当前位置:文档之家› 相似三角形_基本知识点+经典例题

相似三角形_基本知识点+经典例题

相似三角形_基本知识点+经典例题
相似三角形_基本知识点+经典例题

相似三角形知识点与经典题型

知识点1 有关相似形的概念

(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.

(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).

知识点2 比例线段的相关概念

(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是

n

m

b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a

d c b

=

.②()a c

a b c d b d

==在比例式

::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2

b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2

1

5-=

≈0.618AB

.即

AC BC AB AC ==

简记为:12

长短==全长

注:黄金三角形:顶角是360

的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形

知识点3 比例的性质(注意性质立的条件:分母不能为0)

(1) 基本性质:

①bc ad d c b a =?=::;②2

::a b b c b a c =?=?.

注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除

了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.

(2) 更比性质(交换比例的内项或外项):

()()()a b

c d a c d c b d

b a d b

c a ?=??

?=?=??

?=??,

交换内项,交换外项.

同时交换内外项

(3)反比性质(把比的前项、后项交换): a c b d b d

a c

=?=.

(4)合、分比性质:

a c a

b

c

d b d b d

±±=?=.

注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间

发生同样和差变化比例仍成立.如:???????+-=+--=-?=d

c d c b a b a c

c

d a a b d c b a 等等.

(5)等比性质:如果

)0(≠++++====n f d b n

m

f e d c b a ,那么

b a n f d b m e

c a =++++++++ . 注:

①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.

③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:

b

a f d

b e

c a f e

d c b a f

e d c b a =+-+-?=--=?==32323322;其中032≠+-

f d b . 知识点4 比例线段的有关定理

1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应

线段成比例.

由DE ∥BC 可得:

AC

AE

AB AD EA EC AD BD EC AE DB AD ===或或

注:

①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.

②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.

此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.

③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.

2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,

可得

AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF

=====或或或或等.

注:平行线分线段成比例定理的推论:

平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

知识点5 相似三角形的概念

对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.

B

注:

①对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边. ②顺序性:相似三角形的相似比是有顺序的.

③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.

知识点6 三角形相似的等价关系与三角形相似的判定定理的预备定理

(1)相似三角形的等价关系:

①反身性:对于任一ABC ?有ABC ?∽ABC ?.

②对称性:若ABC ?∽'''C B A ?,则'''C B A ?∽ABC ?.

③传递性:若ABC ?∽C B A '?'',且C B A '?''∽C B A ''''''?,则ABC ?∽C B A ''''''? (2) 三角形相似的判定定理的预备定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.

定理的基本图形:

用数学语言表述是:BC DE // , ∴ ADE ?

∽ABC ?.

知识点7 三角形相似的判定方法

1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.

2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.

3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.

4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.

5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.

6、判定直角三角形相似的方法: (1)以上各种判定均适用.

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 注:

射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2

=BD ·DC ,AB 2

=BD ·BC ,AC 2

=CD ·BC 。

知识点8 相似三角形常见的图形

B (3)D B (2)B

C

1、下面我们来看一看相似三角形的几种基本图形:

(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)

(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。(有“反A 共角型”、

“反A 共角共边型”、 “蝶型”)

(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)

(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。 2、几种基本图形的具体应用:

(1)若DE ∥BC (A 型和X 型)则△ADE ∽△ABC

(2)射影定理 若CD 为Rt △ABC 斜边上的高(双直角图形)

则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=AD ·AB ,CD 2=AD ·BD ,BC 2

=BD ·AB ;

B

E

A

C

D

1

2A

B

C

D E

12A

A

B

B

C

C D

D

E

E

124

1

2

B

B

C (

D )

B

(3)

B

(2)

D

(3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB.

(4)当

AD AE

AC

或AD·AB=AC·AE时,△

ADE∽△ACB.

知识点9:全等与相似的比较:

知识点10 相似三角形的性质

(1)相似三角形对应角相等,对应边成比例.

(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.

(3)相似三角形周长的比等于相似比.

(4)相似三角形面积的比等于相似比的平方.

注:相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等.

