6个文件 Update.zip,Recovery.img,MLO,uImage,u-boot,make_boot_sdcard. zip均拷贝到TF卡根目录下”的步骤,在2493这个版本时,这个步骤中完全可以只拷贝一个Update.zip文件即可,因为其他几个文件在Update.zip中已有,文件完全一样,作用也一样,没有必要再次全部拷贝了。 第二步是把下载完的固件文件改名为update.zip(注意:不是update.zip.zip,部分网友的电脑默认设置是看不到后缀名,所以不要以为就没有后缀名) 第三步,把改名后的update.zip拷贝到TF卡上,TF卡格式化为FAT32,

且确定能在A1系统中被识别。 刷机前必须关机。把联想A1关机(长按电源键10秒可强行关机,请确定保持A1在关机状态)

同时按住“电源键”和“音量小键”,A1会震动一次,这时A1 开机,持续按住两个按键不松手,当第一次出现Lenovo字样的logo 时,松开两个按键。(提醒一下急性子的人,出现logo时候挺一秒,再松手吧。我觉得0.05秒时候是最好)

战神的挑战2——图文流程攻略

战神的挑战2——图?流程攻略 【游戏封?】 游戏名称:P u z z l e Q u e s t2 中?名称:战神的挑战2 游戏发?:N a m c o N e t w o r k s A m e r i c a,I n c. 游戏制作:I n?n i t e I n t e r a c t i v e 游戏语种:英? 游戏类型:R P G??扮演 发??期:2010年8?13?

%{p a g e-b r e a k|游戏介绍|p a g e-b r e a k}% 野蛮?的技能表(括号中学得该技能所需的等级): 连捶(1):战场上有多少红宝?,则造成1/2数量的伤害值,需要4的红魔法。 部落的标记(2):消掉战场上所有的红宝?,每4颗红宝?增加1点头?伤害奖励,该效果?直持续。 狂怒(3):在战场上随机位置?成14颗红宝?。 部落的守护(4):消掉战场上所有的绿宝?,没颗绿宝?增加2点防御,效果?直持续。 猛击(5):减少敌?每种颜?的魔法值各10。 头?粉碎者(6):消掉所有头?,敌?损失的回合数为1+1/5消掉的头?数。 野蛮咆哮(7):敌?防御减少75%,持续3回合,本回合未结束。 破坏狂(8):消掉所有的绿宝?,增加相等数量的红魔法。 反冲(10):使?后该回合内通过武器攻击造成的伤害增加50%。 战争狂嚎(12):随机位置增加3颗红?头?,如果当前红魔法值不少于25则本回合未结束。 最后的反击(15):使?后每损失25点?命值增加1点头?伤害,该技能

践踏(20):选择?颗宝?,消掉周边3*3区域的宝?并获得所有这些宝?的效果,对敌?造成8的伤害。 残暴(25):在后6回合内使头?伤害加倍。 猎头者(30):消掉最上2?的宝?,获得它们的效果。对敌?造成10的伤害。 嗜?(35):接下来的6个回合,对敌?造成伤害值的25%转化为??的?命值。 毁灭者(40):增加50点武器攻击点数,本回合未结束。 迷幻之怒(50):选择?种宝?,战场上所有该颜?的宝?转变为头?,红魔法不少于25则本回合未结束。 战?的?些分析:消宝?增加该颜?魔法,六个?格为装备的武器,拳头形状表?武器攻击点数,消掉战场中的拳头增加该点数,满?武器使?需求后点击武器?格可以释放,图中我?3、3的数值分别标?了?前的头?伤害加成值和防御值,前者增加消掉头?后对敌?的伤害值,后者标?有该数值%的机会使任何敌?对我?造成的伤害减半。左下?为现在装备的五个技能,注意战?中只能装备五个所以需要在战?前在技能选项中先选择好最有利于战?的技能。 野蛮?战?的?些?得: 消4个或以上的宝?能奖励?个回合,单回合连续消掉?批宝?会有更多奖励(?如稀有武器)。 消宝?时注意看看消去后是否会给对?造成机会,如果没有什么好的

