当前位置:文档之家› EG1182降压控制芯片

EG1182降压控制芯片

EG1182降压控制芯片
EG1182降压控制芯片

ELECTRONIC GIANT

版本变更记录

目录

1. 特点 (4)

2. 描述 (4)

3. 应用领域 (4)

4. 引脚 (5)

4.1. 引脚定义 (5)

4.2. 引脚描述 (5)

5. 结构框图 (6)

6. 典型应用电路 (6)

7. 电气特性 (8)

7.1 极限参数 (8)

7.2 典型参数 (9)

8. 应用设计 (10)

8.1Vin输入电容 (10)

8.2Vcc储能电容 (10)

8.3启动过程 (10)

8.4振荡器CT电容的开关频率计算 (10)

8.5输出峰值限流 (10)

8.6输出短路保护 (11)

8.7输出电感 (11)

8.8续流二极管 (11)

8.9输出电容 (11)

8.10输出电压调节端(ADJ)设置 (11)

9. 封装尺寸 (12)

9.1 DIP8封装尺寸 (12)

9.2 SOP8 - EP封装尺寸 (13)

EG1182芯片数据手册V1.0

1. 特点

?宽电压输入电压范围:20V至60V

?外接元件少,无需外围补偿网络能达到稳定工作

?保护功能:

●过流保护

●短路保护

?外接一个电容可设置工作频率(10KHz-100KHz)

?UVLO欠压锁定功能:

●Vcc引脚端的开启电压6.5V

●Vcc引脚端的关闭电压3.5V

●UVLO迟滞电压为3V

?无需外接启动电阻

?内置高压功率管

?可外部扩展高压功率管应用于输出大电流场合

?外接一个小功率电阻可控制峰值电流

?逐周限流控制

?封装形式:DIP-8和SO-8

2. 描述

EG1182是一款48V电池供电降压型DC-DC电源管理芯片,内部集成基准电源、振荡器、误差放大器、过热保护、限流保护、短路保护等功能,非常适合高压60V场合应用。

EG1182应用在电动车48V控制器系统中,能直接替代LM317、LM7815或电阻型降压线性稳压器,具有高效率,高可靠性等特性,能大大降低整体控制器的温度,使整个系统能够更可靠工作。

3. 应用领域

?电动摩托车控制器?电动自行车控制器?高压模拟/数字系统?工业控制系统?电信48V电源系统?以太网P O E

?便携式移动设备

?逆变器系统

4. 引脚

4.1. 引脚定义

图4-1. EG1182管脚定义4.2. 引脚描述

5. 结构框图

PK C

图5-1. EG1182结构框图

6. 典型应用电路

Vout=+15V

≤350mA

图6-1. EG1182典型应用电路图

图6-2. EG1182 LED恒流350mA驱动

7. 电气特性

7.1 极限参数

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在A25℃,Vin=48V

8. 应用设计

8.1 Vin 输入电容

在Vin 引脚端对地放置一个低频大容值滤波电容和一个高频小容值旁路电容将减少输入纹波电压和降低芯片输入端的高频噪声,低频滤波电容可根据输入纹波电压要求进行选择,一般输入纹波电压要求需小于500mV ,确定输入纹波电流和电容的ESR ,可选取合适的电容参数,高频旁路电容可选用0.1uF 陶瓷电容,布板时尽可能靠近芯片引脚Vin 输入端。

8.2 Vcc 储能电容

EG1182需求Vcc 引脚端(2脚)对地放置一个4.7uF 电容,主要用于启动时对Vcc 引脚进行储能充 电和正常工作时稳定Vcc 引脚的工作电压,同时该电容对输出短路保护有一定的作用,当输出短路时,Vcc 引脚将失电,芯片进入UVLO 模式,该电容的大小将影响当输出短路时芯片间隙去开启功率管的时间,电容越大间隙的时间越长,功率管发热越小,反之功率管发热将增大。

8.3 启动过程

当外部输入电压输入到Vin 引脚(1脚)时,Vin 引脚将通过内部60K 电阻对Vcc 引脚(2脚)的外接电容开始充电,此时EG1182芯片将在低静态电流工作模式大概消耗<100uA 的工作电流,内部仅UVLO 电路在工作,其他振荡器及PWM 模块都处于关闭状态,稳压器的输出电压为零,当Vcc 引脚上的电容电压充电到6.5V 以上时,芯片开始正常工作,开启振荡器、PWM 模块及反馈处理电路,输出电压稳压输出,同时输出电压通过FB 反馈引脚(6脚)的内部二极管到Vcc 引脚(2脚)提供Vcc 工作电源,启动过程结束。

