当前位置:文档之家› Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+

Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+

Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+
Synthesis, Crystal Structure, and Photoluminescence of Sr-α-SiAlON Eu2+

Synthesis,Crystal Structure,and Photoluminescence

of Sr-a -SiAlON:Eu 21

Kousuke Shioi w

SHOWA DENKO K.K.,Midori,Chiba 267-0056,Japan

Naoto Hirosaki,*Rong-Jun Xie,*Takashi Takeda,and Yuan Qiang Li

National Institute for Materials Science,Tsukuba,Ibaraki 305-0044,Japan

Yoshitaka Matsushita

National Institute for Materials Science,NIMS-SPring-8,Sayo,Hyogo 679-5148,Japan

Sr-containing a -SiAlON (Sr m /2Si 12-m –n Al m 1n O n N 16–n :Eu 21)phosphor was obtained as a major phase in compositions hav-ing small m and n values,by ?ring the powder mixture of SrSi 2,SrO,a -Si 3N 4,AlN,and Eu 2O 3at 20001C for 2h under 1MPa nitrogen atmosphere.The crystal structure of Sr-a -SiAlON was re?ned by the Rietveld analysis of the synchrotron X-ray powder diffraction pattern.The crystal structure showed that the Sr–N2bonding distance of Sr-a -SiAlON was fairly large compared with that of Ca-a -SiAlON.The displacement of N2sites prob-ably allow the interstices in a -SiAlON to accommodate the in-troduction of the large Sr ion.Sr-a -SiAlON:Eu 21phosphor has an excitation wavelength ranging from the ultraviolet region to 500nm and emits a strong yellow light.

I.Introduction

W

HITE light-emitting diodes (white LEDs)are considered as next-generation solid-state lighting systems because of their promising features such as low power consumption,high ef?ciency,long lifetime,and the lack of mercury.The availabil-ity of white-LEDs should open up a great number of new ex-citing application ?elds:white light sources to replace traditional incandescent and ?uorescent lamps,backlights for portable elec-tronics,automobile headlights,medical,and architecture light-ing,etc.1–5Recently,rare earth-doped (oxy)nitride phosphors are gaining considerable attention due to their nontoxicity,and promising luminescence properties that enable them to be used in white-LEDs.Typical examples are red M 2Si 5N 8:Eu 21(M 5Ca,Sr,and Ba)6,7and CaAlSiN 3:Eu 21,8,9yellow Ca-a -SiAlON:Eu 21,10–13green b -SiAlON:Eu 21,14and yellow Ce-melilite.15Among these (oxy)nitride luminescence materials,Eu 21-doped a -SiAlON has a strong absorption in the range of 280–470nm and exhibits a broad yellow emission band covering the range of 550–590nm,11which is,therefore,expected to be used in white LEDs when combined with a blue LED chip.16In addition,due to its unique crystal structure,the a -SiAlON host lattice has the following advantages:(i)better ?exibility of ma-terial design without changing the crystal structure,(ii)strong absorption in the visible light spectral region and long wave-length emissions,and (iii)chemical and thermal stability,as its basic structure is based on (Si,Al)–(O,N)4tetrahedral networks.

a -SiAlON ceramics have been widely studied as structural materials because of their low linear expansion coef?cients,high strength and hardness,and high thermal and chemical stabili-ties.It has an overall composition given by the formula

M m =v Si 12-m -n Al m tn O n N 16-n

(1)

where M is the modifying cations such as Li,Mg,Ca,Y,and rare earth (excluding La,Ce,Pr,and Eu),and v is the valency of the cation M.The crystal structure of a -SiAlON is derived from a -Si 3N 4by partial replacement of Si 41by Al 31and stabilized by trapping cations M into the interstices of the (Si,Al)–(O,N)4network.17It has been generally accepted that Sr 21ion alone cannot stabilize the a -SiAlON structure due to its large ionic size,but it can if codoped with calcium or yttrium.18Hwang addressed that the reaction product from the powder mixture with the com-position of Sr alone a -SiAlON without Y and Ca was the mixture of (a 1b )-SiAlON.Similar observations were also made by Man-dal 19and Liu et al .20A common feature of these reports is that the composition of Sr single-doped a -SiAlON has large m and n values.In this work,the synthesis of Sr-a -SiAlON:Eu 21with small m and n compositions is attempted,and the crystal structure of Sr-a -SiAlON is analyzed by the Rietveld re?nement and then compared with that of Ca-a -SiAlON.Finally,the luminescent properties of Sr-a -SiAlON:Eu 21phosphor are reported.

II.Experimental Procedure

Sr-a -SiAlON:Eu 21samples were prepared from a -Si 3N 4(SN-E10,Ube Industries Ltd.,Tokyo,Japan),SrSi 2(Kojyundo

Chemical

Sr 1.5Al 3N 4

Si 3N 4Fig.1.Schematic illustration of the a -SiAlON plane with the compo-sition numbers in Table I.

D.Johnson—contributing editor

*Member,The American Ceramic Society.w

Author to whom correspondence should be addressed.e-mail:shioi.kousuke@nims.go.jp

Manuscript No.26102.Received April 7,2009;approved August 13,2009.

J ournal

J.Am.Ceram.Soc.,93[2]465–469(2010)DOI:10.1111/j.1551-2916.2009.03372.x r 2009The American Ceramic Society

465

Laboratory Co.Ltd.,Saitama,Japan),SrO (Kojyundo Chemical Laboratory Co.Ltd.),AlN (Type F,Tokuyama Co.Ltd.,Shunan-shi,Japan),and Eu 2O 3(Shin-Etsu Chemical Co.Ltd.,Tokyo,Japan).SrSi 2was used as the Sr 21source to investigate small n compositions with an aim to eliminate the in?uence of the oxidation of raw materials in air,because SrSi 2is very stable against oxidation compared with metallic Sr or Sr 3N 2.The chemical compositions of the samples are plotted and listed in Fig.1and Table I.The powder mixtures were ground in the Si 3N 4mortar and pestle.The mixed powders were loaded in h-BN crucibles and then ?red in a graphite resistance furnace at 20001C for 2h under 1MPa nitrogen atmosphere.The Eu 31ion in the starting powder Eu 2O 3is reduced to Eu 21under the nitrogen atmosphere during ?ring,which is con?rmed by the absorption and emission spectra given later.Ca-a -SiAlON and Sr-a -SiAlON samples for the Rietveld re?nement with nominal compositions Ca 0.375Si 11.25Al 0.75N 16and Sr 0.375Si 11.25Al 0.75N 16were also prepared by using the same ?ring conditions.

The phase products of synthesized powders were identi?ed by X-ray powder diffraction (XRD),operating at 40kV and 40mA and using Cu K a radiation (RINT2000,Rigaku,Tokyo,Japan).A step size of 0.0212y was used with a scan speed of 21/min.High-resolution synchrotron powder XRD data for Rietveld

re?nements were recorded using wavelength l 50.65297A

at the NIMS beamline BL15XU of SPring-8synchrotron radiation facility.21The crystal structures were re?ned by the Rietveld method using the computer program RIETAN-FP,22and then visualized using the software package VESTA.23

The photoluminescence spectra of the powder samples were mea-sured by a ?uorescent spectrophotometer (Model F-4500,Hitachi Ltd.,Tokyo,Japan)at room temperature with a 150W Ushio xenon short-arc lamp.The emission spectrum was corrected for the spectral response of a monochromater and photomultiplier tube by a light diffuser (model R928P,Hamamatsu,Bridgewater,NJ)and tungsten lamp (10V,4A;Noma Electric Corp.,New York,NY).The excitation spectrum was also corrected for the spectral distribution of the xenon lamp intensity by measuring rhodamine-B as reference.