8500使用说明书

4、问:S8500内存整理软件 答:见附件哦~注册码13个0 5、问:如何鉴别电池真伪 答:大家都知道电池都有序列号的,而且每一颗电池的序列号都是不同的,因此序列号不可能同电池上的其它文字一样一起印刷在贴纸上面(这点懂印刷的应该都知道),所以序列号都是后来打印上去的。因为序列号要求必须耐磨所以对打印机的要求很高,所以只有专用的条码打印机才可以打印。这种打印机往往很昂贵,因此一般的JS是不会采用的。基于以上原因: 1。仔细看序列号文字是后来打印上去的还是跟其它文字一起印刷的,如果是一起印刷的肯定是假的。如果眼神不太好使的,可以用手摸序列号文字,如果很粗糙有凹凸感才有可能是真的。 2. 在第一点的基础上再看文字字体是否有锯齿感(最好有放大镜),如果有恭喜电池是真的,如果文字很平滑则有可能是假的。(因为条码打印机都是针式的,打出来的字不可能会很平滑,除非是600dpi的打印机,但是非常昂贵,所以一般都是用的300dpi的) PS:基于以上种种,假电池的序列号往往都是一样的。以上方法还可以用来鉴别手机另外也有部分厂商用喷码技术来印序列号,出来的字体跟针式打印差不多很粗糙有锯齿感,喷码技术的成本更高,估计不会有JS使用的,呵呵。总之看序列号文字就对了,当然整体做工也是要看的从SN码辨别真伪:三星电池的SN码,包含着电池的生产厂家、生产日期等信息。三星电池SN为11位序号,由数字与字母组成,格式为123-ABCD-EF-GH,其中,第二位“2”代表电芯,用“A”表示三星视界生产,“O”表示SONY公司生产(其它的符号本人不确定,汗一个)第四至七位“ A”、“B”、“CD”分别代表生产年、月、日,用“S”代表2009年,“Z”代表2010年。用1~9分别代表1至9月份,用A、B、C分别代表10月、11月和12月第八位E表示出货的国家第九位F表示颜色,“S”表示银色最后两位表示电池容量。如下图所示,电池SN码是SO1S501AS/5-B,O表示是索尼生产的,S501表示生产日期是2009年5月1号,S表示银色,5-B表示1500毫安,真电池的SN码里的信息和电池上写的生产日期、生产厂家相同下载(146.23 KB)2010-6-30 22:08索尼生产的电池,“生产日期”等文字是空心字,是电池生产完后,用激光将生产日期印上去的,用手摸上去有凹凸感,而假电池的生产日期是在电池生产前直接将所有的信息直接印刷在贴纸上的,当然包含生产日期和SN码三星视界生产的电池,文字都是实心的,从印刷上不易区别,但是SN码里的信息和电池上写的生产日期、生产厂家相同。按以上内容辨别后,如果没有问题就继续按下面的方法鉴别,如果SN码里的信息和电池上写的生产日期、生产厂家不相同,那就可以确定是假电池了,那就没必要再按以下的方法鉴别了。 1、电池装入手机后,应该无间隙、晃动,电池盖盖上后,电池盖的缝隙无增大; 2、电池铜片位置很正、无歪斜,铜片旁边的印有“+”“-”符号的圆孔底面是光面,“+”“-”符号的表面是毛面; 3、铜片端的塑胶部分是软的,用指甲按会留下痕迹,假电池是硬的,按不动(此项不一定); 4、待机时间,这个可以和其他人对比,就不多说了

《战神3》图文流程攻略Chapter 11 -奥林

《战神3》图文流程攻略Chapter 11 -奥林匹亚要塞 跟随赫尔墨斯的脚步,抵达木桥上,桥会被迎空飞来的火球砸断,并且背后会不断燃烧,被火追上便会坠崖而亡,中途桥会更改一起方向,不用搭理摇杆向上推一路按×注意面前的平民会阻挡你的道路,用攻击键杀死他们而不是圆圈,跨上平台,平台上有许多平民,抓住处决可以回血,他们的生杀大权就掌握在你的手中。 一路上连跑带揍也没能追上神使,不过最终这个罗嗦的家伙还是被逼在一个锁头上,去左边触发剧情,不用被赫尔墨斯所干扰,掌握自己的节奏一路上利用跳跃点抵达安全区域,上面拼命、小恶魔、狗仔龙蛇混杂,推荐使用太阳神的头颅△蓄力镇住他们,然后L ?清理。

接着向前走,赫尔墨斯把正门关了没办法,我们只能绕远路了,从门左边的楼梯左右开工跃上房顶,发现点赫尔墨斯已经跑到很远的地方等奎托斯了,无奈ing到圆台下方右侧拉动摇杆,腾出缺口跳上平台,拉动巨型投石车,利用QTE跟随巨石抵达赫尔墨斯所在的雅典娜巨像上,酷毙了~ 跟随赫尔墨斯的血迹到达与赫尔墨斯决战的平台,这家伙的速度非常快,天天跑路可不是 盖的,也许一开始会适应不来,用L ?来攻击命中率会比较大,或者直接重攻击的收尾重击的伤害非常大看准时机可以给予赫尔墨斯很大的伤害,途中会有QTE对抗,无外乎是正转或者是反转半圈摇杆,几下重击周后赫尔墨斯被击倒在地,显然他累了,这家伙临死之前还唧唧歪歪拿斯巴达人的荣耀来说事。

已经没有力气的赫尔墨斯坐在地上任你鱼肉,按下圈就开始华丽的表演,非常非常的血腥……未成年人绝对禁止观看…以上以及以下的图片纯属欣赏,完事之后获得“赫尔墨斯之靴”这件物品可以让你跑得飞快。

PSP《战神-奥林匹斯之链》图文攻略流程

【首发】PSP战神Ω奥林匹斯之链图文流程攻略! https://www.doczj.com/doc/5f9716142.html,-自由自在游戏社区奉献 《战神Ω奥林匹斯之链》(God of War:Chains of Olympus)是以PS2上大畅销的《战神》(God of War)系列为题材的PSP原创新作,本作由 Ready at Dawn研发,充分发挥PSP所具备的 3D处理性能,呈现出不亚于PS2版壮阔的游 戏场景以及细腻角色。此外,在日前SCEA旗下 工作室Ready at Dawn高级制作人Eric Koch也 通过官方博客PlayStation Blog对外确认,自 2007年起就备受注目的PSP游戏《战神Ω奥 林匹斯之链》已经顺利宣告完工,游戏已经交厂 压碟准备上市,现在这款PSP超级大作将于2008 年3月4日在北美地区发售。 游戏承袭相同的故事背景与游戏类型,玩家将再 度扮演斯巴达战士奎托斯,继续施展“浑沌双刃” 等致命武器,面对全新的难关、敌人与奥林匹斯 诸神的试炼,体验与不同于本传的原创故事剧 情。游戏承袭PS2系列作的特色,在PSP上 重现了广受欢迎的电影运镜式精采游戏画面与 刺激的动作战斗系统,并加入全新的招式、关卡、 机关与怪物,以及以希腊神话为基础的全新剧 情。玩家将扮演斯巴达战士奎托斯,从人间的雅 典一直到冥王哈帝斯的冥府之门,一路朝向地狱 的深渊迈进,体验希腊神话中黑暗且残暴的世 界,并对抗各种传说中的怪物以及强大的头目角 色。 游戏名称:战神Ω奥林匹斯之链/战神Ω奥林帕斯之链 英文名称:God of War:Chains of Olympus 代理发行:SCEA/Ready At Dawn Studios LLC.游戏类型:ACT-Action Game(动作游戏) 制作厂商:SCEA/Ready At Dawn Studios LLC.对应主机:Play Station Portable(PSP) 语言版本:英文(美版)发行日期:2008年03月04日 载体容量:UMD×1参考价格:$:39.99美元 介绍网站点击进入