8.4 振荡器C T 电容的开关频率计算

EG1182仅需一个外接电容可设置PWM 工作频率,内部采用恒流源对C T 电容进行充放电如图8.4a , 电容上充电电压的上限值为2.5V,电容上放电电压的下限值为0.5V,灌电流

的恒流源内部提供大概100uA 左右的电流对C T 电容进行充电,拉电流的恒流源内部提供大概300uA 左右的电流对C T 电容进行放电,近似的工作频率和电容之间关系由公式 f=(37.5 x106)/C T 确定(该公式的电容单位为

pF),如C T =470pF 的电容,对应的PWM 工作频率大概为79.8KHz 。

图8.4a 振荡器C T 充放电原理框图

8.5 输出峰值限流

EG1182芯片的输出峰值电流限流大小可通过设置Vin 引脚端(2脚)到

I PK 引脚端(8脚)的电阻值大小,I PK 引脚用于检测输出功率管输出电流的大小,峰值电路与该采样电阻的关系式是I PK =0.7/Rsense*84,一旦输出电流超过I PK 设定值,芯片将降低PWM 占空比使输出电流限流在设定的最大值。

T

8.6 输出短路保护

当输出短路时,EG1182将工作在最大峰值电流限流输出,同时Vcc 引脚(2脚)的电压将会失电由于反馈电压FB 引脚不能再为Vcc 引脚提供电源,EG1182芯片大约5mA 的静态工作电流很快泄放掉Vcc 引脚上电容的电压,当Vcc 引脚的电压低于3.5V 以下时,EG1182芯片将彻底关闭PWM 输出,同时Vin 引脚(1脚)内部的启动电阻60K 重新对Vcc 引脚的电容开始充电,当Vcc 引脚的电压高于6.5V ,芯片重新开启PWM ,如果输出一直处于短路状态,芯片将间隙去开启功率管,此时EG8010芯片将处于限流和短路保护模式。

8.7 输出电感

EG1182有两种工作模式分连续工作模式和不连续工作模式,电感的取值将影响降压器的工作模式,在轻载时EG1182工作在不连续工作模式,同时电感值会影响到电感电流的纹波,电感的选取可根据下式公式:

L=Iripple Fs Vin Vout Vin Vout ..)

( 式中Vin 是输入电压,Vout 是输出电压,Fs 是PWM 工作频率,Iripple 是电感中电流纹

波的峰峰值,通常选择Iripple 不超过最大输出电流的30%。

8.8 续流二极管

续流二极管主要用于开关管关断时为电感电流提供一个回路,这个二极管的开关速度和正向压降直接影响DC-DC 的效率,采用肖特基二极管具有快速的开关速度和低的正向导通压降,能给EG1182降压器提供好的性能。如果应用在输出电流小于100mA 的场合,低成本的开关二极管同样能被应用在EG1182系统中。

8.9 输出电容

输出电容Co 用来对输出电压进行滤波,使DC-DC 降压器输出比较平稳的直流电提供给负载,选取该 电容时尽可能选取低ESR 的电容,选取电容值的大小主要由输出电压的纹波要求决定,可由下式公式确定:ΔVo=ΔI L (ESR+Co Fs ..81

)式中ΔVo 是输出电压纹波,ΔI L 是电感电流纹波,Fs 是PWM 工作频率,ESR 是输出电容等效串联电阻。

8.10 输出电压调节端(ADJ )设置

EG1182

的输出电压由ADJ 引脚上的两个分压电阻进行设定,内部误差放大器基准电压为1.35V ,如图8.10.a 所示,输出电压 Vout=(1+R1/R2)*1.35V ,如需设置输出电压到15V ,可设定R1为51K ,R2为4.7K ,输出电压Vout=(1+51/4.7)*1.35V=15.90V 。

图8.10a EG8010输出电压调整电路

9. 封装尺寸9.1 DIP8封装尺寸

9.2 SOP8 - EP封装尺寸

药理学复习题及答案(整理)

