当前位置:文档之家› “最近发展区”在数学教学中的运用

“最近发展区”在数学教学中的运用

“最近发展区”在数学教学中的运用
“最近发展区”在数学教学中的运用

“最近发展区”在数学教学中的运用

摘要:数学教学本身不仅要考虑科目本身的特点,也要遵循学生在学习活动中的心理

规律;课程的三维目标作为学生应达到的潜在水平,与学生现实水平及每个学生不同的发展水平之间存在一空白地带,就是课程教学应该为学生学习自由发展提供的“最近发展区”。教学应着眼于学生的最近发展区,为学生提供带有难度的内容,调动学生的积极性,发挥其潜能,超越其最近发展区而达到其困难发展到的水平,然后在此基础上进行下一个发展区的发展。

关键词:最近发展区数学课堂教学分层教学

正文:

新课程理念下的数学教学将由“关注学生学习结果”,转向“关注学生活动”、“重塑知识的形成过程”,课程设计、实施将由“给出知识”转向“引导活动”。倡导学生主动探索,自主学习,数学教学不再是教师向学生传授知识的过程,而是,让学生发展自主学习的能力,发展学生的个性品质,从而激发学生的学习兴趣,提高学生学习数学的能力。数学是个体验思维的过程,要想教师的“教”能有效地转化为学生的“学”,在数学教学中,如能充分利用“最近发展区”,也体现一个老师水平的重要标准,也是新课程改革给我们的要求。

一、“最近发展区”理论的提出。

二十世纪五十年代,瑞士心理学家皮亚杰,创立了建构主义心理学派,建构主义课程论的四条教学原则,其中“程序原则”:知识结构的再现形式,取决于学生理解知识的方式。他们认为儿童对外界的新事物,总是试用原来的图式去同化和平衡,若不行,则调整为新图式,再去同化和平衡。这里的图式我们可以理解为已有的、已知的知识和经验,可以理解为学习活动、自我建构的中间地带。

二十世纪五、六十年代,赞可夫的“发展性教学”思想在苏联和世界上产生了较大的影响。发展性教学的五项教学原则:其中,○1凭借现代化的手段或某些教学方法、手段,把认为极为复杂的现象、问题变得容易理解,运用已有的知识和经验,使学生能够“举一反三、触类旁通”,促进学习发展。○2使全班学生,包括“后进生”都得到发展的原则。(现在分层教学的理论依据)

前苏联心理学家维果斯基认为,对于儿童而言,存在着一个介于儿童自己实力所能达到的水平(如学业成就)与经过别人的帮助之后所能达到的水平之间的差距,这一差距被称作最近发展区,我们也可以将它理解为它是一个人的最大潜力。最近发展区是只有给予帮助才可能完成从实际发展水平到最近发展区的提高,只靠儿童自己是无法独立完成的。找出其最近发展区,就可以通过成人帮助使儿童的认知能力得以最充分的发展。因此,在教育过程中,应当充分开发青少年的最近发展区,除了带领学生在已有知识的基础上学到新知识之外,更应该在面对新知识时有新的认知思维方式,从而启发学生的智力。

教学最理想的效果只有在最近发展区内才会产生。例如,人们常说的“跳起来摘桃子”就是既要给学生一定的施展空间,又不能超过学生的最近发展区,这样才能真正发挥他们的学习积极性。

二、“最近发展区”概念与教学实践的结合。

正如建构主义教学论认为“知识结构的再现形式,取决于学生理解知识的方式”。不同发展水平、

不同理解能力的学生对某一新鲜事物的理解会有所不同,课程教学要为每一个学生搭建所不同的理解平台,为学生学习发展建构“最近发展区”。

“最近发展区”的运用落实,可表现出问题的直观化,学生兴趣的提高、深究、成功的体验、表现出易懂神态等;直观现象、图形分析理解、实验实践、已有知识、生活实例、生活经验、新旧知识之间的联系、探索活动的过程都体现出了“最近发展区”的运用内容。

案例:七年级义务教育数学上册《北师大版》第57页

“有理数加法交换律、结合律及运用”

教师:我们一起来回顾小学时的计算,如下:

○15+7与7+5 ,○2(8+9)+10与8+(9+10)

从中得出什么规律?

学生:两个加数可交换位置,结果相等,几个数相加,可以分别把其中几个数用括号括起来,先相加,结果仍然相等,(即小学时讲过的加法交换律、结合律)。

教师:下面我们在来看下例计算:

○1(-8)+(-9)与(-9)+(-8),○24+(-7)与(-7)+4,

○3[2+(-3)]+(-8)与2+[(-3)+(-8)] ,

○4[10+(-10)]+(-5)与10+[(-10)+(-5)],

(师提示:按小学时的运算顺序)

学生:(经过学生计算)(-8)+(-9)与(-9)+(-8)的计算结果相等,下面2、3、4题两种算式结果也都相等。同小学时一样,两个加数可交换位置,结果相等,几个数相加,可

以分别把其中几个数用括号括起来,先相加,结果仍然相等。

教师:对,小学时的加法交换律、结合律在中学学习的有理数范围内同样适用。同学们能用字母表示加法交换律、结合律吗?(引导:你们小学时是怎么表示的?)