联想ZUK Z2 Pro(尊享版全网通) 线刷教程_刷机教程

联想ZUK Z2 Pro(尊享版/全网通) 线刷教程_刷机教程 联想ZUKZ2Pro(尊享版/全网通):联想ZUK手机Z2(Z2131)全网通4G双卡双待(4G 运行+64G内存1300万像素5.0英寸。这款手机要怎么刷机呢?请看下面的教程。1:刷机准备 联想ZUKZ2Pro(尊享版/全网通)一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。 刷机工具:线刷宝下载 刷机包:联想ZUKZ2Pro(尊享版/全网通)刷机包 1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号联想ZUKZ2Pro(尊享版/全网通),或者直接搜索Z2131 (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。), 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。

(图3) 1:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4)

第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页面(图5)点击“点击安装刷机驱动”, 2、在弹出的提示框中选择“全自动安装驱动”(图6),然后按照提示一步步安装即可。 (图5)

(图6) 第四步:手机进入刷机模式 线刷包解析完成后,按照线刷宝右边的提示操作手机(图7),直到手机进入刷机模式(不知道这么进?看这里!): (图7)第五步:线刷宝自动刷机

手机进入刷机模式,并通过数据线连接电脑后,线刷宝会自动开始刷机: (图8) 刷机过程大约需要两三分钟的时间,然后会提示您刷机成功(图9),您的爱机就OK啦! 刷机成功后,您的手机会自动重启,启动的时间会稍微慢一些,请您耐心等待。直到手机进入桌面,此次刷机就全部完成啦。 刷机失败了? 如果您刷机失败了,可能是刷机过程中出现了什么问题,可以这么解决: 1、按照以上步骤重新刷一遍,特别注意是否下载了和您手机型号完全一样的刷机包; 2、联系我们的技术支持人员解决:>>点击找技术 3、刷机中遇到问题,可以查看常见问题进行解决>>常见问题。 以上就是小编今天关于联想ZUKZ2Pro(尊享版/全网通)如何刷机的介绍。一建刷机,让您从此手机无忧,如论您是小白用户,还是手机维修人员,线刷宝,只为

《战神的挑战2》图文流程攻略

《战神的挑战2》图文流程攻略 事情还没有结束,在更深的地下有人知道Laurella母亲的情况,打开通往下面的门离开地下墓穴的世界我们进入了地精实验室。 这扇巨大的金门在其他3个地方上锁了,分别拉下这3个地方的闸门。

石器时代的食人魔,有铁头功技能:造成20伤害并震晕一回合,附加当前对方蓝魔法数值的伤害。

来自希腊神话故事的人身牛头怪守卫第一道闸门的开关,战斗时你的武器会被替换成一件“斗牛士的披风”(需要8行动点数),它的作用是防止被神牛冲倒。神牛的冲刺技能:造成10的伤害并击倒对方5个回合。另一个技能Gore:造成5的伤害,如果对方处于击倒状态则附加25点的伤害。 [pagesplitxx][pagetitle][/pagetitle] 这只枭守卫着南方闸门的开关,没有什么特殊的能力。

西方闸门开关由著名的美杜莎驻守,除了石化技能之外,它的毒武器造成14*8(回合)的伤害并给自己增加10的防御。其他生命和防御都较低,不难对付。拉下第三个开关,任务更新:逃离地精实验室。

看起来暴乱已经激怒了堕落的精灵,精灵boss和它的两个手下以及一个巨大的钢铁侠一起出现在这里。一番嘘寒问暖之后站在最前面的精灵族战士手持双刀前来切磋,解决掉开胃菜之后,对上身后那位女性战法师。她有一个Mirror Shield技能:将对方的防御值全部吸到自己身上,持续10+1/8自身蓝魔法的回合,而她初始防御就有47,所以使用该技能后基本上防御值超过100,注意使用减防技能。另一个Dark Blast技能如果紫色魔法多的话伤害也会很高,而且只消耗3的红色魔法。

联想a820刷机教程

联想a820刷机教程(附刷机包、刷机工具、驱动下载) 卡刷刷机是利用第三方recovery来刷机,如果你还没有刷入第三方recovery,请接着往下看: 刷入第三方recovery:联想A820线刷中文recovery卡刷模块教程 联想A820官方线刷工具:点此下载 联想A820含中文recovery卡刷模块线刷包:点此下载 之前有部分机友因驱动未成功安装等原因,导致无法刷,或者出现其他问题,现更新教程,使用的电脑建议采用XP系统!比较安全、易装驱动; 1、先安装好线刷驱动,已经安装过的请跳过,这里就不多介绍安装驱动的方法,具体方法,可移步至 2、先备份好您手机上的短信、图片、软件等信息,然后下载好联想A820官方线刷工具Fla sh_tool,下载地址见最后面,如果已经下载可跳过; 3、下载好最下面的“含中文recovery的线刷包”,如果您之前已经下载官方固件,可无需下载,看最后面的特别说明; 3、打开刷机工具Flash_tool,选择Scatter-loading,选择含中文recovery卡刷模块的线刷包里面的txt文档文件MT6589那个,如图:

4、确定全部勾已经勾选,然后点击Ferware-upgade,然后插上你的联想A820(装电池的),然后进度条会走,四五分钟之后,刷成功,会弹出一个小小的窗口,表示成功刷入中文rec overy。如图: 5.弹出下面的绿色圈圈窗口之后,表示成功刷入中文recovery,拔掉数据线,按住电源键2秒左右,再同时按音量加、减键(此时3个键一起),一直到进入中文recovery模式。或者借助刷机精灵、卓大师等软件重启到recovery模式!