III.Results and Discussion

(1)Synthesis

Figure 2shows the XRD patterns of samples with different m values (m 50.40–2.00)and a constant n value (n 50.02).As seen in Fig.2,the a -SiAlON phase is obtained as a major phase and SrSi 6N 8as a minor phase in samples with the m value varying from 0.70to 0.80,indicating that Sr 21can be dissolved in the a -SiAlON structure.The b -phase (b -Si 3N 4or b -SiAlON)is ob-served to coexist with a -SiAlON when m is below 0.70,the vol-ume of which increases with decreasing m value.With m values 40.80,the volume of SrSi 6N 8increases obviously,suggesting that the solubility limit of Sr 21in a -SiAlON is o 0.80.Figure 3presents XRD patterns of the samples with different n values (n 50–0.30)and a constant m value (m 50.75)As shown,the volume of the b -phase increases when n increases.As n stands for the oxygen content in the composition,a large n indicates an oxygen-rich composition.As mentioned previously,24the incre-

Table I.Starting Compositions and Chemical Formula of the Samples

No.m n Starting composition (wt%)

Chemical formula

SrSi 2SrO a -Si 3N 4AlN Eu 2O 310.400.02 4.53091.84 3.010.62Sr 0.18Eu 0.02Si 11.58Al 0.42O 0.02N 15.9820.500.02 5.77089.90 3.720.61Sr 0.23Eu 0.02Si 11.48Al 0.52O 0.02N 15.9830.600.027.00087.97 4.420.61Sr 0.28Eu 0.02Si 11.38Al 0.62O 0.02N 15.9840.700.028.22086.05 5.110.61Sr 0.33Eu 0.02Si 11.28Al 0.72O 0.02N 15.9850.750.028.83085.10 5.460.61Sr 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.9860.800.029.44084.15 5.810.61Sr 0.38Eu 0.02Si 11.18Al 0.82O 0.02N 15.987 1.100.0213.03078.527.850.60Sr 0.53Eu 0.02Si 10.88Al 1.12O 0.02N 15.988 1.500.0217.72071.1810.510.59Sr 0.73Eu 0.02Si 10.48Al 1.52O 0.02N 15.989 2.000.0223.40062.2713.750.58Sr 0.98Eu 0.02Si 9.98Al 2.02O 0.02N 15.98100.750.058.060.5485.13 5.660.61Sr 0.355Eu 0.02Si 11.20Al 0.80O 0.05N 15.95110.750.10 6.80 1.4285.19 5.990.60Sr 0.355Eu 0.02Si 11.15Al 0.85O 0.10N 15.90120.750.20 4.29 3.1885.29 6.640.60Sr 0.355Eu 0.02Si 11.05Al 0.95O 0.20N 15.80130.750.30 1.82 4.9185.407.280.60Sr 0.355Eu 0.02Si 10.95Al 1.05O 0.30N 15.70

SSN,SrSi 6N 8;a ,Sr-a -SiAlON;AN-p,SrSi 10àn Al 181n O n N 32àn ;X,Unknown phase;s,strong;m,medium;w,weak.

20

I n t (a .u . )

:β:αm=1.50

m=1.10

m=0.80m=0.75m=0.60m=0.70m=0.40

m=0.50m=2.0025

30

35

40

45

50

2θ (deg)

: SrSi 6N 8

Fig.2.X-ray powder diffraction patterns of the compositions with different m values (n 50.02),a ,a -SiAlON;b ,b -SiAlON.

20

I n t (a .u .)

:α:β

n=0.10n=0.20n=0.05n=0.02

n=0.30

25

30

35

40

45

50

2θ ( deg )

Fig.3.X-ray powder diffraction patterns of the compositions with different n values (m 50.75),a ,a -SiAlON;b ,b -SiAlON.

466Journal of the American Ceramic Society—Shioi et al.

Vol.93,No.2

ment of b -phase with increasing n values is attributable to the excess formation of liquid phase during ?ring,and in turn pro-motes the formation of b -phase.Therefore,we demonstrate that Sr-a -SiAlON can be formed as the major phase in compositions with small m and n values (m 50.70–0.80and n 50–0.05).As mentioned above,Sr solely doped a -SiAlON was not avail-able in previous studies.It is due to the fact that the m and n values are too large in those investigations (Hwang et al .,18m 51and n 51;Mandal,19m 51.25and n 51.15;Liu et al .,20m 51.6,n 51.6),which make Sr unable to stabilize the a -SiAlON.

(2)Crystal Structure

The diffraction data obtained by synchrotron powder X-ray of Sr-a -SiAlON and Ca-a -SiAlON with the nominal compositions

Sr 0.375Si 11.25Al 0.75N 16and Ca 0.375Si 11.25Al 0.75N 16were used for structural re?nement.Because the Sr-a -SiAlON sample contains a small amount of SrSi 6N 8,a two-phase structural re?nement was conducted on Sr-a -SiAlON.As shown in Fig.4(a),a fairly good result was obtained,and the ?nal re?nement converged with the reliability indexes:R wp 51.31%,R p 50.89%.R I and R F are 4.85%,2.66%for Sr-a -SiAlON and 4.18%,1.54%for SrSi 6N 8,respectively.The mole fraction of Sr-a -SiAlON to SrSi 6N 8is 0.96–0.04.Figure 4(b)shows the re?nement result of Ca-a -SiAlON.The reliability indexes obtained are:R wp 52.39%,R p 51.43%,R I 52.39%,and R F 51.29%.The re?ned fractional coordinates of Sr-a -SiAlON and Ca-a -Si AlON are listed in Table II.The occupancy of each Ca and Sr were 0.1825(7)and 0.1380(7),respectively.The smaller occupancy of Sr1is due to the formation of SrSi 6N 8.The calculated occupancy of Ca-a -SiAlON is smaller than that derived from the nominal composition:0.1875.The deviation of the occupancy of Ca-a -SiAlON can be ascribed to the vol-atilization of Ca at the high ?ring temperature of 20001C.It is seen that Ca-a -SiAlON and Sr-a -SiAlON have similar lattice

constants,and they are a 57.79277(3)A ,c 55.65325A for Ca-a -SiAlON and a 57.79189(5)A ,and c 55.65377A for

Sr-a -SiAlON.As mentioned previously,the lattice constants decrease with decreasing m value,13indicating that the lattice constants of Sr-a -SiAlON are in?uenced by the formation of SrSi 6N 8.