学生:(有的会,有的不会,学生之间可以相互学习)

加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

教师:下面请同学们计算:31+(-28)+28+69

可以用你自己的方式来做!

学生:(学生算法多样)略

教师:(把学生不同的算法展开比较,看那种方法比较简单)

31+(-28)+28+69

解:31+(-28)+28+69

=(31+69)+[(-28)+28]

=100+0

=100

这种运用加法交换律、结合律,可以简化计算过程,计算简单,不容易出错。

从案例分析,以小学已有知识,通过情景创设,把已有知识再现出来,一是缩小“差生”的现实水平与潜在水平的差距。二是通过符合认知过程的探索活动过程,准确定位“最近发展区”。三是使“优等学生”不会因已有知识的再现而觉得多余,并体会学习发展中“自我生成,自我建构”的成功体验。三、“最近发展区”在教学实施中的运用设计:

教学过程中情景创设,包括问题情景:首先要考虑学生生活中现实问题、熟悉的事例,这样容易引起学生产生共鸣、产生兴趣,体现“人人学有用的数学”。问题情景创设:

例:“正方体的展开”一节的教学

一般采用直接的方法,让学生把一个正方体沿某些棱剪开,能展成的平面图形是什么样?

我是这样设计的:(先让学生找来一个纸盒)

请同学们把找来的纸盒拆一拆、看一看,能得到什么样的平面图形,如果说:“你是这个纸盒、纸箱厂的设计师,请你设计一个正方体的纸盒、纸箱的平面图形”。(粘贴部份不考虑)经过问题情景创设,学生体验了“人人学有用的数学”,提高了学生学习兴趣,纸盒拆一拆、看一看的创设为学生探讨解决问题搭建了理解平台,即建构“最近发展区”.

其次,可以设置学生比较容易理解,直观性很强,学生容易达成目标,使学生得到成功体验。这就要求有针对性地按照教学的规律,按照每位学生的发展个性和特点而教学,就能最大化地把教学的实施落实到每一位学生。

接下来我就简单的谈谈我自己的一个案例。在进行《三角形全等的判定(复习课)》这一章节的教学时,我创设了这样的问题情境。

师:大家看这个图,要想证明这2个三角形全等,我们可以给出那些条件?

生1:……(一个班级中等学生,思考)

师:想想我们的判定定理,几个条件换一个结论。

生1:根据SSS……(成功回答出)

师:我们就学了一个判定定理吗?还可以换成什么?

生2:SAS、ASA、AAS都可以(数学课代表,把其余几个全部回答出来)

师:如果我给三角形标上字母,你能用证明的形式把刚才都写出来吗?(给图形标上字母),生3你发挥的机会到了,上来试试。

生3(班上一个调皮鬼):写了5个,其中有一个是SSA的形式。

师:大家检查,说明理由。

生3:我错了,老师,我有个写错了。

师:哪个?为什么?

生3:有一个是SSA,不行的。

师:(总结,并给予学生提醒)最后又加了句:如果三角形里有一个直角,我们该怎么办?

生:HL

师:只有HL吗?只能HL吗?

生:沉默

师:那么我们这节课就一个和大家好好的复习一下,三角形全等的判定。

分析:用题目代替了背诵,由于学生部知道我要给出什么图形,因此在我画图的时候格外认真,并且很快就发现了各种条件。在形式上,比起前一位老师要稍微灵活一点,课堂效果也好像不错。但是问题是很大的,就是中前面的学生跟着跑了,但是尾巴学生怎么办?明显,有几个学生已经在跑神了,从这层角度上说,开场时不成功的。作为复习课,我们又怎么在这样一群学生身上体现“最近发展区”这个思想呢?

刚才已经说过,最近发展区,前提是你要知道每个学生的当前能力。并且根据学生的个体差异,个人习惯,制定出了针对性强的方法,通过拉近和学生的感情距离,整体教学和个体教学同时进行,最终达到激发兴趣,拓展其学习能力的目的。接着,我在自己第2个班的授课时,通过反思,采取了下面的方法:

师:最近我们学习了一个很重要的知识,叫做

生:三角形全等的判定。(有学生要举手,准备回答判定定理)

师:先别急着说判定定理。想一想,有了全等,我们可以做什么?

生:(思考沉默后,有人举手)可以证明对应角相等,对应边相等。

师:好,刚才这位同学回答的是什么?

生:全等三角形的性质。

师:既然全等有这么多好处,那么这样的便宜是不会让你白占的。题目往往把全等给

隐藏起来,大家想想。我们一般是怎么隐藏全等的?