战神的挑战1代全捕捉攻略

Arboreth 死亡腾蔓 第1列的骷髅头向右移7次 第7列的紫星向左移6次 第3列的红宝石向下移 第6列的绿宝石向下移 Arkliche 大巫妖 第3列的绿宝石向右移 第6列的绿宝石向左移 第2列的紫星向右移 第7列的紫星向左移 第2列的骷髅头向上移 第7列的骷髅头向上移 Catapult 攻城机 第2列的黄宝石向左移 第7列的绿宝石向右移 第4列的蓝宝石向右移 第4列的紫星向右移 第3、6列的闪光骷髅头向上移 Centaur 半人马 第3列的蓝宝石向右移 第6列的蓝宝石向左移 第2列的红宝石向右移 第7列的红宝石向左移 第4列的骷髅头向左移 第5列的骷髅头向右移 Dark Dwarf 黑暗矮子 第8列的绿宝石向上移 第6列最上方的骷髅头向右移 第3列最上方的绿宝石向右移 第1列的绿宝石向上移 第3列的红宝石向上移 第6列的绿宝石向左移 第4列的红宝石向上移 第6列的金币向下移 Doom Knight 末日骑士 第2、4、6、8行最上方的骷髅头向下移 第1(最上方)、3(最下方)、5(最下方)、7(最下方)行的骷髅头向下移第3、7行的骷髅头向上移

Dragon Spider 龙蜘蛛 第2列的骷髅头向右移 第7列的骷髅头向左移 第4列最上方的黄宝石向上移 第5列最上方的黄宝石向上移 第4列最下方的红宝石向左移 第5列的红宝石向右移 Elven Guard 精灵守卫 第2列最下方的黄宝石向右移 第7列最下方的黄宝石向左移 第2列最下方的绿宝石向右移 第2列的绿宝石向右移 第2列的骷髅头向左移 第7列最上方的绿宝石向下移 第7列的骷髅头向右移 Fire Elemental 火元素 第5列最上方的骷髅头向下移 第3列最上方的骷髅头向下移 第6列最上方的骷髅头向下移 Fire Giant 火巨人 第8列的金币向左移 第2列的闪光骷髅头向右移 第5列的骷髅头向下移 第1列的金币向右移 第5列的红宝石向右移 Flame Dragon 火焰龙 第2、4列最下方的骷髅头向左移 第2列的骷髅头向下移2次 第4列的黄宝石向左移 第4列最下方的红宝石向上移 第6、8列最下方的骷髅头向左移 第6列的骷髅头向下移 第8列的骷髅头向左移 第6列的骷髅头向下移 第8列的黄宝石向左移 Frost Dragon 霜龙 第3列上方第2个骷髅头向右移 第6列最上方的骷髅头向左移

制作U盘启动及联想刷机

刷新方法: 1、制作U盘启动盘。usboot170.rar下载地址: https://www.doczj.com/doc/5f9716142.html,/d/7043bb9d285353728d2f47862a5839538 eb5d3a47c6b0500 DOS启动版U盘制作方法详解 https://www.doczj.com/doc/5f9716142.html,/News/technic/200506/2005060815103174 006.shtml 2、将刷新主板BIOS用的文件, markfile和Reset文件夹下所有文 件拷贝到DOS启动 U盘根目录; 3、刷新主板BIOS,和刷新普通主板的BIOS一样; 【进入DOS(开机按F12.选择你的U盘回车)输入MB回车; 开始刷新BIOS】 4、刷新完成重启电脑; 5、重新进入DOS,先运行Reset.BAT, 再运行markfile.BAT。 请各位注意:我上传的BIOS(2UKT070A)是联想彬彬版主提供;没有经过任何修改。 但是MB.BAT批处理有误。 ResetOA2.exe AFUdos4 2UKT070A.ROM /B /P IF errorlevel 1 goto end AMIDEDOS.EXE /Su 00020003000400050006000700080009 IF errorlevel 1 goto end AMIDEDOS.EXE /sp "7339AL2" IF errorlevel 1 goto end

AMIDEDOS.EXE /ss "111111" IF errorlevel 1 goto end :end AFUdos4(错误)修改:AFU417 00020003000400050006000700080009修改成你的UUID号。

《战神3》图文流程攻略

《战神3》图文流程攻略 听完奎爷讲述一下自己在战神1以及战神2之后,玩家跟随奎托斯坠入冥河,顺着河流游,途中会被怨灵吸去生命/魔法以及武器能力,不用挣扎,这是剧情需要,上岸之后失去神力的奎爷疲倦不堪,拖着疲惫的步伐向前走吧,向前不用走多远便可以触发剧情,宙斯的姐姐-智慧女神雅 典娜,并且给失去光芒的混沌双刃注入了新的能力,变成了“流亡双刃”,拿起它,踏上冥界的征途。 向右走,通过跳跃点到达对面远处的平台,不要忘了下方有重要物品-两个红魂箱子以及一个装有“美杜莎之眼”的宝箱,拿完之后就可以上去继续征途了,一路向前解决一波杂兵,适应一下实力大不如前的奎托斯,抵达第三个存档点,此时有两条路,左边一条是通往蕴有四个红魂箱子的平台,右边则是继续流程。