知识点11 相似三角形中有关证(解)题规律与辅助线作法

1、证明四条线段成比例的常用方法:

(1)线段成比例的定义

(2)三角形相似的预备定理

(3)利用相似三角形的性质

(4)利用中间比等量代换

(5)利用面积关系

2、证明题常用方法归纳:

(1)总体思路:“等积”变“比例”,“比例”找“相似”

(2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不

同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的, 则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.

(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这

几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样

的三种:等线段代换、等比代换、等积代换.

即:找相似找不到,找中间比。方法:将等式左右两边的比表示出来。

)(,为中间比n

m

n m d c n m b a ==②'',,n n n m d c n m b a ===

③),(,'''

'''n

m n m n n m m n m d c n m b a =====或 (4) 添加辅助线:若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成

比例.以上步骤可以不断的重复使用,直到被证结论证出为止.

注:添加辅助平行线是获得成比例线段和相似三角形的重要途径。平面直角坐标系中通常是作垂线(即得平行线)构造相似三角形或比例线段。

(5)比例问题:常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k 。 (6).对于复杂的几何图形,通常采用将部分需要的图形(或基本图形)“分离”出来的办法处理。

知识点12 相似多边形的性质

(1)相似多边形周长比,对应对角线的比都等于相似比.

(2)相似多边形中对应三角形相似,相似比等于相似多边形的相似比. (3)相似多边形面积比等于相似比的平方.

注意:相似多边形问题往往要转化成相似三角形问题去解决,因此,熟练掌握相似三角形知识是基础和关键.

知识点13 位似图形有关的概念与性质及作法

1. 如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形.

2. 这个点叫做位似中心,这时的相似比又称为位似比. 注:

(1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点. (2) 位似图形一定是相似图形,但相似图形不一定是位似图形. (3) 位似图形的对应边互相平行或共线.

3.位似图形的性质: 位似图形上任意一对对应点到位似中心的距离之比等于相似比. 注:位似图形具有相似图形的所有性质.

4. 画位似图形的一般步骤:

(1) 确定位似中心(位似中心可以是平面中任意一点)

(2) 分别连接原图形中的关键点和位似中心,并延长(或截取). (3) 根据已知的位似比,确定所画位似图形中关键点的位置.

(4) 顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤ 注:①位似中心可以是平面内任意一点,该点可在图形内,或在图形外, 或在图形上(图形边上或顶点上)。

②外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形) ③内位似:位似中心在连接两个对应点的线段上,称为“内位似”(即反向位似图形)

(5) 在平面直角坐标系中,如果位似变换是以原点O 为位似中心,相似比为k (k>0),原图形上点的坐标为(x,y ),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),

经典例题透析

类型一、相似三角形的概念

1.判断对错:

(1)两个直角三角形一定相似吗?为什么?

(2)两个等腰三角形一定相似吗?为什么?

(3)两个等腰直角三角形一定相似吗?为什么?

(4)两个等边三角形一定相似吗?为什么?

(5)两个全等三角形一定相似吗?为什么?

思路点拨:要说明两个三角形相似,要同时满足对应角相等,对应边成比例.要说明不相似,则只要否定其中的一个条件.

解:(1)不一定相似.反例

直角三角形只确定一个直角,其他的两对角可能相等,也可能不相等.所以直角三角形不一定相似.

(2)不一定相似.反例

等腰三角形中只有两边相等,而底边不固定.因此两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,所以等腰三角形不一定相似.

(3)一定相似.

在直角三角形ABC与直角三角形A′B′C′中

设AB=a,A′B′=b,则BC=a,B′C′=b,AC=a,A′C′= b

∴ABC∽A′B′C′

(4)一定相似.

因为等边三角形各边都相等,各角都等于60度,所以两个等边三角形对应角相等,对应边成比例,因此两个等边三角形一定相似.

(5)一定相似.

全等三角形对应角相等,对应边相等,所以对应边比为1,所以全等三角形一定相似,且相似比为1.

举一反三

【变式1】两个相似比为1的相似三角形全等吗?

解析:全等.因为这两个三角形相似,所以对应角相等.又相似比为1,所以对应边相等.

因此这两个三角形全等.