生:(稍微思考后,有几个学生插嘴了)藏在边和角里

师:怎么藏的(然后在黑板上画了个图)就照这个图说。

生:比如说这样(指着出个SAS的模型)就可以了,当然了,有些条件也可以换,比如说这2个角相等可以换成这条线是这个大角的角平分线……

师:说的对不对?他实际上帮我们复习了全等三角形判定定理的SAS。

生:老师,方法还有……

纵观下来,这次的开场,全班人每个人都在听,很明显的也都在思考。但问题也是很大。那么这里面说明了什么问题?最近发展区的应用,首先应该是以兴趣为前提,只有想学才会去思考,思考了才能有最近发展区。

四、“最近发展区”理论指导下的分层教学:

学习活动中,问题分析、理解的引导,应对学生现有水平进行分析,确定不同层次学生的“最近发展区”,实施分层教学。实施分层教学的四个基本环节是:学生分层、教学目标分层、分层施教、分层评价。

一、学生分层

对学生“智力因素、非智力因素、原有知识与能力的差异”进行分析,根据学生的学习可能性水平将全班学生分为A、B、C三个层次,比例分别占20、60、20学生分层,可根据情况采取显性分层或隐性分层的办法。显性分层由学生自选,师生协商,是一种动态分层;隐性分层则只由教师掌握,作为编排座位、划分合作学习小组、有针对性地实施分层教学的依据。一般来说,学习成绩好,学习兴趣浓,学习主动、接受快的学生属于A层;学习成绩中等,学习情绪不够稳定或能力一般但学习较勤奋的学生属于B层;学习成绩较差,学习困难大,消极厌学或顽皮不学的学生属于C层。学生分层后可以将三个层次的学生按20的比例组成四人合作小组,按纵向同质或横向异质集中编排,以便教师辅导和同学间相互帮助,有效地开展合作学习。

二、教学目标分层

教学目标分层的目的在于针对学生掌握知识的不同情况,设置各个层次的学生在教学活动中所要达到的不同学习目标,从而有针对性地教给学生不同层次的知识,以便与学生的知识结构相适应。前苏联著名心理学家维果茨基的最近发展区理论认为,教师的教学活动不能停留在学生的现有发展水平(即所谓的“第一发展区”上,教师的教学应该引起、激发和启动学生一系列的内部发展,让学生通过自己的努力思考,完成相对其现有知识水平而言更高层次的学习目标。对不同层次的学生可以从所学知识的深度、广度,接受新知识的速度,练习题的难度等方面提出不同层次的要求。将教学目标分层时,应做到“下要保底,上不封顶”,既能达到基本要求一致,又能鼓励个体发展。各层次学生最低都要达到课程标准的基本要求;中层学生要能进行较复杂的分析和应用;高层学生要具有较强的自学、探索能力,能进行创造性的学习。

三、分层施教

分层施教是分层教学中最关键、最难操作、最富有创造性的环节。应采取灵活、有效的教学方法和手段,使不同层次的学生能够“异步达标”。

第一,课本中的例题起着应用概念、解题规范化的示范作用,具有代表性、典型性,但是层次性不强,内涵有限。教师应熟悉教材前后联系,掌握每个概念、例题所处的“地位”,对概念、例题恰如其分地进行分层,有的适可而止,有的加以铺垫与引申,形成变式例题组或习题组,以供不同层次的学生选用。

第二,为了鼓励全体学生参与课堂活动,使课堂教学充满生机,教师应有意识地编拟三个层次的问题,以便课堂上提问。有思维难度的问题让#层学生回答,简单问题优待C层学生,适中的问题的回答

机会让给$层学生。学生回答问题有困难时,教师给予适当的引导、点拨。

第三,针对教学内容和学生的实际学习能力,教师要分层次选编巩固性练习、拓展性练习、综合性练习。练习、作业可分为必做题和选做题。学生完成各层次相应练习和作业后可以选做高一层次的练习、作业。这样能解决以往统一练习、作业时,高层学生“吃不饱”、中层学生“吃不好”、低层学生“吃不了”的矛盾。

第四,平时利用第二课堂对学生进行分类辅导。对C层学生的辅导,主要是调动非智力因素,激发学习兴趣,指导学习方法,对他们的作业尽量面批;对B层学生增加综合性习题,促使他们实现跨越式发展;对A层学生,可挑选其中的尖子生进行数学竞赛辅导,主要培养他们的创造性思维与灵活应变能力。

四、分层评价

对学生进行分层评价,以其在原有知识水平上进步的大小作为评价学生学习成效的一个基准,这是进行分层教学的一个重要的方面,也是衡量分层教学法是否有效的一个重要手段。在实际操作中要以分层测试成绩作为分层评价的基本依据,以学生自己每次分层测试的成绩作纵向比较,考查各层次学生在本层次递进的程度。对各层次达标学生给予表扬,让有进步的学生及时递进到高一层次,鼓励学生向高层次努力。让所有学生在分层测试后保持良好的上进的心态,感受成功的喜悦,增强自信心。同时,教师必须依据阶段教学效果作自我调节,主要调整教学设计,优化教学方法,改进教学手段,进一步使“教”适宜于“学”。

总之,“最近发展区“不是作为一种教学方式、方法,只是一种理论指导,让我在教育教学中如何备好课,作好教学设计,让学生在学习发展中,学得容易、学得懂、容易理解,掌握学习数学的基本方法。本人能力有限,有不当之处,希望批评指正。

参考文献:

张代芬《生物学教学法》云南教育出版社 1990年版

吕世虎石永生主编《新课程背景下的初中数学教学法》首都师范大学出版社 2005年5月第一版

关文信《新课程理念与初中课堂教学行动策略》中国人事出版社 2003年5月第一版

夏小刚等《数学情景的创设与数学问题的提出》数学教育学报 2003年

日本数学发展史

简述日本数学发展史 专业:09数学与应用数学 学号:N0939121 姓名:彭璐

人类从何时才开始定居于日本列岛,至今仍无定论。公元四世纪中叶,日本建立了第一个统一的国家。在十世纪以前,日本主要吸收外来的文化。中国、朝鲜和印度的文化对日本都有很大的影响,十世纪以后,真正的日本文化才发展起来。日本数学的繁荣则更晚,是十七世纪以后的事。 日本人把受西方数学影响以前,按自己的特点发展起来的数学叫和算,也算日本传统数学。十七世纪后期至十九世纪中叶是和算的兴盛时期。 和算在中国古代数学的影响下发展起来。公元六世纪始,中国的历法和数学就直接或间接地﹝通过朝鲜﹞传入日本,日本政府亦多次派留学生到中国唐朝学习数学。到八世纪初,日本已仿照隋唐时期的数学教育制度设立算学博士并采用《周髀算经》、《九章算术》、《孙子算经》、《缀术》等中国古算书作为教材,这是中国数学输入日本的第一个时期。 十三至十七世纪,是中国数学传入日本的第二个时期,《杨辉算法》、《算学启蒙》、《算法统宗》等陆续传入日本,对日本数学的发展有重要的影响。吉田光由的《尘劫记》﹝1627﹞使珠算术在日本迅速得到普及,其内容与《算法统宗》极为相似,只是其中许多例题是根据日本的实际情况编写的。这时期还有几本着作是专门介绍和解释《算学启蒙》的。 十七世纪初,日本数学家开始写出自己的著作,如毛利重能的《割算书》﹝1622﹞、今村知商的《竖亥录》﹝1639﹞等。到十七世纪末期,通过关孝和等人的工作,逐渐形成了日本数学体系──和算。 关孝和在日本被尊为「算圣」,十七世纪末到十八世纪初,以他为核心形成一个学派﹝关流﹞,这一学派的主要成就是「点术」和「圆理」。「点术」是把由中国传入的天文术改为笔算,并改进了算式的记法,是和算特有的笔算代数学。「圆理」可看作是和算特有的数学分析。建部贤弘求得弧长的无穷级数表达式,又称圆理公式。久留岛义太推广了圆理公式,发展了圆理的极数术﹝极值问题﹞,并在西方数学家之前发现了欧拉函数和行列式展开定理。关氏学派的第四代大师安岛直圆深入到微积分领域,提出一种求弧长的方法;又将此法推广,形成二重积分,求出了两相交圆柱公共部份的体积。晚期的关氏学派数学家和田宁进一步改进了圆理,使计算弧长、面积、体积等问题更加简化,他使用的方法和现在积分法的原理相近。 除了关氏学派外,还有一些较小的学派。他们总结了和算中的各种几何问题;深入研究了计算椭圆、球面等面积和体积的公式;探讨了代数方程理论等等。十九世纪中叶,日本政府采取了开国政策,西方数学大量传入。明治维新时期,日本政府实行「和算废止,洋算专用」政策,和算迅速衰废﹝只有珠算沿用至今﹞,同时开始了近代数学的研究。时至今日,日本已步入世界上数学研究先进国家的行列。 美国,法国,英国,日本以及德国是公认的数学大国。日本的数学在20世纪后半叶进步很快,尤其在代数,微分几何,代数几何等领域日本数学家都做出了巨大的贡献。Kobayashi和Nomizu的两卷本Foundations of Differential Geometry是微分几何的经典教材。1960年仅37岁就因病去世的Yamabe是当时几何分析领域的绝对权威。日本数学家Oka在二十世纪三,四十年代解决了一系列多复变函数论的难题,被法国著名数学家H.Cartan誉为super-human task。代数数论中Iwasawa理论就是日本数学家岩泽健吉的杰作,成为后来Wiles证明费马大定理的主要工具之一。 下面介绍一下日本的数学家。

中国数学发展史

中国数学发展史——宋元数学 中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

数学史

五上: 早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古 代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际 问题的史料。一直到三百年前,法国的数学家笛卡儿第一个提倡用x、y、 z 等字母代表未知数,才形成了现在的方程。 大约在两千年前,我国数学名著《九章算术》中的“方田章”就论 述了平面图形面积的算法。书中说:“方田术曰,广从步数相乘得积步。” 其中“方田”是指长方形田地,“广”和“从”是指长和宽,也就是说: 长方形面积= 长×宽。还说:“圭田术曰,半广以乘正从。”就是说: 三角形面积= 底×高÷2。 我国古代数学家刘徽利用出入相补原理来计算平面图形的面积。出入 相补原理就是把一个图形经过分割、移补,而面积保持不变,来计算出 它的面积。如下图所示,它们显示了平面图形的转化。 五下: 1、6 的因数有1、 2、 3、6,这几个因数的关系是:1+2+3=6。 像6 这样的数,叫做完全数(也叫做完美数)。 28 也是完全数,而8 则不是,因为1+2+4 ≠8。完全数非常稀少, 到2004 年,人们在无穷无尽的自然数里,一共找出了40 个完全数, 其中较小的有6、28、496、8128 等。 2、为什么判断一个数是不是2 或5 的倍数,只要看个位数?为什么 判断一个数是不是3 的倍数,要看各位上数的和? 24 = 20 +() 2485= 2480 +() 20、2480 都是2 或5 的倍 数,所以一个数是不是2 或5 的倍数,只要看? 24 = 2×10+4= 2×(9+1)+4= 2×9+(2)+(4) 2485= 2×1000+4×100+8×10+5 = 2×(999+1)+4×(99+1)+8×(9+1)+5 = 2×999+4×99+8×9+()+()+()+() 3、哥德巴赫猜想从上面的游戏我们看到:4=2+2,6=3+3,8=5+3,10=7+3,