喜欢搞基的-冥王哈迪斯在和你对话了,你明白不明白他话中的话呢……几句话之后获得新魔法“斯巴达军团”(怎么来的?有点莫名其妙~)接下来出现的一些敌人是给你练魔法的;面前有“地狱藤蔓”暂时还开不了,通过右方的锁链一路到对面,途中会有一些杂兵干扰,从锁链上下来之后补充一下生命以及魔法,继续赶路,跳下低处,别忘了背后有两个红魂箱子,然后向前推开大门,首先是一大堆被折磨的灵魂再被美杜莎虐待,上前解决掉两只美杜莎后大门便会打开,往左继续流程。 [pagesplitxx][pagetitle][/pagetitle]

一路向前到达“受折磨的皮尔埃托斯”处,开始一个小解谜,以皮尔埃托斯头上的平台为跳板,进入到里面的房间将“易燃的荆棘”推到对面地狱犬牢笼处,再回头跳上皮尔埃托斯头前方的平台,然后到达“易燃的荆棘”上方飞上上方的平台,触发机关放出地狱犬,几下攻击之后,触发QTE,骑上地狱犬自由的奔驰吧,清理掉路上的杂兵,驾驭地狱犬靠近皮尔埃托斯喷火,让他脱离苦海,随后处决胯下的地狱犬,去获取“阿波罗之弓”。 (使用方法是:按住L2锁定敌人,右摇杆切换目标,?射箭,按住?可以蓄力,带有穿透效果,杀伤力很可观。) 用阿波罗之弓燃烧掉场景中部上方的藤蔓,然后将“易燃的荆棘”推到如上图所示的位置,站在上面即可飞进地图中上方场景内奖励一个红魂箱子以及一个“凤凰羽毛”(增加魔法最大值物品)

联想a60刷机步骤

近来有朋友问怎么刷联想A60于是写了个傻瓜操作流程,希望对需要的人有帮助,共享出来。 本文的内容与软件均来自移动叔叔论坛与网络,本人只是整理了一下,下载链接在金山快盘中,不保证永久有效。 By fjnpcch at 2011.10.14 分成三个步骤: 一、root手机。 1、首先把“联想A60固件USB刷机驱动forXP.rar"解压缩。 下载地址:https://www.doczj.com/doc/5f9716142.html,/index.php?ac=file&oid=9015011800255251。 2、把手机关机,连上usb线,这时会找到设备,安装驱动。驱动在第1步中的目录中找。 3、下载Lenovo_A60_Flash_Tool_m44.rar,下载地址: https://www.doczj.com/doc/5f9716142.html,/index.php?ac=file&oid=9015011800255250,将其解压缩。 运行刚解压出来目录中的:Lenovo_A60_Flash_Tool_m44\Lenovo_A60_Flash_Tool_m44.exe 4、选择第二个框后面的,如图中1处红色的。 5、会让你找文件,找到: Lenovo_A60_Flash_Tool_m44\rom\ MT6573_Android_scatter.txt (在第3步中解压出来的目录中)

6、把手机usb线拔下来,记得一定机先拔下来。 7、按软件中的下载,如上图中2处。 8、这里会出现倒计时:如图 9、把手机usb 线插上。 10、出现如下图的黄色条和绿色圈就已经root成功了。 二、刷入第三方recovery。(recover是卡刷系统的前提) 11、下载:下载地址:https://www.doczj.com/doc/5f9716142.html,/index.php?ac=file&oid=9015011800255250, 解压m44-20110812-a60-2[1].3-recovery.rar,得到m44-20110812-a60-2.3-recovery.img文件。 12、下载https://www.doczj.com/doc/5f9716142.html,/index.php?ac=file&oid=9015011800255289,得到m44tools.apk 文件。 13、手机开机,把上面两个文件拷贝到手机卡的根目录中。 14、在手机上安装m44tools.apk文件,出现“移动叔叔工具箱”软件。

[PSP]《战神》详细完美图文全攻略及心得

[PSP]《战神》详细完美图文全攻略及心得 游戏介绍 《战神Ω奥林匹斯之链》(God of War : Chains of Olympus)是以 PS2 上大畅销的《战神》(God of War)系列为题材的PSP 原创新作,本作由 Ready at Dawn 研发,充分发挥 PSP 所具备

的 3D 处理性能,呈现出不亚于 PS2 版壮阔的游戏场景以及细腻角色。 游戏承袭相同的故事背景与游戏类型,玩家将再度扮演斯巴达战士奎托斯,继续施展“浑沌双刃”等致命武器,面对全新的难关、敌人与奥林匹斯诸神的试炼,体验与不同于本传的原创故事剧情。游戏承袭 PS2 系列作的特色,在 PSP 上重现了广受欢迎的电影运镜式精采游戏画面与刺激的动作战斗系统,并加入全新的招式、关卡、机关与怪物,以及以希腊神话为基础的全新剧情。玩家将扮演斯巴达战士奎托斯,从人间的雅典一直到冥王哈帝斯的冥府之门,一路朝向地狱的深渊迈进,体验希腊神话中黑暗且残暴的世界,并对抗各种传说中的怪物以及强大的头目角色。 战神故事背景 人类不断制造战火,加上战神阿瑞斯在凡间不断的挑动纷争,使凡间陷入一片混乱。于是战神的香火日渐鼎盛,势力也一天比一天强大,终于招致了众神的不满和嫉妒。众神的矛盾不断加剧,阿瑞斯更开始了向别的神公开宣战。 斯巴达战士奎托斯,是斯巴达的军队统领,他体格过人,英勇善战,但为人残酷,贪婪,嗜战。某一年,他率领大军和北方的日尔曼人决战,尽管他使出浑身解数,斯巴达战士视死如归,