一、名词解释 1、不良反应:指不符合用药目的并对机体不利的反应。 2、副作用:药物在治疗量时产生的,与用药目的无关的作用。 3、毒性反应:主要由于用药剂量过大或用药时间过久,药物在体蓄积过多引起的对机体有明显损害的反应。 4、首关消除:有些口服的药物,首次通过肝脏时即发生灭活,使进入体循环有药量减少,药效降低,这种现象称 为首关消除。 5、反跳现象:指长期用药后突然停药时所出现的症状,使病情加重的现象。 6、药酶诱导剂:能加速药酶的合成或增强药酶活性的药物。 7、药物半衰期:指血浆中的药物浓度下降一半所需的时间。 8、耐受性:有少数人对药物的敏感性低,必须应用较大剂量,才能产生应有的作用。 9、生物利用度:是指给药后药物吸收进入血液循环的速度和程度的量度。 10、后遗效应:停药后血药浓度已降至阈浓度以下时残存的药理效应。 11、治疗指数:指半数致死量与半数有效量的比值,此值愈大,药物的安全性愈大。 12、肝肠循环:有些药物在肝细胞与葡萄糖醛酸等结合后排入胆中,随胆汁到达小肠后被水解,游离药物又被重吸 收进入血液经肝门静脉再次进入肝脏,称为肝肠循环。 13、变态反应:是指机体受药物刺激后发生的异常免疫反应,亦称为过敏反应。 14、安全围:是指最小有效量和最小中毒量之间的剂量围,此围越大,药物的毒性越小,安全性越大。 15、耐药性:是指病原体或肿瘤细胞对药物的敏感性降低的一种状态。 二、填空 1、药理学研究的容;一是研究药物对机体的作用,称为药效动力学。二是研究机体对药物的作用,称为药代动力 学 2、药物的体过程包括_吸收、_分布、代和排泄_四个基本过程。 3、药物慢性毒性的三致反应是:致癌、致畸胎、致突变。 4、药物的不良反应包括:_ 副作用_,_毒性反应_,_变态反应,_继发反应,变态反应,特异质反应等类型。 5、肾上腺素激动α1受体使皮肤、粘膜和脏血管收缩,激动β2受体使骨骼肌血管舒。 6、写出下列药物的拮抗剂:去甲肾上腺素酚妥拉明、异丙肾上腺素心得安、阿托品毛果芸香碱。 7、癫痫小发作首选_乙琥胺_,大发作首选_苯妥英钠,精神运动性发作以_卡马西平_疗效最佳 8、巴比妥类药物随剂量的增大依次可出现镇静__、_催眠_、抗惊厥和_麻醉_等作用。 9、传出神经兴奋时,其末梢释放的递质是乙酰胆碱、去甲肾上腺素。 10、兰中毒致快速型心律失常时首选苯妥英钠,致心动过缓时首选阿托品。 11、冬眠合剂是:氯丙嗪、异丙嗪、哌替啶。 12、可致低血钾的利尿药有高效能利尿药和中效能利尿药两类。 13、阿司匹林的解热阵痛抗炎主要机制是:抑制体环氧酶,阻止前列腺素的合成和释放。 14、可致高血钾的利尿药有螺酯和氨苯喋啶等两种。 15、硝酸甘油抗急性心绞痛的给药途径为:口腔黏膜吸收和皮肤吸收;作用特点:1.扩周围血管,降低心肌耗氧 量、2.舒冠状血管,增加缺血区血流量、3.重新分配冠状动脉血流量,增加心膜血液供应、4.保护心肌细胞,减轻缺血的损伤。 16、可待因可用于_镇咳_其主要不良反应是_成瘾性_。 17、强心苷的正性肌力作用的主要特点为:增加心肌收缩效能、降低衰竭心脏的耗氧量、增加衰竭心脏的输出量。 18、地西泮具有明显的抗焦虑作用和镇静催眠作用以及较强的抗惊厥作用和抗癫痫作用。另外它还有中枢 性肌松作用。 19、普萘洛尔为β受体阻断药,可治疗心律失常、心绞痛和高血压等。 20、 一酰胺抗生素的作用原理是_阻碍细菌细胞壁的合成_是_繁殖期_杀菌剂。

第三章01-降压型直流变换器.

第二节降压型开关电源 第三章直流变换器 * VT "Ln lk? 第二节降压型开关电源 (&5祥Sfi开关电8电》图 4 0 t ----- t onr- J ???0 ;aa) VT—高频晶体开关管, 工作在:导通饱和状态 ?止状态 起开关作用,可用M OS管和IGBT管代 替; 开关管与负载RL侧电路相率联,VT的反复 周期性导通和《止,控制了U1是否加到负 ?R L的时间比例,起到斩波作用? VD—续流二极管?当开关管VT截止时? VD 提 供一个称为“续流辭电流的通路?使电感电流 不致迅变中断,避免电感感应出高压而将晶体 管击穿损坏-此续流通路也是电感能 量放出到负载的通路? L—储能电感.有两个作用,能a转换和滤波 C—滤波电容,減小负《电压的脉动成分和?小 输出阻抗? R L—等效负我电阻,用电设备.