The crystal structure of Sr-or Ca-a -SiAlON is shown in Fig.5(a).The a -SiAlON structure has the expanded a -Si 3N 4structure built up of the (Si,Al)–(O,N)network.17The intro-duction of Ca or Sr in the sevenfold coordination sites stabi-lizes the a -SiAlON structure.The local structure of the Ca or Sr site in the a -SiAlON structure is shown in Fig.5(b).Selected bonding distances and bonding angles are listed in Table III.The ?rst nearest Ca/Sr–N2bond is much shorter than the other six Ca/Sr–N bonds.Ca–N2and Sr–N2bonding

distances are 2.367(5)A

and 2.412(7)A ,respectively,and the difference of the bonding distances between Ca–N2and Sr–N2is large compared with the other six bonds.Si/Al1–N2–Si/Al1bond angles of Ca-a -SiAlON and Sr-a -SiAlON are 116.7(2)1and 117.5(3)1,respectively.This means that the displacement of N2sites parallel to the c axis probably allow the interstices in a -SiAlON to accommodate the introduction of the large Sr ion.

(3)Photoluminescence Properties

Figure 6shows the typical excitation and emission spectra:of (a)Sr-a -SiAlON:Eu 21,(b)Ca-a -SiAlON:Eu 21phosphors.The excitation and emission spectra of Sr-a -SiAlON:Eu 21are comparable with those of Ca-a -SiAlON:Eu 21.The exci-

52015302540351060

555045I n t e n s i t y (b)

52015302540351060

555045I n t e n s i t y

(a)

2θ / deg

2θ / deg

Fig.4.Observed and calculated X-ray powder diffraction patterns for nominal compositions:(a)Sr 0.375Si 11.25Al 0.75N 16,(b)Ca 0.375Si 11.25Al 0.75N 16.Solid line is the pattern calculated from the re?ned crystal structure.Residual errors are drawn at the bottom of the ?gure.Vertical short lines are the permitted peak positions satisfying the Bragg condi-tion.The ?rst row is Sr-a -SiAlON,and the second row is SrSi 6N 8in (a).

Table II.The Re?ned Atomic Coordinates,Occupancies,and Isotropic Atomic Displacement Parameters for Ca-and Sr-a -SiAlON

Atom

Wykoff position

Occ

x

y

z

B (A

2)Ca-a -SiAlON

Ca 2b 0.1825(7)1/32/3

0.23604(4)0.460(67)Si/Al16c 0.8175/0.18250.51156(6)0.0824(6)0.21097(48)0.424(8)Si/Al26c 0.8175/0.18250.16813(5)0.2527(5)0.00271(48)0.256(7)N12a 1000

0.34N22b 11/32/3

0.65475(55)0.34N36c 10.34473(12)à0.04598(15)à0.00922(63)0.34N4

6c 1

0.31852

(13)

0.31533(14)0.25714(56)0.34Sr-a -SiAlON Sr 2b 0.1380(7)1/3

2/3

0.2357(9)0.77(8)Si/Al16c 0.862/0.1380.51122(10)0.08219(9)0.2110(8)0.40(1)Si/Al26c 0.862/0.1380.16817(8)0.25288(7)0.0015(8)0.21(1)N12a 1000

0.34N22b 11/3

2/3

0.6624(9)0.34N36c 10.3453(2)à0.0426(2)à0.0037(11)0.34N4

6c

1

0.3209(2)

0.3139(2)

0.2582

(9)

0.34

Space group:P 31c (no.159).Re?ned lattice parameters are Ca-a -SiAlON:a 57.79277(3)A

,c 55.65325(1)A ,Sr-a -SiAlON:a 57.79189(5)A ,c 55.65377(2)A .February 2010

Synthesis,Crystal Structure,and Photoluminescence of Sr-a -SiAlON:Eu 21

467

tation spectrum of Sr-a -SiAlON:Eu 21covers the spectral re-gion from the UV to the visible part.Two broad bands are observed in the excitation spectrum with the maxima at about 288and 399nm corresponding to 4f 7-4f 65d transition of Eu 21.It is consistent with previous study on Ca-a -Si AlON:Eu 21.13The emission spectrum shows a single intense broad emission band ranging from 470to 750nm,peaking at about 575nm,which is attributable to the permitted 4f 65d -4f 7transition of Eu 21.The emission intensities of Sr-a -Si AlON:Eu 21(583nm)and Ca-a -SiAlON:Eu 21(575nm)were about 122%and 116%of YAG:Ce 31(P46-Y3).The emission peak of Sr-and Ca-a -SiAlON:Eu 21were longer than that of YAG:Ce 31(560nm).It means that the Sr-and Ca-a -Si AlON:Eu 21phosphors could be good yellow phosphor can-didates for creating warm white light when combined with blue LED.A very weak emission band centered at 450nm is ascribed to the luminescence of the small amount of SrSi 6N 8:Eu 21.25The characteristic Eu 31luminescence,which ex-hibits sharp and line-shaped spectrum between 600and 630nm is not observed.This suggests that the europium ion in Sr-a -SiAlON phosphor is in the divalent state.In comparison

with Ca-a -SiAlON:Eu 21,the positions of the excitation and emission spectra are very similar (Fig.6),because the PL spectra are ?xed by the network of (Si,Al)–(O,N)in a -Si AlON and nearly independent of the local structure around Sr (Eu 21)or Ca (Eu 21)ions.

IV.Conclusions

Novel Sr-a -SiAlON:Eu 21phosphors have been successfully syn-thesized by gas-pressure sintering at 20001C for 2h under 1MPa nitrogen atmosphere.Nearly single phase of Sr-a -SiAlON:Eu 21sample was obtained with small m and n values (m 50.70–0.80and n 50–0.05).The Rietveld re?nements have revealed that the displacement of N2site parallel to the c -axis could be the main reason for the introduction of Sr atom into the a -SiAlON struc-ture.This phosphor shows the wide excitation spectrum cover-ing from the ultra violet region to 500nm and emits a strong yellow light.It is expected that Sr-a -SiAlON:Eu 21phosphor can also be a good wavelength-conversion yellow phosphor for use in white LEDs based on a blue (Ga,In)N chip.

Acknowledgments

We thank Drs.M.Tanaka,H.Yoshikawa,and K.Kobayashi of the National Institute for Materials Science for their suggestions and encouragements.We thank Dr.Y.Katsuya and Ms.J.Uchida of SPring-8service for their support in the diffraction experiments.

References

1

S.Nakamura and G.Fasol,The Blue Laser Diode:GaN Based Light Emitters and Lasers .Springer-Verlag,Berlin,1997.2

Y.Sato,N.Takahashi,and S.Sato,‘‘Full-Color Fluorescent Display Devices Using a Near-UV Light-Emitting Diode,’’Jpn.J.Appl.Phys.,35[7A]838–9(1996).3

Y.Narukawa,I.Niki,K.Izuno,M.Yamada,Y.Murazaki,and T.Mukai,‘‘Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultra-violet Chip,’’Jpn.J.Appl.Phys.,41[4A]371–3(2002).4

Y.D.Huh,J.H.Shim,Y.Kim,and Y.R.Do,‘‘Optical Properties of Three-Band White Light Emitting Diodes,’’J.Electrochem.Soc.,150[2]H57–60(2003).5

C.W.Tang,S.A.Van Slyke,and C.H.Chen,‘‘Electroluminescence of Doped Organic Thin Films,’’J.Appl.Phys.,65[9]3610–6(1989).

c

a

(b)

(a)

b

Si/Al1iii

N4v

N4vi

N2iv

N3iv

Ca/Sr iv

N3vi

N3v

N4iv

Si/Al1ii

Si/Al1i

Fig.5.(a)Crystal structures of a -SiAlON projected along the [110]direction.(b)The local structure of the Ca/Sr site in the a -SiAlON structure.