仍然无法挽回己方的败局,残酷的战斗中,斯巴达军渐渐处于下风,越来越多人被杀,领袖奎托斯更被日尔曼首领逼到绝境。 在敌人的刀快要刺下来,奎托斯生死的瞬间,英勇的斯巴达人向天怒吼:“阿瑞斯!!!!我乞求您的帮助,让我打败我的宿敌吧!!当我达成心愿,我的灵魂将属于您!!”话音刚落,一道闪电从天而降,击中奎托斯。一副带锁链的利刃紧紧地缠在了他的手上,日尔曼首领被奇迹惊得呆住了。奎托斯乘他不备,挥动了手上的双刀,那硕大的躯体在一瞬间就被砍得四分五裂,只剩下那头颅圆睁着充满困惑和不解的眼睛。阿瑞斯接受了斯巴达人的交易,战场上日尔曼战士都被无形的力量宰杀,好一场血腥的屠戮!战斗过后,阿瑞斯告诉斯巴达人,这刻起,你就是我的仆人,灵魂永远属于我,必须为我永世效劳,手上那不能取下的双刀就是契约的证明。 从此,奎托斯整天陷入无休止的战争中,不断地屠杀着,征服着。直到一天,他把战火烧到了一个村落,他肆无忌惮地杀戮着,见人就剁,还吩咐部下烧村。神庙旁的老妇极力地劝说他放过庙里的人,那是神圣的地方啊!可是奎托斯已经毫无人性了,他闯进庙中,见人就杀,不久,人们都倒在血泊中。杀红了眼的奎托斯却惊讶地发觉妻儿已经死在他眼前,而凶手正是他本人!这一刻,后悔,懊恼,愤恨同时涌上他的心头,人性和良知渐渐回到他的脑中。他认为这是阿瑞斯的陷阱,是让他彻底地为战神

战神1和2全文完整攻略

战神1图文攻略 冒险开始于停放在爱琴海的一个港口的一艘船上,首先,你会遇到一群怪物,干掉它们,然后打开地板上的舱盖进入船内。附近有绿魂,前面的路被一堆桑物挡着,用手中的刀砍掉后继续往前走,一直遇到一个九头蛇怪。它在攻击你前,会抖动它的耳朵,注意防御。在它死前,它上方会出现“圆环”标志,接近按“O”键发动“死忘之舞”,干掉它后,继续前行来到船的甲板上。甲板上,有一群会飞的怪物在攻击人群,干掉它们,(你可以杀死这些人而得到绿魂)。 之后,遇到一个九头蛇怪,站在它的“右前方”快速连击,小心防御。如果不小心被它抓住了,赶紧按“O”键挣脱。

干掉它后,打开你右边的一扇门得到一些“红魂”,然后跳进甲板上的洞口,往前游一段距离后,顺着一张网往上爬来到甲板的另一部分。在横梁中央有一个分贫口(往右边走能得到些“红魂”)。 在甲板的另一头的平台上有一群弓箭手,你需要在其下面放一个木箱子,才能上到那平台上,注意弓箭手可以毁坏你的箱子。当上了平台干掉他们后来到另一个甲板。 之后,你需要攀登一个梯子和一张网同时要干掉些敌人,当你到达桅杆的顶部时,你可以通过那个横梁往走得到些“红魂”之后顺着绳子荡到另一艘船上。

破坏掉三个木板墙出现一条通道(会得到一个“红魂”和一个“蛇发女怪”)顺着路进入船内,开始过场动画。动画过后,继续前进,在角落处有一些蓝魂生命绿魂。顺着一张很长的网来到甲板上,遇到九头蛇怪家族,经过一场战斗,干掉它们后,(详细战斗请读者自行体会),爬进最大的那只的喉咙里去“船长的关键”.返回甲板,跳上板条箱来到右侧的平台上,(在平台上得到蛇眼)顺着绳子荡到之前的那个甲板上。然后爬到之前你来过的平台上,穿过门口,进入船长门。(用“船长的关健”) 一开始有一个“可爱”的迷你游戏,你可以得到些“红魂”。 之后,爬上船另一尽头的梯子来到甲板,右边有和条通往船坞的通道,上了船坞往左走,干掉些敌人后来到一升降平台,跳过其右边的堵破墙后,再跳过一个

刷新网卡激活win7-用带有BootRom功能的网卡为系统添加SLIC2

前言: A. 撰写本文的目的是为了学习和交流计算机技术及操作技巧,并不是鼓励大家使用盗版软件或盗版系统,由此引起的一切直接的、间接的责任和损失本人概不负责。请勿引用本文的内容或使用本文中涉及的技术、手段用于商业盈利目的。 B. 文章中的PCI模块程序来自dkpnop大侠,网卡换SLIC工具由zhaoliang大侠开发,驱动程序以及相应工具来自Intel网站或者驱动之家,下文中另外提到的“超级急救盘光盘版”由DOS之家提供。 C. 在此声明,本文内容仅供参考。引用、借鉴、利用本文中提及的技术、软件、方法而引起的一切直接的、间接的责任和损失本人概不负责!! D. 其实关于使用网卡激活Win7的文章论坛上已经有不少了,然后就有朋友就问我为什么还要发表类似的文章?我的回答其实很简单:论坛上曾经发表的文章要么就是太简单,要么就是说的太玄乎让人不敢尝试,正因为这样,在本文中不但有比较详细的操作步骤,同时也对一些会碰到的问题进行了简单的讲解,让大家看了后基本都可以明白,也可以放心大胆的按照步骤操作。当然,这样一来,文章的整体字数就上去了,但对于需要的人来说,具体点总是不错的…… ―――――――――――――――――――――――――――――――――――――――――― ―――――――――――――――――――――――――――――――――――――――――― 需要的硬件及软件工具: ――――――――――――――――――――――――――――――――――――――――――