lk? + vr __________ 95 ttS生开关电源电路图 + Eo U—输入直流电压?该电压大小不穂定或者有纹波卩0?输出直流电压,纹波小,稳定? 将?个直流电压Ui转换成另 4 0 t ■----- t onr- I ?13 Q * hl U L * 、丫〔二二+ 图S MSfi开*??鼻匕1?创6图?个宜流电压Uo, KUo

IGBT降压斩波电路设计解读

目录 摘要 (1) 1前言 (1) 2方案确定 (2) 3主电路设计 (2) 3.1 主电路方案 (2) 3.2 工作原理 (3) 3.3参数分析 (4) 4控制电路设计 (5) 4.1 控制电路方案选择 (5) 4.2 工作原理 (6) 4.3 控制芯片介绍 (7) 5驱动电路设计 (9) 5.1 驱动电路方案选择 (9) 5.2工作原理 (10) 6保护电路设计 (11) 6.1 过压保护电路 (11) 6.1.1主电路器件保护 (11) 6.1.2负载过压保护 (12) 6.2 过流保护电路 (13) 7系统仿真及结论 (14) 7.1 仿真软件的介绍 (14) 7.2仿真电路及其仿真结果 (14) 心得体会 (16) 参考文献 (17) 致谢 (18)

IGBT降压斩波电路设计 摘要:直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流电变流电路和间接直流电变流电路。直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流-直流变流电路或直-交-直电路。直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路。Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。 关键字:IGBT 直流斩波降压斩波 1前言 随着电力电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多。伴随着人们对开关电源的进一步升级,低电压,大电流和高效率的开关电源成为研究趋势。 开关电源分为AC/DC和DC/DC,其中DC/DC变换已实现模块化,其设计技术和生产工艺已相对成熟和标准化。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。 IGBT降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

(整理)高血压用药过程中30个问题

高血压用药过程中30个问题 高血压患者用药时,往往担心副作用,不知道如何克服;或者觉得降压效果不佳,却又不知如何办;或者不明白医生为何给自己换药,担心药物使用错误等……请看专家如何解释您遇到的这些问题—— 指导专家:中山大学附属第一医院心内科教授陈国伟复旦大学附属中山医院心内科教授、心导管室主任葛均波 第三军医大学大坪医院心内科教授刘光耀/副教授曾春雨 第9期“专家评药”专栏,曾请专家谈选用6大类降压药的25个问题。本期将患者在用药过程中经常遇到的30个问题,请专家进行讲评。 钙拮抗剂 常用的钙拮抗剂有两类。 二氢吡啶类:硝苯地平缓释片(伲福达)、硝苯地平控释片(拜新同)、非洛地平(波依定)、氨氯地平(络活喜、安内真)。 非二氢吡啶类:维拉帕米(异搏定)、地尔硫卓(恬尔心、合贝爽)。 1.钙拮抗剂有“增加心脏病变的危险”吗? 对于钙拮抗剂“有增加心脏病变的危险”一说,主要指心痛定。研究发现,心痛定可能增加血压波动,加快心率,增加靶器官损害。因此,若需长期服用心痛定应注意监测,必要时换药。 2.钙拮抗剂对肝肾功能有影响吗?尼莫地平会引起“肝炎”吗?应该怎样预防? 由于不少钙拮抗剂在肝代谢,经肾排出,肝肾功能不全患者服用剂量不宜过大。尼莫地平主要作用于脑血管平滑肌,未见引起“肝炎”的报道。 3.波依定和络活喜、心痛定相比,有何不同?哪种更好?如何选择? 美国食品药品监督管理局(FDA)对药品的谷/峰比值规定:谷/峰比值超过66%才能满足长期降压要求。波依定为30%~50%,络活喜70%,而心痛定低于30%。显然,波依定和心痛定不适宜用作长期降压治疗。 4.服用氨氯地平,时间有无讲究?饭前服还是饭后服? 氨氯地平口服吸收快,每天1次,每次5毫克,餐前餐后均可。个别人服药后出现头昏、面红,说明吸收太快,可在餐后服用。

直流变换器的设计(降压)

直流变换器的设计(降压) 一、设计要求: (1) 二、题目分析: (1) 三、总体方案: (2) 四、原理图设计: (2) 五、各部分定性说明以及定量计算: (5) 六、在设计过程中遇到的问题及排除措施: (6) 七、设计心得体会: (6)