Table III.Selected Bonding Distances and Angles in the Local

Structure of the Ca/Sr Site

Ca-a -SiAlON

Sr-a -SiAlON

Distance (A )M iv –N2iv 2.367(5) 2.412(7)M iv –N3vi 2.597(3) 2.600(4)M v –N3v 2.597(3) 2.600(4)M iv –N3iv 2.597(3) 2.600(4)M iv –N4v 2.6847(7) 2.7049(12)M iv –N4vi 2.6847(7) 2.7049(11)M iv –N4iv 2.6847(11) 2.705(2)Average 2.602 2.618Angle (deg)

Si/Al1ii –N2iv –Si/Al1iii 116.7(2)117.5(3)Si/Al1i –N2iv –Si/Al1ii 116.7(2)117.5(2)Si/Al1iii –N2iv –Si/Al1i

116.74(13)

117.5(2)

Symmetry operations are (i)x ,y ,z ;(ii)ày ,x ày ,z ;(iii)àx 1y ,àx ,z ;(iv)y ,x ,z 11/2;(v)x ày ,ày ,z 11/2;(vi)àx ,àx 1y ,z 11/2.M 5Ca and Sr.

P L e m / e x -I n t ( a .u )

(a)

Excitation

Emission 200

Wavelength ( nm )

P L e m / e x -I n t ( a .u )

(b)

Excitation

Emission λem = 575 nm λem = 583 nm λex = 400 nm

λex = 400 nm

Ca-α-SiAlON

300

400

500

600

700

200

Wavelength ( nm )

300

400

500

600

700

Sr-α-SiAlON

Fig.6.Excitation and emission spectra of the samples with the nominal compositions:(a)Sr 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.98,(b)Ca 0.355Eu 0.02Si 11.23Al 0.77O 0.02N 15.98.

468

Journal of the American Ceramic Society—Shioi et al.

Vol.93,No.2

6H.A.Hoppe,H.Lutz,P.Morys,W.Schnick,and A.Seilmeier,‘‘Luminescence in Eu21-doped Ba2Si5N8:Fluorescence,Thermoluminescence,and Upconver-sion,’’J.Phys.Chem.Solids,61[12]2001–6(2000).

7Y.Q.Li,J.E.J.van Steen,J.W.H.van Krevel,G.Botty,A.C.A.Delsing, F.J.DiSalvo,G.de With,and H.T.Hintzen,‘‘Luminescence Properties of Red-Emitting M2Si5N8:Eu21(M5Ca,Sr,Ba)LED Conversion Phosphors,’’https://www.doczj.com/doc/599241328.html,pd.,417,273–9(2006).

8K.Uheda,N.Hirosaki,Y.Yamamoto,A.Naito,T.Nakajima,and H.Yama-moto,‘‘Luminescence Properties of a Red Phosphor,CaAlSiN3:Eu21,for White Light-Emitting Diodes,’’Electrochem.Solid State Lett.,9,H22–5(2006).

9K.Uheda,N.Hirosaki,and H.Yamamoto,‘‘Host Lattice Materials in the System Ca3N2-AlN-Si3N4for White Light Emitting Diode,’’Phys.Status Solid, A203,2712–7(2006).

10J.W.H.van Krevel,J.W.T.van Rutten,H.Mandal,H.T.Hintzen,and R.Metselaar,‘‘Luminescence Properties of Terbium-,Cerium-,or Europium-Doped a-Sialon Materials,’’J.Solid State Chem.,165[1]19–24(2002).

11R.-J.Xie,M.Mitomo,K.Uheda,F.-F.Xu,and Y.Akimune,‘‘Preparation and Luminescence Spectra of Calcium-and Rare-Earth(R5Eu,Tb,and Pr)-Codoped a-AiAlON ceramics,’’J.Am.Ceram.Soc.,85[5]1229–34(2002).

12R.-J.Xie,N.Hirosaki,K.Sakuma,Y.Yamamoto,and M.Mitomo,‘‘Eu21-Doped Ca-a-SiAlON:A Yellow Phosphor for White Light-Emitting Diodes,’’Appl.Phys.Lett.,84[26]5404–6(2004).

13R.-J.Xie,N.Hirosaki,M.Mitomo,Y.Yamamoto,T.Suehiro,and K. Sakuma,‘‘Optical Properties of Eu21in a-SiAlON,’’J.Phys.Chem.B,108[32] 12027–31(2004).

14N.Hirosaki,R.-J.Xie,K.Kimoto,T.Sekiguchi,Y.Yamamoto,T.Suehiro, and M.Mitomo,‘‘Characterization and Properties of Green-Emitting b-SiAlON: Eu21Powder Phosphors for White Light-Emitting Diodes,’’Appl.Phys.Lett.,86, 211905,3pp(2005).

15J.W.H.van Krevel,H.T.Hintzen,R.Metselaar,and A.Meijerink,‘‘Long Wavelength Ce31Emission in Y–Si–O–N Materials,’’https://www.doczj.com/doc/599241328.html,pd.,268,272–7(1998).

16K.Sakuma,N.Hirosaki,and R.-J.Xie,‘‘Red-Shift of Emission Wavelength Caused by Reabsorption Mechanism of Europium Activated Ca-a-SiAlON Ce-ramic Phosphor,’’J.Lumin.,126,843–52(2007).

17G.Z.Cao and R.Metselaar,‘‘a0-Sialon Ceramics:A Review,’’Chem.Mater., 3[2]242–52(1991).

18C.J.Hwang,D.W.Susnitzky,and D.R.Beaman,‘‘Preparation of Multi-cation a-SiAlON Containing Strontium,’’J.Am.Ceram.Soc.,78[3]588–92 (1995).

19H.Mandal,‘‘New Developments in a-SiAlON Ceramics,’’J.Eur.Ceram. Soc.,19,2349–57(1999).

20G.Liu,K.Chen,H.Zhou,K.Ren,C.Pereira,and J.F.M.Ferreira,‘‘Fab-rication of(Ca1Yb)-and(Ca1Sr)-Stabilized a-SiAlON by Combustion Synthe-sis,’’Mater.Res.Bull.,41,547–52(2006).

21M.Tanaka,Y.Katsuya,and A.Yamamoto,‘‘A New Large Radius Imaging Plate Camera High-Resolution and High-Throughput Synchrotron X-ray Powder Diffraction by Multiexposure Method,’’Rev.Sci.Instrum.,79,075106, 6pp(2008).

22F.Izumi and K.Momma,‘‘Three-Dimensional Visualization in Powder Diffraction,’’Solid State Phenom.,130,15–20(2007).

23Momma and K.Izumi,‘‘VESTA:A Three-Dimensional Visualization System for Electronic and Structural Analysis,’’J.Appl.Crystallogr.,41,653–8(2008). 24H.L.Li,R.-J.Xie,N.Hirosaki,T.Suehiro,and Y.Yajima,‘‘Phase Purity and Luminescence Properties of Fine Ca-a-SiAlON:Eu Phosphors Synthesized by Gas Reduction Nitridation Method,’’J.Electrochem.Soc.,155[6]J175–9(2008).