1. intel 82559或者550ey等带bootrom的网卡,启动芯片为eeprom可带电擦除。 2. intel网卡驱动12.0版或更高版本,包含intel proset工具包。 3. ProBoot工具。 4. PCI模块。 5. 网卡换SLIC工具。 6. 超级急救盘光盘版(DOS之家有最新版下载,请自行刻录成光盘) ――――――――――――――――――――――――――――――――――――――――――

PSP战神斯巴达之魂图文流程攻略

PSP战神斯巴达之魂图文流程攻略 剧情交代完后,开始可操控,第一战是在船上,这很容易让人想起家用机上的一代.不过这次的敌人是人鱼. 消灭掉一批敌人后,看到远处的友船被章鱼腕搅碎.接着进船舱.继续虐人鱼.此时,可以使用 L+O键使出一招冲向敌人然后将敌人扑倒扔出去的招数.出船舱后会看到一只章鱼腕来敲你,注意用翻滚(L+R+摇杆)躲避.攻击挡路的2个章鱼腕.把尽头的一个蛇形章鱼腕砍死后开始剧情. 然后遇到大鱼,大鱼要打个2,3次.这是第一次.它会掌击等,掌击伤害较大.大鱼受到一定攻击后会换个地方出来.反正继续抽它.出现O后,需要用边上的钩子把它吊起来,然后就是QTE,之后来到亚特兰蒂斯岛上. 跃入水中,来到第一个记忆点处. 从右侧沿墙边攀岩到一处平台,出现敌人.击破一处墙壁后出现通路.继续前进.利用一个光点做秋千点来到一个平台,平台上有一个牛头人,新手可能比较难对付.注意用翻滚保持距离. 此时大鱼又来骚扰你,砍断它的一条腕子吧.之后对付牛头人.接着拉动机关.上方的栅栏打开. 攀岩上去.经过一条羊肠小道后来到一处墙壁前,需要WALLCLIMB. 爬到顶上后来到一处流水的平台,这里有敌人在猎杀平民,貌似是"斧头帮"的. 就算是斧头帮,奎爷也找抽. 之后开门,用石头压在一处开关上,在瀑布处利用光点跳跃即可继续前进. 经过一阵攀爬,来到thanatos之庙的DEATHGATE.而普通人是无法穿越这里的,需要用KERES的头骨才行.于是奎爷调头找其他路去了.此处有个记忆点. 继续前进,进入一个房间后,拉下机关,圆形平台开始上升,敌人开始掉下来. 经过水道后来到亚特兰蒂斯城.进城前,先享受下滑水,注意按X键 来到一个大平台上,出现独眼巨人.攻击力,速度都不错,注意回避,别硬磕. 来到一间有雕像的地方,按住O一段时间后蓄力踢开雕像,可以潜水通过. 在到达大平台前的桥梁会倒塌,注意不要掉下去死掉.这里有个记忆点. 接下来是波塞冬神殿. 进入神殿后,奎爷看到了儿时的情景 之后看到了自己的母亲.继续剧情 在母亲说出奎爷的父亲是谁后,就变成了一只怪物.最后奎爷将其击倒,母亲也恢复正常,并获得解放. 之后得到callisto''sarmlet. 紧接着得到魔法:亚特兰蒂斯之眼.可以放出直线型光线攻击. 之后就被大鱼带走.来到海底火山附近.此处有记忆点. 通过爬墙壁来继续前进,途中有会吐火球的怪,爬墙时机动性不好,注意下. 经过2个光点跳跃来到caldera.这里的圆形平台上有火鸟,按O用投技比较好解决.

战神 斯巴达之魂 图像攻略

游戏名称 战神Ω斯巴达之魂 游戏原名 God of War: Ghost of Sparta 游戏制作 SCEA 游戏发行 Sony Computer Entertainment. 游戏平台 PSP 游戏类型 ACT 游戏人数 1人 游戏发售 2010.11.05 游戏载体 UMD/下载 游戏版本 欧版

操作设定 方向.↑魔法-北风神号角 方向.←魔法-厄里尼厄斯降罪 方向.→魔法-亚特兰蒂斯之眼 方向.↓斯巴达武装/雅典娜之刃切换 摇杆控制奎爷移动 方块轻攻击 三角重攻击 圆圈投技 叉子跳跃.可二段 R按住发动希拉之祸 L防御.敌人攻击前防御可发动弹反start游戏菜单.查看装备道具.升级装备selec t 系统菜单

片头剧情过后.船甲板上和雅典娜神像对话后.进入教学战斗.就是基本熟悉下操作.进入船舱后 出口边上打破门有红魂宝箱.

出门后会遇到海怪斯库拉的触角.和其身上类似寄生虫一样的小怪物.首先要攻击缠绕在甲板上的两个大触手.这里需要注意的是第二个触手抬起后如果不迅速通过的话.触手会继续缠绕船体来挡路.之后QTE搞定带嘴的触手后进入BOSS战 战神斯巴达之魂详细图文攻略已完结 2010年11月09日15:20腾讯游戏我要评论(9) 字号:T|T

和系列一样.战神的第一个BOSS战都是气势十足的.海怪斯库拉.也是很有气势的.不过这东西总感觉和PSP上一代战神第一个BOSS类似.斯库拉战斗分三个阶段.第一阶段.会用触手三连击.可以防御.有时会用爪子重击地面.不可防御.只要注意回避重击即可.猛打头部后其会从场景另一边出现.这次会用嘴进行攻击.还会放小寄生虫.搞定后再次从初始位置出现.注意的是这次出现是附带一次大范围攻击判定的.搞定后QTE结束.