数学发展简史数学发展简史

数学发展简史数学发展 简史 Last revised by LE LE in 2021

数学发展简史数学发展简史 一、数学起源 1.希腊人发现了推理的作用 古典时期(公元前600-前300年)的希腊人,认识到人类有智慧、有思维,能够发现真理。 2.最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。 3.继毕达哥拉斯学派之后,最有影响的是由柏拉图学派,他控制了公元前4世纪这一重要时期希腊人的思想,他是雅典柏拉图学院的创立者,存在了九百年之久。 4.亚里士多德是柏拉图的学生,他批评柏拉图的冥世思想以及把科学归结为数学的认识。他是一个物理学家,他相信真正的知识是从感性的经验通过直观和抽象而获得。他认为,基本概念应该是不可定义的,否则就没有起始点。他又区分了公理和公设。公理――对所有思想领域皆真。 公设――适用于专业学科,如几何学。 5.欧几里得(Euclid)、阿基米得(Archimedes)、丢番图等属于希腊文化的第二个重要时期,亚历山大里亚时期(公元前300年-公元600年) 欧几里得(公元前约300年),他的代表作《几何原本》是一本集希腊数学大成的巨着,成为两千年来用公理法建立演绎的数学体系的典范。 二、数学的繁荣(文艺复兴(15世纪初到17世纪的200年) 1.希腊人的宗旨――自然是依数学设计的,与文艺复兴时的信念――上帝是这个设计的作者,融汇在一起,统治了欧洲。 2.笛卡儿(Descartes,1596-1650) 被誉为数学王冠上的明珠之一,但他首先是一个哲学家,其次是宇宙学家,第三是物理学家,第四是生物学家,第五才是数学家。 极其敏锐的直觉和对结果的演绎――这就是笛卡儿认识哲学的实质。 笛卡儿认为:思维只有两种方法,这就是:直觉和演绎。 笛卡儿对数学本并没有提出什么新定理,但他却提供了一种非常有效的研究方法,即《解释几何》。 在科学上,笛卡儿的贡献,虽然不如像哥白尼、开普勒以及牛顿那样辉煌灿烂,但也不容轻视。 3.帕斯卡(Pascal):是17世纪伟大的数学家之一。 4.伽利略与笛卡尔齐名,他的主要贡献是他在科学方法上的许多变革。 a) 他要研究和证明的是一些运动的性质而不考虑为会什么会这样。 b) 他坚持向自然科学家提议:不要研究为什么会这样,只要讨论怎样定量描述。 c) 他的另一个原则是:科学的任一分支都可用数学模型模仿出来。 5.牛顿是剑桥大学的数学教授,被称为最伟大的数学家之一,牛顿认为数学是枯燥和乏味的,只是表述自然定律的一种工具。 牛顿的真正的成就在于证明了开普勒经过多年观测和研究得出的开普勒三定律可以由万有引力定律和运动三定律用数学方法推导出来。拉普拉斯曾说过,牛顿是最幸运的人,因为只有一个宇宙,而他成功地发现了它的定律。 6.

中国数学发展史概述

中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家──夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年1066年,共历十七世三十一王)和西周﹝前1027年前771年,共历约二百五十七年,传十一世、十二王﹞。随后出现了中国历史上的第一次全国性大分裂形成的时期──春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家──秦朝(前221年前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年公元8年)帝国、东汉王朝(公元25年公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年公元316年)与东晋王朝(公元317年公元420年)、汉民族以外的少数民族统治的南朝(公元420年公元589年)与北朝(公元386年公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279

年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝──明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,

数学函数的发展史

总课题:数学的发展史 子课题:函数的发展史 一、组长:李 组员:刘田仁姬孙二、指导老师:张

三、班级:高一12班 四、成员简介: 李:性格开朗、刻苦认真担任组长 刘:喜欢英语、大方担任搜集 仁:喜欢信息、刻苦认真担任写作 姬:开朗大方、热情担任搜集 孙:爱好动漫、画画性格外向担任整理 田:开朗大方刻苦认真担任整理 五、选题的原因: 开阔视野,增长见识。提高我们的数学修养‘可以使我们更好的融合在一起,加强团结,了解数学。 六:研究计划: 共六人:姬刘担任搜集 李仁担任写作 孙田整理资料 七:研究成果: 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分 有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一)1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.