25K.Shioi,N.Hirosaki,R.-J.Xie,T.Takeda,and Y.Q.Li,‘‘Luminescence Properties of SrSi6N8:Eu2,’’J.Mater.Sci.,43[16]5659–61(2008).&

February2010Synthesis,Crystal Structure,and Photoluminescence of Sr-a-SiAlON:Eu21469

portal开发入门手册范本

门户开发入门手册

版本历史

目录 1.1创建P ORTAL域 (4) 1.1.1 启动 Configuration Wizard (4) 1.1.2 创建或扩展域 (4) 1.1.3 选择域源 (5) 1.1.4 配置管理员用户名和密码 (6) 1.1.5 指定服务器启动模式和 JDK (7) 1.1.6 自定义环境和服务设置 (9) 1.1.7 创建 WebLogic 域 (9) 1.1.8 创建域 (10) 1.2创建P ORTAL EAR项目 (11) 1.3创建P ORTAL W EB 项目 (16) 1.4创建数据同步项目 (20) 1.5创建P RTAL (23) 1.5.1 创建一个Portal (23) 1.5.2 增加一个页面到你的Portal (25) 1.5.3 发布和查看Portal (27) 1.5.4 创建Portlets (27) 1.5.5 把Portlets添加到Portal (31) 1.6登录管理控制台并创建P ORTAL和桌面 (32) 1.6.1 打开管理控制台 (32) 1.6.2 登录管理控制台 (33) 1.6.3 创建Portal和桌面 (34)

1创建Portal域 ●启动 Configuration Wizard ●创建或扩展域 ●选择域源 ●配置管理员用户名和密码 ●指定服务器启动模式和 JDK ●自定义环境和服务设置 ●创建 WebLogic 域 ●创建域 1.1启动 Configuration Wizard 打开“开始”->“BEA Products”->“Tools”->“Configuration Wizard”。之后将会出现“欢迎”窗口。 1.2创建或扩展域 提示您选择是新建域还是扩展现有域。

基于 Crystal Ball 软件对测量不确定度的评定

基于Crystal Ball 软件对测量不确定度的评定 1240410114 王颖测量结果与被测量真值的一致程度被定义为准确性。但是实际上不存在完全准确无误的测量,因此通常在给出量值结果的同时通常给出适应于实际需要的不确定度。如果没有对不确定度的表述,所进行的测量的被测量对象的质量就无从判断,从而导致测量的结果值不具备充分的实用价值。测量的结果值的准确,是在一定的不确定度、误差允许误差范围内的准确。 一)基本概念 测量不确定度的概念最早是有国外引入,一般译为:与测量结果相联系的参数,用来表示赋予被测量对象值的分散性的特征。它最早跟我们熟悉的误差的概念相似。测量不确定度的前提是当我们在重复性条件下,对具有稳定特征的被测量对象X独立的进行了n次重复测量实验,在这一系列测量实验过程中,通过n个结果按公式计算出的,第i次结果xi的实验标准差E(xi),xi虽然是指第i 次测量的结果,但是它的实际含义是:任一次的测量结果。表明不确定度s(xi)=u(xi)是这个测量序列中任意一次测量结果的不确定度。如果在相同的相同的、重复条件下再进行测量,得到的结果xi 的标准不确定度仍然是E(xi。 二)测量不确定度评定的步骤

1.识别不确定度来源。对测试结果测量不确定度来源的识别应该首先从分析测量过程开始,并且要对测量方法、测量系统和测量程序作详细研究和熟悉,如果可能要画出测量系统原理图和测量流程图。不确定度来源一般有:对被测量的定义不完善;实现被测量的定义的方法不理想;选取测量样品的典型性不够;对测量过程中受外部环境影响的因素识别不完整等因素引起。 2.建立模型。当被测量对象Y(即我们期望的输出量)由N个其他因素X1,X2,…,XN(即输入量),通过函数关系f来确定时,则Y = f (X1 , X 2 ,L, X N )称为测量模型或数学模型。式中大写字母表示测量的符号f 为测量函数。如果输入量Xi 的估计值为Xi,被测量对象Y 的估计值为y,则测量模型可建立为:y = f (x1 , x 2 ,L, xN ) 3.标准不确定度A类和B类分量的计算。A类不确定度分量的评估(对观测序列所进行统计分析作出的评估)。a)对输入量Xi进行独立的n 次测量,测量结果为:x1、x2……xn, 单次测量结果的标准差为:估计值的标准不确定 度为:,由于B 类的使用条件与A类不同,因此B 类不确定度分量的评估与A类也不同,B类评估时,输入量的估计量Xi不是由重复观测得到时,其标准偏差可用对Xi的信息来进行评估。B类评估的信息来源可来自:仪器设备的校准证书的说明、生产厂商标示的说明书、使用的检测依据的标准、引用手册的参考数据、以前

Laravel 5.5 入门教程6

Laravel 5.5 入门教程 By IT崖柏图 Mail 973714522@https://www.doczj.com/doc/599241328.html, 出自布尔教育PHP高端教育培训 21 章功能细化 21.1 登陆状态 在 view 层 , 判断用户是否登陆 或者我们还可以使用身份快捷认证,如: 21.2 分页功能 中使用 paginate 方法。 代码如下:

如何渲染样式在Blade模板上? 附加参数到分页链接中 方法: ```php {{ $users->fragment('foo')->links() }} 然而,自定义分页视图最简单的方法是通过vendor:publish命令将它们导出到你的resources/views/vendor php artisan vendor:publish --tag=laravel-pagination 这个命令将视图放置在 resources/views/vendor/pagination 目录中。这个目录下的 default.blade.php 文件对应于默认分页视图。你可以简单地编辑这个文件来修改分页的 HTML 。 21.3 JS 验证 以发布借款项目为例 , 做 JS 验证

第22章自动验证自动验证 22.1 验证案例 第1个参数为Request对象,第2个参数为验证规则验证规则 验证规则为关联数组,语法如下: 借款验证案例: 验证未通过的检测,以money为例 22.2 自定义错误信息 如果验证未通过,需要自定义错误信息,只需在第3个参数中传递.

模板中使用 22.3 手动验证 ,也可以手动来创建一个验证对象 22.3 表单授权验证 令来创建表单请求类:

CrystalBall实验操作过程

Crystal Ball实验操作过程 实验一: 一、数据录入与导入 双击CB快捷方式图标或直接打开Excel打开软件。前面提到过Crystal Ball软件是在Excel里的一个插件,所以双击打开后是Excel的界面,如下图: 图 1 用户可以在该界面中直接录入数据,也可以左击右上角的符号,选择打开,将原有Excel表格中的数据直接导入到带有Crystal Ball插件的电子表格中。 二、拟合分布 图2 (1)对数据进行标准化处理(减少原数据相互间的距离对拟合分布的影响) 通过Average计算每个分布工程样本数据的均值,然后各个样本数据除以相

应的均值,对数据进行标准化处理。 (2)拟合分布 选取表格区域,点击工具栏上“Run-Tools-Batch Fit”,如图3所示。 图3 在操作对话框中,选择“next”,至图4对话框对相应命令进行选择,可得到拟合过程的相关数据。 图4 注:对于卡方检验,水晶球软件计算p值,p值大于0.5一般表示紧密拟合; 对于科尔莫格洛夫-斯米尔诺夫检验,一般地,小于0.03的K-S值表明良好拟合; 对于安德森-达林检验,小于1.5的计算值一般表明拟合优良。 实验二:

一.按照实验一的操作,先将数据在Crystal Ball软件打开. 二、假设单元格概率分布的定义及相关操作 输入数据后,进行随机变量假设单元格概率分布的定义。这里假设使用悲观时间的单元格来进行概率分布的定义。(注:对于假设单元格的选择,并无太多的限制,因为定义各种概率的分布,是由相应的参数确定的,因此选择的假设单元格不同对结果并没有影响。)有一点需要注意的是,选择假设单元格时,该单元格应当是一确定的数字,而不能是公式. 选定单元格(如单元格I2)后,点击工具栏上的,随即弹出图5,CB 软件中提供22种不同的分布可供选择,根据实验任务书的要求,第一和第二项分部分项工程服从三参数beta分布,因此,选择BtaPERT分布,并填入相应参数,即可完成对“基坑支护挖土方”的定义,如图6所示。同理可完成其它分布的定义。 图5 图6 由于第3~8项同为三角分布,因此当完成第3项的定以后,选定I4单元格

crystalball软件介绍

Crystal Ball 介绍 Crystal Ball(CB)是基于PC Windows平台而开发的简单且非常实用的风险分析和评估软件。面向各类商务、科学和技术工程领域,用户界面友好,是基于图表进行预测和风险分析。CB 在微软Excel 应用软件上运行,使用蒙特卡罗(Monte Carlo)模拟法对某个特定状况预测所有可能的结果,运用图表对分析进行总结,并显示每一个结果的概率。除了描述统计量、趋势图和相关变量分配,CB还进行敏感性分析,让用户决定真正导致结果的因素。如今 CB 已是全世界商业风险分析和决策评估软件中的佼佼者。Crystal Ball专业版是市面上以Excel为本的风险分析及预测工具中最全面的套装软件。其功能和特点不仅早已得到广大用户的认同,并获得许多正在考虑购买相关软件产品新用户的青睐和首选。85%<<财富>>评出的全球500强大企业中早已有400家使用 Crystal Ball 软件作为他们进行商务决策,项目投资风险分析的工具。再者,美国前50名最佳MBA 商学院,已有40所也用Crystal Ball作为教研和商业性课题的工具。用户之一世界着名的哈佛大学商学院把 Crystal Ball 列为可用于计划金融的软件 (Project Finance Software)。因为财政计划,金融投资方面的风险分析是CB 软件功能的一部分。 Crystal Ball之前是美国Decisioneering公司的产品,Decisioneering在2007年被Hyperion公司收购,Hyperion 公司之后又被Oracle收购,所以Crystal Ball目前的发行商是Oracle。 Crystal Ball的用途: DFSS,过程研究,过程优化,现有过程的模拟改变,公差分析,设计分析,原料筛选,容量设计,资源分配与存货优化,约束后的项目筛选,预防性维护优化,成本预算,可靠性分析,排队过程分析,建筑项目资金预算的偶然性分析,商业过程模拟,工程设计与预测,供求预测,制造供应链问题的减少与存货控制,新产品商品化的资金模型。 模拟的意义 当我们使用模拟这个字时,代表我们利用分析模型来仿真现实生活的系统。过去仿真软件过于偏重复杂数学造成操作困难。Crystal Ball工作表风险分析结合工作表呈现方式与自动分析模拟,可以清楚的展现因为变量变异造成模型产出的各种情况。如果没有增加仿真功能,那工作表充其量只是揭示单一结果与最一般化的情境。工作表模拟最常用的方法就是蒙特卡洛法,它可随机产生变量在不同情况下的模型结果。 蒙特卡洛模拟 蒙特卡洛模拟一开始主要运作于分析赌博游戏。诸如轮盘、骰子、拉吧等。蒙特卡洛可以模拟这些赌博中的随机行为。当你掷骰子时,你知道共有一至六的数字可能会出现,但是你不知道一个规则。他就像企业主面对问题时,可能知道问题引发的结果与过程,却无法了解每一个变量的严重程度。(例如:利率、员工、股价、存货及来电率) 自行于工作表内选定变量的分配类型 针对每个不确定变数,你可以自行设定相关机率分配。您可以依据该变量所处的环境选择分配的类型,分配类型如下: 您可以将工具栏加入EXCEL工作表中,当然您必须知道这些等式所代表的分配。透过Crystal Ball, 软件可自动为用户计算方程式。Crystal Ball甚至可以藉由过去的历史数据来修正分配。

微信小程序开发(PHP Laravel MySQL)教学大纲

《微信小程序》教学大纲 课程编码制订人制订日期修订人修订日期审核人审核日期曾建华2021.1 学分:3-4 学时:48-64 适用专业:软件技术专业 一、课程的性质与任务 课程的性质:针对计算机软件类相关专业学生的专业核心课。 课程的任务:通过本课程的学习,学生应能熟练使用微信开发者工具,熟练开发微信小程序,在后台方面,理解后台的开发流程以及微信小程序是如何与后台交互的。 二、教学基本要求 通过本课程的学习,学生应达到下列基本要求: 微信小程序的项目构成 微信小程序页面构成 生命周期函数 WXML 事件 微信小程序如何使用外部API(到此48学时) 使用PHP+MySQL设计自己的API 使用Laravel框架设计自己的API(到此56学时) 系统组件 自定义组件 WeUI组件库(到此64学时) 三、教学条件 机房上课,每个学生有一台电脑。 投影仪等多媒体教学设备。

安装软件:微信开发者工具、HBuilder、xampp。 四、教学内容 各学校可根据实际情况选择: 1-7:48学时 1-9:56学时 1-11:64学时 序号单元主要内容 1 开发环境及第一 个微信小程序 ●了解微信小程序相关技术。 ●掌握微信开发者工具的安装、使用。 ●掌握如何创建微信小程序。 ●掌握微信小程序的项目架构、页面结构。 2 基本页面和底部 导航 ●熟练掌握创建新的页面。 ●熟练编写底部导航代码。 ●理解底部导航各属性的含义。 ●进一步熟悉微信开发者工具界面。 3 js文件●理解app.js中的生命周期函数。 ●掌握app.js中的全局变量。 ●理解page.js中的生命周期函数。 ●掌握page.js中的局部变量。 ●掌握如何创建和引用模块。 4 WXML语法●掌握数据绑定的方法。 ●掌握条件渲染的用法。 ●掌握列表渲染的用法。 ●掌握如何定义模板以及使用import引用模板。 ●掌握include引用方式。 5 事件及数据传递●熟练掌握如何进行事件处理。 ●理解事件冒泡机制。 ●在事件中获取组件绑定的附加信息。 ●熟练掌握路由机制。 ●熟练掌握页面之间如何进行数据传递。 6 常用API及组 件 ●清楚小程序API的类型,熟悉界面交互API。 ●了解地图操作步骤。