总结升华:由上可知,在特殊的三角形中,有的相似,有的不一定相似.

(1)两个直角三角形,两个等腰三角形不一定相似.

(2)两个等腰直角三角形,两个等边三角形一定相似.

(3)两个全等三角形一定相似,且相似比为1;相似比为1的两个相似三角形全等.

【变式2】下列能够相似的一组三角形为( )

A.所有的直角三角形

B.所有的等腰三角形

C.所有的等腰直角三角形

D.所有的一边和这边上的高相等的三角形

解析:根据相似三角形的概念,判定三角形是否相似,一定要满足三个角对应相等,三条对应边的比相等.而A中只有一组直角相等,其他的角是否对应相等不可知;B中什么条件都不满足;D中只有一条对应边的比相等;C中所有三角形都是由90°、45°、45°角组成的三角形,且对应边的比也相等.答案选C.

类型二、相似三角形的判定

2.如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.

思路点拨:由可知AB∥CD,AD∥BC,再根据平行线找相似三角形.

解:∵四边形ABCD是平行四边形,

∴AB∥CD,AD∥BC,

∴△BEF∽△CDF,△BEF∽△AED.

∴△BEF∽△CDF∽△AED.

∴当△BEF∽△CDF时,相似比;当△BEF∽△AED时,相似比;

当△CDF∽△AED时,相似比.

总结升华:本题中△BEF、△CDF、△AED都相似,共构成三对相似三角形.求相似比不仅要找准对应边,还需注意两个三角形的先后次序,若次序颠倒,则相似比成为原来的倒数.

3.已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC 和△EDF相似吗?为什么?

思路点拨:已知△ABC和△EDF都是直角三角形,且已知两边长,所以可利用勾股定理分别求出第三边AC 和DE,再看三边是否对应成比例.

解:在Rt△ABC中,AB=10,BC=6,∠C=90°.

由勾股定理得.

在Rt△DEF中,DF=3,EF=4,∠F=90°.

由勾股定理,得.

在△ABC和△EDF中,,,,

∴△ABC∽△EDF(三边对应成比例,两三角形相似).

总结升华:

(1)本题易错为只看3,6,4,10四条线段不成比例就判定两三角形不相似.利用三边判定两三角形相

似,应看三角形的三边是否对应成比例,而不是两边.

(2)本题也可以只求出AC的长,利用两组对应边的比相等,且夹角相等,判定两三角形相似.

4.如图所示,点D在△ABC的边AB上,满足怎样的条件时,△ACD与△ABC相似?试分别加以列举.

思路点拨:此题属于探索问题,由相似三角形的识别方法可知,△ACD与△ABC已有公共角∠A,要使此两个三角形相似,可根据相似三角形的识别方法寻找一个条件即可.

解:当满足以下三个条件之一时,△ACD∽△ABC.

条件一:∠1=∠B.

条件二:∠2=∠ACB.

条件三:,即.

总结升华:本题的探索钥匙是相似三角形的识别方法.在探索两个三角形相似时,用分析法,可先假设△ACD

∽△ABC,然后寻找两个三角形中边的关系或角的关系即可.本题易错为出现条件四:.不符合条件“最小化”原则,因为条件三能使问题成立,所以出现条件四是错误的.

举一反三

【变式1】已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.

求证:△ADQ∽△QCP.

思路点拨:因△ADQ与△QCP是直角三角形,虽有相等的直角,但不知AQ与PQ是否垂直,所以不能用两个角对应相等判定.而四边形ABCD是正方形,Q是CD中点,而BP=3PC,所以可用对应边成比例夹角相等的方法来判定.具体证明过程如下:

证明:在正方形ABCD中,∵Q是CD的中点,∴=2

又∵BC=2DQ,∴=2

在△ADQ和△QCP中,=,∠C=∠D=90°,

∴△ADQ∽△QCP.

【变式2】如图,弦和弦相交于内一点,求证:.

思路点拨:题目中求证的是等积式,我们可以转化为比例式,从而找到应证哪两

个三角形相似.同时圆当中同弧或等弧所对的圆周角相等要会灵活应用.

证明:连接,.

∴∽

∴.