酷派手机怎么双清

酷派手机怎么双清 酷派是一个比较知名的手机品牌了,前几年,酷派和中兴、华为、联想并称“中华酷联”,是中国四家手机品牌。酷派的手机一般是运营商运营商定制销售,前几年是市场份额很高,这两年已经下降了很多,不过市面上的酷派手机还是很多的。那么,酷派的手机要如何双清呢? 什么是双清? 双清就是指清掉手机的数据,包括用户数据和缓存数据。也叫双wipe。wipe的中文翻译就是"擦,拭,擦去,涂上”。所以双wipe,和双清实际上是一个意思。 为什么要双清呢? 1、刷机之前一般要双清,避免之前的数据和新刷机的系统产生冲突; 2、当许多应用都有问题(比如闪退),但是又无法确定问题的原因时,可以使用双清,基本就能解决问题; 3、觉得自己手机内软件垃圾太多了,而无所适从时,可以使用双清,还原一个崭新的系统。

那么再来看看酷派手机要怎么双清呢? 手机双清,需要先进入recovery模式,那么酷派的手机怎么进入recovery模式呢? 一、将手机彻底关机。 二、在关机状态下同时按住:电源按键+音量下,进入Recovery。 三、在recovery模式下使用音量键选择,电源键确认。就可以双清手机了: 1、进入到Recovery模式后,通过“音量-”键选中“wipe data/factory reset”,按“音量+”键确认(进入下一个界面)。 2、通过“音量-”键选中“Yes – delete all user data”,通过“音量+”键确认执行清掉DATA分区数据操作。 3、进入到Recovery模式后,通过“音量-”键选中“Wipe cache partition”,按“音量+”键确认执行清掉CACHE分区数据操作。 4、完成后重启手机。 双清完成,接下来就可以刷机了。 酷派手机线刷工具: https://www.doczj.com/doc/5f9716142.html,/ashx/downloadTransfer.ashx 酷派手机刷机包下载:https://www.doczj.com/doc/5f9716142.html,/rom/coolpad/ 酷派手机刷机教程:https://www.doczj.com/doc/5f9716142.html,/guide?brandId=1666

战神奥林匹斯之链攻略

战神奥林匹斯之链攻略 战神:奥林匹斯之链》(God of War : Chains of Olympus)是以PS2 上大畅销的《战神》(God of War)系列为题材的PSP 原创新作,本作由Ready at Dawn 研发,充分发挥PSP 所具备的3D 处理性能,呈现出不亚于PS2 版壮阔的游戏场景以及细腻角色。此外,在日前SCEA旗下工作室Ready at Dawn高级制作人Eric Koch也通过官方博客PlayStation Blog对外确认,自2007年起就备受注目的PSP游戏《战神Ω 奥林匹斯之链》已经顺利宣告完工,游戏已经交厂压碟准备上市,现在这款PSP超级大作将于2008年3月4日在北美地区发售。 游戏承袭相同的故事背景与游戏类型,玩家将再度扮演斯巴达战士奎托斯,继续施展“浑沌双刃”等致命武器,面对全新的难关、敌人与奥林匹斯诸神的试炼,体验与不同于本传的原创故事剧情。游戏承袭PS2 系列作的特色,在PSP 上重现了广受欢迎的电影运镜式精采游戏画面与刺激的动作战斗系统,并加入全新的招式、关卡、机关与怪物,以及以希腊神话为基础的全新剧情。玩家将扮演斯巴达战士奎托斯,从人间的雅典一直到冥王哈帝斯的冥府之门,一路朝向地狱的深渊迈进,体验希腊神话中黑暗且残暴的世界,并对抗各种传说中的怪物以及强大的头目角色。 游戏开始之前还是让大家熟悉下游戏的操作: □:轻攻击,武器升级后可长按,配合L键打出不同的招式。 △:重攻击,同样,武器升级后可长按或配合L键打出不同的招式。 ○:抓,使用物品,开箱子,开门等等。 ×:跳,可二段跳。 L:防御,可以配合攻击键使用。 R:配合△可施放魔法。 类比摇杆:移动,同时按住L,R,可以进行回避动作,回避动作中暂时无敌。

华为g610-t11刷机步骤

第二步,安装华为G610-T11必需的刷机驱动 打开从第一步解压后的文件夹,找到“MTK智能机USB驱动-刷机必备驱动大全by移动叔叔.rar”,解压后,进入“刷机驱动自动安装版”文件夹,点击“点击安装by移动叔叔.exe”进行驱动安装。如果电脑是64位的,请点击“installdrv64.exe”。 PS:WIN7 64位系统的请更换32位系统来刷机! 识别刷机驱动步骤:安装完驱动,将手机拔掉电池,直接裸机不带电池的和电脑联机,即可弹出发现硬件。 PS:不成功的,请更换USB端口、更换电脑系统为XP。 如华为G610-T11安装驱动过程出错,提示“inf中的段落无效”之类,请下载缺失文件放到windows目录下相关文件夹中。 inf补丁:https://www.doczj.com/doc/5f9716142.html,/c0tk60b8hc 将mdmcpq.inf 复制到c:/windowsinf 将usbser.sys 复制到c:/windows/system32/drivers 另外考虑到自动安装版驱动未必100%凑效,这里有手动安装版的操作教程,请前往https://www.doczj.com/doc/5f9716142.html,/thread-291645-1-1.html -------------------------------------------------------------------------------- 第三步,具体图解华为G610-T11刷机教程如下: 刷机的时候需要扣掉电池的刷,简单说明下过程: 数据线接电脑一端,手机关机扣电池出来,刷机软件点download(下载),数据线另一端接手机,这样就会开刷。 PS:供电不足情况下,需要在加装电池的刷!就是手机扣完电池后再装回去才点download,操作类似。 还有,必须将DA DL ALL With Check Sum前面的框框勾上勾勾! 1、单刷recovery教程如下图

相关主题
文本预览
相关文档 最新文档