风险管理软件crystalball使用指导

Monte-Carlo Simulation with Crystal Ball? To run a simulation using Crystal Ball?: 1. Setup Spreadsheet Build a spreadsheet that will calculate the performance measure ., profit) in terms of the inputs (random or not). For random inputs, just enter any number. 2. Define Assumptions—., random variables Define which cells are random, and what distribution they should follow. 3. Define Forecast—., output or performance measure Define which cell(s) you are interested in forecasting (typically the performance measure, ., profit). 4. Choose Number of Trials Select the number of trials. If you would later like to generate

the Sensitivity Analysis chart, choose “Sensitivity Analysis” under Options in Run Preferences. 5. Run Simulation Run the simulation. If you would like to change parameters and re-run the simulation, you should “reset” the simulation (click on the “Reset Simulation” button on the toolbar or in the Run menu) first. 6. View Results The forecast window showing the results of the simulation appears automatically after (or during) the simulation. Many different results are available (frequency chart, cumulative chart, statistics, percentiles, sensitivity analysis, and trend chart). The results can be copied into the worksheet. Crystal Ball Toolbar: Define Define Run Start Reset Forecast Trend

《PHP网站开发实例教程(第2版)》—教学大纲

《PHP网站开发实例教程(第2版)》 教学大纲 (课程英文名称) 课程编号: 学分:5学分 学时:70学时(其中:讲课52学时上机18学时) 先修课程:计算机基础 适用专业:信息技术及其计算机相关专业 开课部门:计算机相关院系 一、课程的性质与目标 《PHP网站开发实例教程(第2版)》是面向计算机相关专业的一门PHP课程,涉及框架基础知识、数据库和模板引擎的使用、框架实现原理、使用框架开发项目等内容。通过本课程的学习,学生能够了解框架的基础使用,如何使用框架进行网站开发,以及市面上流行的Laravel框架的使用。 二、课程设计理念与思路 课程设计理念:高等职业教育的集中实践教学环节需明确必要的理论知识的升华与知识层面的拓展,不能局限于单纯的技能训练。单纯的技能训练不是提高高等职业教育的理想课程。以能力的培养为重点,以就业为导向,培养学生具备职业岗位所需的职业能力,职业生涯发展所需的能力和终身学习的能力,实现一站式教学理念。 课程设计思路:基于工作过程开发课程内容,以行动为导向进行教学内容设计,以学生为主体,以案例(项目)实训为手段,设计出理论学习与技能掌握相融合的课程内容体系。教学整体设计“以职业技能培养为目标,以案例(项目)任务实现为载体、理论学习与实际操作相结合”。

三、教学条件要求 操作系统:Windows 7、W AMP 开发工具:命令行工具(如cmd)、开发工具(如VS Code)、依赖管理工具(如Composer) 四、课程的主要内容及基本要求 第1章开发环境搭建 第2章PHP框架基础(上) 第3章PHP框架基础(下)

第4章数据库和模板引擎 第5章内容管理系统(上)

水晶球

目前在Excel环境下最常用的风险分析工具有Crystal Ball、Riskmaster以及@risk三种, 这三种软件都是以加载项方式挂在Excel之下运行的。通过它们可以很方便地对建立在Excel 中的运算模型进行蒙特卡洛分析,并得到分析结果。本文的计算实例将采用Crystal Ball(以 下简称CB)软件进行建模运算分析。 【软件】Crystal Ball (水晶球)风险分析 2008年07月04日星期五 14:08 从现在开始做有依据的决策。在Crystal Ball专业版本中,决策的结果不是偶然的,而是建立在可靠的计算结果上。自1986年以来,美国Decisioneering公司向用户提供了项目风险分析评估和智能决策软件工具来帮助理解风险的大小并帮您做出较好的决策。 在世界500强中有85%的公司,以及在美国50个顶尖MBA学校中有40个都使用Crystal Ball 来进行风险管理,从而做出最佳决策,使得股东财富达到最大化。对风险分析软件领导者的信任会为你带来满意的结果。 1、强大的功能特点——更为准确的结果 Crystal Ball 专业版本是目前世界上集风险分析和预测评估于一体的最综合的一套软件。通过风险分析和优化的结合,Crystal Ball 专业版本不仅帮助用户了解风险,而且帮助他们做出正确的决策。专业版本包含了标准版本的所有特色和优点,并且加强了帮助用户做出更好决策的功能。由于该程序完全是集成于Microsoft Excel电子表格的附加模块,所以它很好地拓展了Excel 电子数据表库模型及功能。 2、准确地预测未来 Crystal Ball 专业版中带有的CB PredictorTM 采用时间序列预测方法,通过历史资料来研究其发展趋势,周期性和随机性。由于每种预测都具有风险,所以CB PredictorTM 完美地结合于Crystal Ball使用户充分了解预测分析的风险。CB PredictorTM 还可以使用户非常便捷地建立回归模型,利用综合数据资料来进行预测。CB PredictorTM 凭其卓越的设计和便捷的操作使您的预测工作在几秒钟之内便可以由单纯的猜测转变为严密的分析。 3、做完预测后的工作

经典睡前英语故事:水晶球的故事

经典睡前英语故事:水晶球的故事 Once upon a time there was a witch, she had three sons, and the three brothers is by the strong sisterly partiality, but the witch did not trust them, always thought they would take her rights. Then she put her eldest brother becomes a goshawk, can only live in the cliff, people often see it soar constantly hovering in the air. Again she second into a whale, every day to live in the depths of the sea, people always see him from time to time out of the water spewed huge water column. The brothers can restore human one day only two hours. The younger son is he afraid of the witch into a beast, a bear, or a Wolf fled secretly. He had heard that the king's daughter in the magic, locked up in the gold sun palace, waiting for someone to save. Already 23 young adventure to save her, but were killed there. Now only one person can go to save her, who also can't go to the later. The young man by nature bold, he decided to go in search of the golden sun palace. He travel day and night without stopping, but didn't find it, even the shadow of the palace at last he into the a large forest. Suddenly he saw the two giants in the waved to him, and cast in the past. Giant said: "we are argued for a hat, because we both like strong, nobody who fights only, do not know who the hat the return. Small people always pretty smart, we let you say this hat the return to who?" "You should be at odds for a hat!" The young man said. "You don't know how good it is a baby, this is the best hat, who wear it ah, think of where can immediately to where." "Come on, give me a hat," the young man said, "I go for a while, and then call you, you to race, who first to me, the hat will be who."