【变式3】已知:如图,AD是△ABC的高,E、F分别是AB、AC的中点.

求证:△DFE∽△ABC.

思路点拨:EF为△ABC的中位线,EF=BC,又DE和DF都是直角三角形斜边上的中线,DE=AB,

DF=AC.因此考虑用三边对应成比例的两个三角形相似.

证明:在Rt△ABD中,DE为斜边AB上的中线,

∴DE=AB,

即=.

同理=.

∵EF为△ABC的中位线,

∴ EF=BC ,

即 =.

∴ ==.

∴ △DFE ∽△ABC .

总结升华:本题证明方法较多,可先证∠EDF=∠EDA+∠ADF=∠EAD+∠FAD=∠BAC ,再证夹这个角的两

边成比例,即=,也可证明∠FED=∠EDB=∠B ,同理∠EFD=∠FDC=∠C ,都可以证出△DEF ∽△ABC .

类型三、相似三角形的性质

5.△ABC ∽△DEF ,若△ABC 的边长分别为5cm 、6cm 、7cm ,而4cm 是△DEF 中一边的长度,你能求出△DEF 的另外两边的长度吗?试说明理由.

思路点拨:因没有说明长4cm 的线段是△DEF 的最大边或最小边,因此需分三种情况进行讨论. 解:设另两边长是xcm ,ycm ,且x

(1)当△DEF 中长4cm 线段与△ABC 中长5cm 线段是对应边时,有,

从而x=cm ,y=cm.

(2)当△DEF 中长4cm 线段与△ABC 中长6cm 线段是对应边时,有,

从而x=cm ,y=cm.

(3)当△DEF 中长4cm 线段与△ABC 中长7cm 线段是对应边时,有,

从而x=cm ,y=cm.

综上所述,△DEF 的另外两边的长度应是cm,cm 或cm ,cm 或cm ,cm 三种可能.

总结升华:一定要深刻理解“对应”,若题中没有给出图形,要特别注意是否有图形的分类.

6.如图所示,已知△ABC 中,AD 是高,矩形EFGH 内接于△ABC 中,且长边FG 在BC 上,矩形相邻两边的比为1:2,若BC=30cm ,AD=10cm.求矩形EFGH 的面积.

思路点拨:利用已知条件及相似三角形的判定方法及性质求出矩形的长和宽,从而求出矩形的面积.

解:∵四边形EFGH是矩形,∴EH∥BC,

∴△AEH∽△ABC.

∵AD⊥BC,∴AD⊥EH,MD=EF.

∵矩形两邻边之比为1:2,设EF=xcm,则EH=2xcm.

由相似三角形对应高的比等于相似比,得,

∴,∴,.

∴EF=6cm,EH=12cm.

∴.

总结升华:解决有关三角形的内接矩形、内接正方形的计算问题,经常利用相似三角形“对应高的比等于相似比”和“面积比等于相似比的平方”的性质,若图中没有高可以先作出高.

举一反三

【变式1】△ABC中,DE∥BC,M为DE中点,CM交AB于N,若,求.

解:∵DE∥BC ,∴△ADE∽△ABC

∵M为DE中点,∴

∵DM∥BC ,∴△NDM∽△NBC

∴=1:2.

总结升华:图中有两个“”字形,已知线段AD与AB的比和要求的线段ND与NB的比分别在这两个“”字形,利用M为DE中点的条件将条件由一个“”字形转化到另一个“”字形,从而解决问题.

类型四、相似三角形的应用

7.如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?

方案1:如上左图,构造全等三角形,测量CD,得到AB=CD,得到河宽.

方案2:

思路点拨:这是一道测量河宽的实际问题,还可以借用相似三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条.

如上右图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少?

解:∵AB⊥BC,CD⊥BC

∴∠ABO=∠DCO=90°

又∵∠AOB=∠DOC

∴△AOB∽△DOC

∵BO=50m,CO=10m,CD=17m

∴AB=85m

答:河宽为85m.

总结升华:方案2利用了“”型基本图形,实际上测量河宽有很多方法,可以用“”型基本图形,借助相似;也可用等腰三角形等等.

举一反三

【变式1】如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好

与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.