数学发展简史

数学发展简史 数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前5 世纪——公元17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前5 世纪——公元17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学

丢番图——不定方程 2.东方(公元2 世纪——15 世纪) 1)中国 西汉(前2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法 奥马尔.海亚姆

最新国家开放大学电大《数学发展史》教学考一体化网考形考作业试题及答案

最新国家开放大学电大《数学发展史》教学考一体化网考形考作业试题及答案 100%通过 2014秋期河南电大把《数学发展史》纳入“教学考一体化”平台进行网考,针对这个平台,本人汇总了该科所有的题,形成一个完整的题库,内容包含了单选题、判断题,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。本文库还有其他教学考一体化答案,请查看。 一单选题 1.获得第一位数学家和论证几何学鼻祖美名的是(泰勒 斯) 2.我们通过莱茵德纸草书和莫斯科纸草书来研究古(埃 及)人数学的知识 3.亚历山大后期几何学最富创造性的成就是(三角学) 的建立 4.“给我一个支点,我可以移动地球”是(阿基米德) 的名言 5.古希腊“穷竭法”的始祖是(安提丰) 6.毕达哥拉斯学派对正十二面体的作图最为诱人,因为 它是由(正五边形)围成 7.在金字塔的建造中,保持斜面坡度的均匀性十分重 要,从而促使埃及人引进相当于角的(正切)的概念8.根据诺依格包尔等人的研究,普林顿322数表与所谓 (整勾股数)有关 9.美索不达米亚人创造了以(60)进制为主的楔形文记 数系统 10.《圆锥曲线论》是希腊演绎几何的最高成就,阿波罗 尼奥斯用(纯几何)的方法得到了今天解析几何的一些主要结论 11.单位分数的广泛使用成为埃及数学重要而有趣的特 色,埃及人将所有的真分数都表示为一些单位分数的(和) 12.下列地域中的古代文明不属于“河谷文明”的是(希 腊) 13.《四元玉鉴》是(朱世杰)的代表著作 14.《九章算术》的“商功”章主要讨论(体积的计算) 15.下列不属于《算经十书》的是(《墨经》) 16.秦九韶是“宋元四大家”之一,其代表作是(数书九 章) 17.婆罗摩笈多在他的著作《婆罗摩修正体系》中比较完 整地叙述了(零)的运算法则 18.用圆圈符号“0”表示零的发明是对世界文明的杰出 贡献,它是(印度)数学的一大发明 19.(刘徽)是中算史上第一位建立可靠的理论来推算圆 周率的数学家 20.婆什迦罗有两本代表印度古代数学最高水平的著作 《莉拉沃蒂》和( 《算法本源》) 21.9世纪天文学家(阿尔·巴塔尼)对希腊三角学进 行了系统化研究,创立了系统的三角术语,如正弦、 余弦、正切、余切 22.“一尺之棰,日取其半,万世不竭”出自我国古代名 著( 《庄子》) 23.奥马.海亚姆在代数学方面的成就集中反映于他的 《还原与对消问题的论证》一书中,该书最杰出的贡献是用圆锥曲线解(三次方程) 24.中国数学史上最先完成勾股定理证明的数学家是公 元3世纪三国时期的( 赵爽) 25.《缉古算经》是世界上最早讨论(三次方程组)代数 解法的著作 26.解析几何的真正发明归功于法国的两位数学家笛卡 儿与( 费马) ,尽管他们的工作出发点不同,但却 殊途同归 27.数学符号的系统化首先应归于法国数学家(韦达) 28.苏格兰数学家纳皮尔在球面天文学的三角学研究中 首先发明了( 对数方法) 29.欧洲人在数学上的推进是从(代数学)开始的,它是文 艺复兴时期成果最突出,影响最深远的领域,拉开了 近代数学的序幕 30.解一阶常微分方程Mdx+Ndy=0的(积分因子法)是由 欧拉和克莱洛分别独立地提出的 31.专门的偏导数记号是由(雅可比)在行列式理论中正 式创用并逐渐普及的 32.18世纪微积分最重大的进步是由(欧拉)作出的 33.首首先引进如下一批符号:f(x)-函数符号;∑-求 和号;e-自然对数底;i-虚数单位的数学家是( 欧 拉) 34.历史上第一篇系统的微积分文献是牛顿的( 《流数 简论》 ) 35.我们今天所说的因式分解定理,最早是由(笛卡尔) 提出的 36.“行列式”这个名称是由(柯西)首先提出的 37.沃利斯是在牛顿和莱布尼茨以前将分析方法引入微 积分贡献最突出的数学家,他的最重要的著作是( 《无穷算术》) 38.(莱布尼茨)引进的符号“d”和“ò”体现了微积分 的实质,并沿用至今 39.(欧拉)在1937年证明了e是无理数 40.(黎曼)开创了解析数论的新时期,并使复分析成为 这一领域的重要工具 41.五次和高于五次的一般方程的求解问题是由(阿贝 尔)解决的

简述中国数学发展史

中国数学发展史 【摘要】数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 【关键词】中国数学;数学发展史;数学思想 一、中国数学的发展历程 1.1中国数学的起源与早期发展 据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。其中有十进制制的记数法,出现最大的数字为三万。这是位值制的最早使用。算筹是中国古代的计算工具,这种方法称为筹算。筹算在春秋时代已很普遍。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。在公元前2500年,我国已有圆、方、平、直的概念。对几何工具也有深刻认识。 算术四则运算在春秋时期已经确立,乘法运算已广为流行。“九九表”一直流行了约1600年。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题。《庄子》中则强调抽象的数学思想。其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 1.2 中国数学体系的形成与奠基 这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期。在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。 现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有比例知识。 《九章算术》是一部经几代人整理、删减补充和修订而成的古代数学经典著作,约成书于东汉初年。全书编排方法是:先举出例子,然后给出答案,通过对一类问题解法的考察和研究,最后给出“术”。它的成书标志着我国传统数学理论体系——初等数学理论体系的形成。比欧洲早了1400多年。