软件能力成熟度模型CMMI

软件项目量化管理(QPM)及根因分析实践总结(CMMI高成熟度访谈) 关于实践CMMI高成熟度等级的实践步骤 1.识别能够支持企业业务目标和改进过程和机会 清楚的定义企业的战略计划和执行过程 通过使用QFD或者过程目标组合矩阵,识别增值最大的改进过程和机会 定义组织,职能和项目的平衡积分卡(前导和后导过程) 开发度量框架(不同等级-前导和后导过程) 定义项目的PPB,选择稳定项目定义组织PPB 根据需要定义PPM过程性能模型 识别在项目级和组织级定义需要进行统计学控制的改进过程 定义高成熟度的过程 2.组织机构调整 使用业务目标的仪表板来重新审视过程 对于EPG组的过程顾问最好是6Sigma的绿带或黑带,对SPC有深入理解 给管理者和项目团队进行统计学知识和量化管理的培训(SPC,ANOVA,回归,CB工具) 2.对工具的需求和掌握 MindManager-系统思维,头脑风暴和知识管理 Minitab-必须的工具 开发PPB和建立PPM模型 过程的稳定性和性能分析 相关性分析,正态检验,回归和方差分析 SPC统计过程控制(控制图) CrystalBall-水晶球,必须工具 使用蒙特卡洛分析和模拟来分析和预测项目性能 通过敏感性分析来来识别关键的X和Y 使用精益6Sigma来实现价值再造 通过What-if分析来匹配目标和过程要素间关系 3.对知识的需求和掌握 正态性检验和假设检验-必须 方差分析和卡方分析(ANOVA,Chi-Square)-必须 多元和一元回归分析,相关性分析-必须 SPC统计过程控制(特殊原因和一般原因,I-MR控制图,X-bar图,过程稳定,异常判定) 蒙特卡洛技术-必须 平衡计分卡和6Sigma-高成熟度等级必须 4.高成熟度等级的一些关键点 项目内的过程或子过程是否是稳定的?项目是否建立了自己的PPB和UCL和LCL数据? Y=f(x1,x2,x3)因此不是对Y直接去控制,要达到目标Y要对x进行控制,x要是稳定的。 由于x之间也存在相互的作用和影响,得到了PPM模型后根据目标Y做what-if分析,不断的调整。 x-bar图和I-MR图如何应用的问题,I-MR是单组,数据要能够很好的体现时间序列。

Crystal软件说明

软件介绍 CrystalMaker:晶体和分子结构可视化软件 探索晶体世界 从金属到沸石,苯到蛋白质, CrystalMaker是了解晶体和分子结构的最简单方法。 什么是CrystalMaker? CrystalMaker软件是一款在创建、显示和操作各种晶体分子结构中屡获好评的软件。CrystalMaker在生产力方面提供了一个流线型的工作流程,您只需把您的数据文件拖拉到程序中便可即时显示照片般逼真的色彩。用鼠标就可以实时操作晶体结构。多视角"bookmarks"和撤销次数鼓励您探索和发现——理想的教学和科研软件。 快速创建晶体和分子结构! 使用CrystalMaker软件,您可以轻松快速创建任何晶体或分子结构。内置的对称处理和美观的空间群浏览器可得到晶体的日志,并且该程序会自动生成所有的键和多面体。CrystalMaker 提供了广泛的模式类型,包括传统的“ball-and-stick”, space-filling, polyhedral, wireframe 以及thermal ellipsoids模式。使用photo-realistic simpler和line-art display选项,每种模式类型都可以被广泛地定制。 综合数据的输入和输出 负载来自于超过15+ 格式的结构数据,包括Cambridge Structures Database, Protein Data Bank, CIF, GSAS, SHELX等。您可以操作几乎无限的原子数量。使用独特的"Depth Profiling"工具,快速扫描大规模结构中有用的,从而能从计算机模式中得到理想的特征结果。 大量的输出选项使您能跟其他程序共享数据、保存结构数据、键长、协调环境,甚至用您的数据创建网页。 出色的3D图片 深度渐变和视角转换,加上优美的三维立体结构,使您能看到照片质量的图片。高分辨率打印并把图片保存成各种文件格式,同时您还可以定义图片的大小。使用深度剖析和测量处理大规模的结构。完整的误差传递、集群壳和协调网络可视以及强大的输出选项,自动生成键长和多面体。 实时操纵与测量 用鼠标拖拉、键盘或工具栏,便可查看网格矢量或平面矢量。连续绘图范围设置可以设置数百万个原子,健和多面体。 移动、分离、复制、隐藏和删除原子组。隐藏或修复分子片段——分离单个分子。可在任何方位显示平面格。切割晶体结构以便研究其表面或内部平面。或把一个晶体或分子结构置于另一个结构中。 预览协调环境,集群和表面。列出键长和屏幕上的柱状图或保存到磁盘里。在屏幕上测量键长,角度,以及扭转角。在平面和向量间计算角度。

Crystal Ball 模拟基础教程

Crystal Ball 模拟基础教程 利用Crystal Ball 进行计算机仿真 学习目标13.2 个案研究:佛莱迪报童问题(13.1节) 13.3–13.19 竞标建设计划(13.2节) 13.20–13.24 项目管理:信用建设公司(13.3节)13.25–13.32 现金流量管理:沼泽地黄金岁月公司(13.4节) 13.33–13.37 财务风险分析:久大发展公司(13.5节)13.38–13.42 运输业收入管理(13.6节)13.43–13.48 选择合适的分配(13.7节)13.49–13.68 利用决策表做决策(13.8节) 13.69–13.84 学习目标 在读完本章后,你应该能够: 1. 描述Crystal Ball在计算机仿真中的角色。 2. 利用Crystal Ball来解决Excel软件包所无法执行的各类基本计算机仿真。 3. 解释利用Crystal Ball于计算机仿真中的结果。 4. 在获得预期的准确度水平后,利用Crystal Ball的特色来停止计算机仿真。 5. 描述当使用Crystal Ball时可以搭配计算机仿真的机率分配之特色。 6. 利用Crystal Ball程序辨识出符合历史数据的连续分配。 7. 利用Crystal Ball的特色来产生一些帮助决策的决策表和趋势图。 报童佛莱迪 佛莱迪在某大城市里主要市区经营一家报摊。 佛莱迪贩卖各类的报纸和杂志,其中最贵的报纸为财经日报。 财经日报相关的成本资料: –每份报纸的成本为1.50美元 –每份报纸的售价为2.50美元 –没售出的报纸,每份报纸可以获得0.50美元的偿还金 财经日报的销售资料: –佛莱迪每天的销售量介于40到70份之间。 –销售数量介于40到70份之间任何数值的频率相同。 运用仿真之电子表格模式 Crystal Ball的应用 利用Crystal Ball来进行计算机仿真有四个步骤: –定义随机输入栏。 –定义输出栏来预测。 –设定执行偏好。 –执行模拟。 步骤1:定义随机输入栏 随机输入栏是拥有随机数值的输入字段。 需要输入储存格的是假设的机率分配而非一永久的数值。 Crystal Ball将每个随机输入栏称作假设栏(assumption cell)。 定义假设栏的步骤 ?点选选定的字段。 ?假如字段没有数值,输入任何一个数字。 ?点选「Crystal Ball」标签(Excel 2007)或工具列(Excel较早版本)的「Define Assumption」

风险管理软件CrystalBall操作指南(英文版)(doc 16页)

风险管理软件CrystalBall操作指南(英文版)(doc 16页)

Monte-Carlo Simulation with Crystal Ball? To run a simulation using Crystal Ball?: 1. Setup Spreadsheet Build a spreadsheet that will calculate the performance measure (e.g., profit) in terms of the inputs (random or not). For random inputs, just enter any number. 2. Define Assumptions—i.e., random variables Define which cells are random, and what distribution they should follow. 3. Define Forecast—i.e., output or performance measure Define which cell(s) you are interested in forecasting (typically the performance measure, e.g., profit). 4. Choose Number of Trials Select the number of trials. If you would later like to generate the Sensitivity Analysis chart, choose “Sensitivity Analysis” under Options in Run Preferences. 5. Run Simulation Run the simulation. If you would like to change parameters and re-run the simulation, you should “reset” the simulation (click on the “Reset Simulation” button on the toolbar or in the Run menu) first.

相关主题
文本预览
相关文档 最新文档