(1)图中△ABC与△ADE是否相似?为什么?

(2)求古塔的高度.

解:(1)△ABC∽△ADE.

∵BC⊥AE,DE⊥AE

∴∠ACB=∠AED=90°

∵∠A=∠A

∴△ABC∽△ADE

(2)由(1)得△ABC∽△ADE

∵AC=2m,AE=2+18=20m,BC=1.6m

∴DE=16m

答:古塔的高度为16m.

【变式2】已知:如图,阳光通过窗口照射到室内,在地面上留下1.5m宽的亮区DE.亮区一边到窗下的墙脚距离CE=1.2m,窗口高AB=1.8m,求窗口底边离地面的高BC?

思路点拨:光线AD//BE,作EF⊥DC交AD于F.则,利用边的比例关系求出BC.

解:作EF⊥DC交AD于F.因为AD∥BE,所以又因为,

所以,所以.

因为AB∥EF,AD∥BE,所以四边形ABEF是平行四边形,所以EF=AB=1.8m.

所以m.

类型五、相似三角形的周长与面积

8.已知:如图,在△ABC与△CAD中,DA∥BC,CD与AB相交于E点,且AE︰EB=1︰2,EF∥BC交AC于F点,△ADE的面积为1,求△BCE和△AEF的面积.

思路点拨:利用△ADE∽△BCE,以及其他有关的已知条件,可以求出△BCE的面积.△ABC的边AB上的高也是△BCE的高,根据AB︰BE=3︰2,可求出△ABC的面积.最后利用△AEF∽△ABC,可求出△AEF 的面积.

解:∵DA∥BC,

∴△ADE∽△BCE.

∴S△ADE︰S△BCE=AE2︰BE2.

∵AE︰BE=1︰2,

∴S△ADE︰S△BCE=1︰4.

∵S△ADE=1,

∴S△BCE=4.

∵S△ABC︰S△BCE=AB︰BE=3︰2,

∴S△ABC=6.

∵EF∥BC,

∴△AEF∽△ABC.

∵AE︰AB=1︰3,

∴S△AEF︰S△ABC=AE2︰AB2=1︰9.

∴S△AEF==.

总结升华:注意,同底(或等底)三角形的面积比等于这底上的高的比;同高(或等高)三角形的面积比等于对应底边的比.当两个三角形相似时,它们的面积比等于对应线段比的平方,即相似比的平方.

举一反三

【变式1】有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.

解:设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2.

∴△ABC∽△A1B1C1∽△A2B2C2

且,,

∴,

∴.

【变式2】如图,已知:△ABC中,AB=5,BC=3,AC=4,PQ//AB,P点在AC上(与点A、C不重合),Q 点在BC上.

(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;

(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;

解:(1)∵S△PQC=S四边形PABQ

∴S△PQC:S△ABC=1:2

∵PQ∥AB,∴△PQC∽△ABC

∴S△PQC:S△ABC=(CP:CA)2=1:2

∴CP2=42×,∴CP=.

(2)∵S△PQC的周长与四边形PABQ的周长相等,

∴PC+CQ=PA+AB+QB=(△ABC的周长)=6

∵PQ∥AB,∴△PQC∽△ABC

∴,即:

解得,CP=

类型六、综合探究

9.如图,AB∥CD,∠A=90°,AB=2,AD=5,P是AD上一动点(不与A、D重合),PE⊥BP,P为垂足,PE交DC于点E,

(1)设AP=x,DE=y,求y与x之间的函数关系式,并指出x的取值范围;

(2)请你探索在点P运动的过程中,四边形ABED能否构成矩形?如果能,求出AP的长;如果不能,请说

明理由.

解:(1)∵AB∥CD ,∴∠A+∠D=180°

∵∠A=90°,∴∠D=90°,∴∠A=∠D

又∵PE⊥BP ,∴∠APB+∠DPE=90°,

又∠APB+∠ABP=90°,∴∠ABP=∠DPE,

∴△ABP∽△DPE

∴,即

(2)欲使四边形ABED为矩形,只需DE=AB=2,即,解得

∵,∵均符合题意,故AP=1或 4.