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

数学发展简史

数学发展简史 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学发展简史数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前 5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前 5 世纪——公元 17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前 5 世纪——公元 17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学 丢番图——不定方程 2.东方(公元 2 世纪——15 世纪) 1)中国 西汉(前 2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元 8 世纪)——印度数码、有 0;十进制

(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元 499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元 8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法

数学发展简史

数学发展简史 (摘自张顺燕《数学的源与流》,高等教育出版设2001) 大数学家庞加莱说:“若想预见数学的未来,正确的方法是研究它的历史和现状”。法国人类学家斯特劳斯说:“如果他不知道他来自何处,那就没有人知道他去向何方”。我们需要知道,我们现在出在何处,我们是如何到达这里的,我们将去何方。数学史将公司我们来自何处。 数学的发展史大致可以分为四个基本上本质不同的阶段。 第一个时期——数学形成时期。这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念。简单的计算法,并认识了最简单的几何形式,逐步的形成了理论与证明之间的逻辑关系的“纯粹”数学。算术与几何还没有分开,彼此紧密地交错着。 第二个时期称为初等数学,即常数数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,知道17世纪,大约持续了两千年。在这个时期,逐渐形成了初等数学的主要分支:算术、几何、代数、三角。 按照历史条件不同,可以把初等数学史分为三个不同的时期:希腊的、东方的和欧洲文艺复兴时代的。 希腊时期正好与希腊文化普遍繁荣的时代一致。到公元前3世纪,在最伟大的古代几何学家欧几里德、阿基米德、阿波罗尼奥斯的时代达到了顶峰,而终止于公元6世纪。当时最光辉的著作是欧几里德的《几何原本》。尽管这部书是两千多年钱写成的,但是它的一般内容和叙述的特征,却与我们现在通用的几何教科书非常接近。

希腊人不仅发展了初等几何,并把它导向完整的体系,还得到许多非常重要的结果。例如,他们研究了圆锥曲线:椭圆、双曲线、抛物线;证明了某些属于射影几何的定理,一天问学的需要为指南,建立了球面几何,以及三家学的原理,并计算出最初的正弦表,确定了许多复杂图形的面积和体积。 在算术与代数方面,希腊人也做了比绍工作。他们奠定了数论的基础,并研究了丢番图方程,吗发现了无理数,找到了求平方根、立方根的方法,知道了算术级数与几何级数的性质。 在几何方面希腊人已接近“高等数学”。阿基米德在计算面积与体积时已接近积分运算,阿波罗尼奥斯关于圆锥曲线的研究接近于解析几何。 应该指出,当时我国的算术与代数已达到很高的水平。在公元前2世纪到1世纪已有了三元一次方程组的解法。同时在历史上第一次利用负数,并且叙述了对负数进行运算的规则,也找到了求平方根与立方根的方法。 随着希腊科学的终结,在欧洲出现了科学萧条,数学发展的中心移到了印度、中亚细亚和阿拉伯国家。在这些地方从5世纪到15世纪的一千年中间,数学主要由于计算的需要,特别是由于天问学的需要而得到发展。印度人发明了现代记数法,引进了负数,并把正数与负数的对立和财产的对立联系了起来,他们开始像运用有理数一样运用无理数,他们给出了表示各种代数运算包括求更运算的符号。由于他们没有对无理数与有理数的区别困惑,从而为代数打开了真正的发展道路。 “代数”这个词起源于9世纪的数学家和天问学家穆罕穆德花拉子花。花拉子花的著 作基本上建立了解方程的方法。从这时起,求方程的解作为代数的基本特征被长期保持了下来。他的代数著作在数学史上起了重大作用,因为这部作品被翻译成拉丁语,曾长期作为欧洲主要的教科书。

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

数学发展史

数学发展简史 数学是人类最古老的科学知识之一。就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开始,迄今已有5000年的历史。 那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。用的较多也较容易理解的是恩格斯的定义。他说, 数学,是研究数量关系与空间形式的一门科学。 20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与接受。 第一阶段:数学的萌芽阶段(公元前3000年—公元前600年) 这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。在这一阶段里,数学还没有发展成为一门有明确结构的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。数学文化在这一阶段的杰出代表是古巴比伦数学、中国数学、埃及数学、印度数学等。这一阶段的世界数学文化呈一种多元发展态势。 第二阶段:数学的形成阶段(公元前5世纪—公元16世纪) 这一阶段,通常称之为数学科学的形成时期,它的开始是以希腊人的出场为典型标志,结束于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。 这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数(注:这是数学史上第一次危机。《原本》第五卷中将