总结升华:

(1)求以线段长为变量的两个函数间的关系时,常常将未知线段和已知线段作为三角形的边,利用相似

三角形的知识解决.

(2)解决第(2)小问时要充分挖掘运动变化过程中点的特殊位置,再转化为具体的数值,通过建立方程

解决,体现了数形结合的思想.

10.如图,在△ABC中,BC=2,BC边上的高AD=1,P是BC上任意一点,PE∥AB交AC于E,PF∥AC 交AB于F.

(1)设BP=,△PEF的面积为,求与的函数解析式和的取值范围;

(2)当P在BC边上什么位置时,值最大.

解:(1)∵BC=2,BC边上的高AD=1

∴△ABC的面积为1

∵PF∥AC,∴△BFP∽△BAC

∴,∴

同理△CEP∽△CAB

∴,

∵PE∥AB,PF∥AC,∴四边形PFAE为平行四边形

∴.

(2)

∴当时,即P点在BC边的中点时,值最大.

总结升华:建立三角形的面积与线段长之间的函数关系,可考虑从以下几方面考虑:

(1)从面积公式入手;

(2)从相似三角形的性质入手;将面积的比转化为相似比的平方;

(3)从同底或等高入手,将面积比转化为底之比或高之比.

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

集合-基础知识点汇总与练习-复习版

集合知识点总结 一、集合的概念 教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问 题,掌握集合问题的常规处理方法. 教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.: 一)主要知识: 1.集合、子集、空集的概念; 2.集合中元素的3个性质,集合的3 种表示方法; 3. 若有限集A有n个元素,则A的子集有2n个,真子集有2n 1,非空子集有2n 1个,非空真子集有2n 2个. 二、集合的运算 教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性 质,能利用数轴或文氏图进行集合的运算,进一步掌握 集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 一)主要知识: 1. 交集、并集、全集、补集的概念; 2. AI B A A B,AUB A A B; 3. C U AI C U B C U (AUB),C U AUC U B C U(AI B). 二)主要方法: 1. 求交集、并集、补集,要充分发挥数轴或文氏图的作用;

2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出 问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 考点要点总结与归纳 一、集合有关概念 1. 集合的概念:能够确切指定的一些对象的全体。 2. 集合是由元素组成的 集合通常用大写字母A、B、C,…表示,元素常用小写字母a b、c, …表示。 3. 集合中元素的性质:确定性,互异性,无序性。 (1)确定性:一个元素要么属于这个集合,要么不属于这个集 合,绝无模棱两可的情况。如:世界上最高的山 (2)互异性:集合中的元素是互不相同的个体,相同的元素只能 出现一次。如:由HAPPY 的字母组成的集合{H,A,P,Y} ( 3)无 序性:集合中的元素在描述时没有固定的先后顺序。 女口:{a,b,c}和{a,c,b}是表示同一个集合 4. 元素与集合的关系 (1)元素a是集合A中的元素,记做a€ A,读作“ a属于集合A”; (2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。 5. 集合的表示方法:自然语言法, 列举法,描述法,图示法。 ( 1)自然语言法:用文字叙述的形式描述集合。如大于等于2 且小于等于8 的偶数

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

(完整版)集合知识点点总结

集合概念 一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西, 并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有 A?(或B?A) 包含关系,称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

集合典型例题

1。集合得含义及其表示 (一)集合元素得互异性 1、已知,则集合中元素x所应满足得条件为 变式:已知集合,若,则实数得值为_______ 2。中三个元素可以构成一个三角形得三边长,那么此三角形可能就是 ①直角三角形②锐角三角形③钝角三角形④等腰三角形 (二)集合得表示方法 1. 用列举法表示下列集合 (1) __________________________ 变式:已知a,b,c为非零实数,则得值组成得集合为___ (2) ____ 变式1: 变式2: (3)集合用列举法表示集合B (4)已知集合M=,则集合M中得元素为 变式:已知集合M=,则集合M中得元素为 2。用描述法表示下列集合 (1)直角坐标系中坐标轴上得点_______________________________ 变式:直角坐标平面中一、三象限角平分线上得点______________ (2)能被3整除得整数_______________________、 3.已知集合,, (1)用列举法写出集合;(2)研究集合之间得包含或属于关系 4。命题(1) ;(2);(3);(4)表述正确得就是、 5、使用与与数集符号来替代下列自然语言:

(1)“255就是正整数” (2)“2得平方根不就是有理数” (3)“3、1416就是正有理数” (4)“-1就是整数” (5)“不就是实数” 6、用列举法表示下列集合: (1)不超过30得素数(2)五边形得对角线 (3)左右对称得大写英文字母(4)60得正约数 7。用描述法表示:若平面上所有得点组成集合, (1)平面上以为圆心,5为半径得圆上所有点得集合为_________ (2)说明下列集合得几何意义:; 8。当满足什么条件时,集合就是有限集?无限集?空集? 9、元素0、空集、、三者得区别? 10. 请用描述法写出一些集合,使它满足: (i)集合为单元素集,即中只含有一个元素; (ii)集合只含有两个元素; (iii)集合为空集 11.试用集合概念分析命题:先有鸡还就是先有鸡蛋? 解释:表述问题时把有关集合得元素说清楚,大有好处。先有鸡还就是先有鸡蛋?让我们运用集合概念来分析它。设地球上古往今来得鸡组成一个集合,孵出了最早得鸡得蛋算不算鸡蛋呢?这就是关键问题。设所有得鸡蛋组成集合,要确定得元素,就得立个标准,说定什么就是鸡蛋,一种定义方法就是:鸡生得蛋才叫鸡蛋;另一种定义方法就是:孵出了鸡得蛋与鸡生得蛋都叫鸡蛋。如果选择前一种定义,问题得答案只能就是先有鸡;选择后一种定义,答案当然就是先有鸡蛋。至于如何选择,不就是数学得任务,那就是生物学家得事。 (三)空集得性质 1.若?{x|x2≤a,a∈R},则实数a得取值范围就是________ 2、已知a就是实数,若集合{x| ax=1}就是任何集合得子集,则a得值就是_______.0?

集合知识点总结

集合知识点总结 Prepared on 22 November 2020

辅导讲义:集合与常用逻辑用语 1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。 集合的常用表示法:列举法、描述法。 集合元素的特征:确定性、互异性、无序性。 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为 A ? B ,或B ?A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。 即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B 或B ?A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作 U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作 B A ?(读作“A 交B ”),即:B A ?=}{B x A x x ∈∈且,|。 B A ?=A B ?,B A ?B B A A ???,。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作 B A ?(读作“A 并B ”),即:B A ?=}{B x A x x ∈∈或,|。 B A ?=A B ?,?A B A ?,?B B A ?。 8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q }, 其中a 0≠,A=B,求q 的值. 例2 设A={x∣2 x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合 =A {2,3,2a +4a +2}, B ={0,7, 2 a +4a -2,2-a },且A B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){}2,,,,=∈=x y x b a x x f y y x 中元素的个数

为…………………………………………………………………………( ) (A ) 1 (B )0 (C )1或0 (D ) 1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合 {}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 ( ) A.(0,2),(1,1) B.{(0,2),(1,1)} C. {1,2} D.{}2≤y y 集合与方程 例1、已知 {}φ=∈=+++=+R A R x x p x x A ,,01)2(2,求实数p 的取值范 围。 例2、已知集合 (){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和, 如果φ≠B A ,求实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若 φ=B A ,求实数a 的值。

高一数学集合知识点归纳

高一数学集合知识点归纳 高一数学的集合学习以及总结需要把集合相关知识点进行归纳,只有把知识点归纳好才可以学好高一数学集合,以下是我总结了高一数学的知识点,希望帮到大家更好地归纳好集合的知识点同时复习好集合。 一、知识点总结 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二、集合知识点整合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

高一数学集合练习题及答案经典

发散思维培训班测试题 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? ,{}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集

8、设集合A=}{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D } {2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2 A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={} 5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人. 三、解答题 17、已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值 18、已知二次函数f (x )=2x ax b ++,A=}{}{ ()222x f x x ==,试求 f ()x 的解析式

相关主题
文本预览
相关文档 最新文档