中国数学发展简史

中国数学发展简史 翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。 中国数学的起源(上古~西汉末期) 古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。的确,一个没有数的世界是不堪设想的。今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。如果当时要有人能数到10,那一定会被认为是杰出的天才了。后来人们慢慢地会把数字和双手联系在一起了。每只手各拿一件东西,就是2数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经各种著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。当历史推进到秦汉时期,我们发现,这一时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。 (2)中国数学的发展繁荣时期(西汉末期~隋朝中叶) (3)这是中国数学理论的第一个高峰期。这个高峰的标志就是数学专著《九章算术》的诞生。这本书的诞生,不仅说明我国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现祖冲之的《缀术》等数学专著。这一时期,创造数学新成果的杰出人还有三国人赵爽、魏晋人刘徽。 (3)数学全盛时期(隋中叶~元后期) 从隋朝中叶到元代末年,经济和科学技术得到了迅速的发展,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。在这一时期,数学教育的正规化和数学人才辈出,是最主要的特点。隋以前,学校里的教育并不重视数学,而到了隋朝,这一局面被打破了,在相当于大学的学校里,开始设置算学专业。到了唐朝,最高学府国子监,还添设了算学馆,其中博士、助教一应俱全,专门培养数学人才。数学教育从这时开始也走向逐步完善。科学历来是全人类共同的财富,当时中国的数学水平很快引起了朝鲜、日本的注意,他们开始往中国派留学生、书商。经过一段学习,在算法引进了关于田亩、交租、谷物交换等知识;在办学中吸取了国子监的课程设置和考试制度。由此看来,在这一阶段,我国已处于世界数学发展的潮头了。 (4)缓慢发展时期(元后期~清中期) 后来到元后期至清中期数学的发展十分缓慢,和上面讲的数学盛世相比,这一阶段几乎是黯然失色了。从宋朝末年到元朝建立中央集权制,中国大地上烽火连年,科学技术不受重视,大量宝贵的数学遗产遭受损失。明朝建立以后,生产曾在一个短暂时期里有所发展,但马上又由于封建统治的腐败,走向了衰

1数学史试题及答案

填空 1.世界上第一个把π计算到<π<的数学家是祖冲之 2.我国元代数学著作《四元玉鉴》的作者是(朱世杰 3.就微分学与积分学的起源而言(积分学早于微分学) 4.在现存的中国古代数学著作中,最早的一部是(《周髀算经》 5.发现著名公式e iθ=cosθ+isinθ的是( 欧拉 6.中国古典数学发展的顶峰时期是(宋元时期)。 7.最早使用“函数”(function)这一术语的数学家是(.莱布尼茨)。 8.1834 年有位数学家发现了一个处处连续但处处不可微的函数例子,这位数学家是(波尔查诺)。9.古埃及的数学知识常常记载在(纸草书上)。 10.大数学家欧拉出生于(瑞士) 11.首先获得四次方程一般解法的数学家是(费拉利。 12.《九章算术》的“少广”章主要讨论(开方术)。 13.最早采用位值制记数的国家或民族是(美索不达米亚)。 14.希尔伯特在历史上第一次明确地提出了选择和组织公理系统的原则,即:相容性、__完备性__、独立性 15.在现存的中国古代数学著作中,《周髀算经》是最早的一部。卷上叙述的关于荣方与陈子的对话,包含了勾股定理的一般形式。 16.二项式展开式的系数图表,在中学课本中称其为__杨辉__三角,而数学史学者常常称它为_贾宪__三角。

17.欧几里得《几何原本》全书共分13 卷,包括有_5_条公理、_5条公设。 18.两千年来有关欧几里得《几何原本》第五公设的争议,导致了《非欧几何》的诞生。1 9.阿拉伯数学家花拉子米的《代数学》第一次给出了一次和二次方程的一般解法,并用__几何__方法对这一解法给出了证明。 20.在微积分方法正式发明之前,许多数学家的工作已经显示着微积分的萌芽,如开普勒的旋转体体积计算、巴罗的微分三角形方法以及瓦里士的曲线弧长的计算等。语言的数学家是维尔斯特拉斯。 21.1882 年德国数学家林德曼证明了数的超越性。 22.数学家们为研究古希腊三大尺规作图难题花费了两千年的时间, 23.罗巴契夫斯基所建立的“非欧几何”假定过直线外一点,至少有两条年德国数学家林德曼证明了数直线与已知直线平行,而且在该几何体系中,三角形内角和__小于___两直角。 24.被称为“现代分析之父”的数学家是柯西,被称为“数学之王”的数学家是高斯 25.第一台能做加减运算的机械式计算机是数学家帕斯卡于1642 年发明的。 26.1900年,德国数学家希尔伯特在巴黎国际数学家大会上提出了_23__ 个尚未解决的数学问题,在整个二十世纪,这些问题一直激发着数学家们浓厚的研究兴趣。 27.首先将三次方程一般解法公开的是意大利数学家_卡当__,首先获得四次方程一般解法的数学家是__费拉利。 28.欧氏几何、罗巴契夫斯基几何都是三维空间中黎曼几何的特例,其中欧氏几何对应的情形是曲率恒等于零,罗巴契夫斯基几何对应的情形是曲率为负常数。 29.中国历史上最早叙述勾股定理的著作是《九章算术》,中国历史上最早完成勾股定理证明的数学家是三国时期的__赵爽__。 30.世界上讲述方程最早的著作是(中国的《九章算术》) 31.《数学汇编》是一部荟萃总结前人成果的典型著作,它被认为是古希腊数学的安魂曲,其作者为(.帕波斯)。

相关主题
文本预览
相关文档 最新文档