直流变换器的设计(降压) BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用BUCK作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与双极晶体管的复合器件。它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。所以用BUCK作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。 BUCK降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。 一、设计要求: 技术参数:输入直流电压Vin=36V 输出电压Vo=12V 输出电流Io=3A 最大输出纹波电压50mV 工作频率f=100kHz 二、题目分析: 电力电子器件在实际应用中,一般是由控制电路,驱动电路和以电力电子器件为核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。 课程设计步骤分析(顺序): 1.设计主电路,主电路为:采用BUCK变换器,主功率管用MOSFET; 2.选择主电路所有图列元件,并给出清单; 3.设计MOSFET驱动电路及控制电路; 4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流以及输出电压波形; 5.编制设计说明书、设计小结。

直流降压斩波电路的设计

直流降压斩波电路的设计 摘要: 本实验设计的是Buck降压斩波电路,采用全控型器件IGBT。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路。 关键词:降压斩波,主电路、控制电路、驱动及保护电路。 引言:直流传动是斩波电路应用的传统领域,而开关电源则是斩波电路应用的新领域,是电力电子领域的一大热点。DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。直流变换电路的用途非常广泛,包括直流电动机传动、开关电源、单相功率因数校正,以及用于其他领域的交直流电源。斩波器的工作方式有:脉宽调制方式,频率调制方式和混合型。脉宽调制方式较为通用。当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。美国VICOR公司设计制造得多种ECI 软开关DC/DC变换器,最大输出功率有300W、600W、800W等,相应得功率密度为(6.2、10、17)W/cm3,效率为(80—90)%。日本NemicLambda公司最新推出得一种采用软开关技术得高频开关电源模块RM系列,其开关频率为200—300KHz,功率密度已达 27W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),使整个电路效率提高到90%。 1设计目的 直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流—直流变换器(DC/DC Converter)。直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流—交流—直流的情况,其中IGBT 降压斩波电路就是直流斩波中最基本的一种电路,是用IGBT作为全控型器件的降压斩波电路,用于直流到直流的降压变换。IGBT是MOSFET与GTR的复合器件。它既有MOSFET易驱动的特点,输入阻抗高,又具有功率晶体管电压、电流容量大等优点。

降压式开关电源

开关电源主电路 第1节开关电源概述 一、开关电源的构成 开关电源采用功率半导体器件(GTR MOSFETIGBT等)作为调整管,通过控制电路控制调整管的导通时间,使输出电压保持稳定。 开关电源的电路构成如图4-1所示。 AC输入DC输出 图4-1开关电源的电路构成 (一)一次整流/滤波电路 将交流输入电压(通常是市电电网的交流电压220V或380V)进行整流滤波,转化成为直流电压(300V或500V),然后将直流电压供给DC/AC变换器。相比与线性直流稳压电源,开关电源在这一环节可以省去工频变压器,消除了工频变压器带来的损耗。(二)D C/AC变换器 DC/AC变换器的主要作用是将一次整流/滤波电路提供的直流电压变换成高频交流电压(一般频率可达到几十KHZ到几百KHZ甚至更高)。 (三)二次整流/滤波电路 将DC/AC变换器变换输出的高频交流电压进行整流滤波,转化成平滑的直流输出电压。 (四)反馈网络

反馈网络包括基准电压、采样电路和比较电路。采样电路把输出电压的一部分或者全部采样回来,采样到的电压和基准电压送入比较电路进行比较,比较的 结果送给控制电路。 (五)控制电路 控制电路根据反馈网络的结果输出占空比可调的控制脉冲去控制调整管的通断时间,这是所谓的“时间控制法”。 (六)辅助电路 开关电源中常见的其它电路主要有软启动电路、输出过压保护电路、输出过流保护电路、驱动电路等等。 二、开关电源的分类 开关电源的分类方式有很多,可以按激励方式、调制方式、调整管类型、输入电压/输出电压大小、调整管的连接方式和储能电感的连接方式等分类方式进行分类。 (一)按激励方式划分 开关电源按激励方式划分可分为自激式开关电源和它激式开关电源。在自激式开关电源中功率开关管既作为调整管,又兼作控制脉冲信号产生的振荡管。在它激式开关电源中则专门设置有产生控制脉冲信号的控制电路。 (二)按调制方式划分 开关电源按调制方式划分可分为脉宽调制型开关电源、脉频调制型开关电源 和混合调制型开关电源。脉宽调制(PWM指的是控制脉冲周期不变,导通时间改变,进而改变占空比的调制方式。脉频调制(PFM指的是控制脉冲导通时间不变,周期(频率)改变,进而改变占空比的调制方式。混合调制指的是控制脉冲导通时间和周期都改变,进而改变占空比的调制方式。 (三)按调整管的类型划分 开关电源根据调整管的类型不同可分为晶体管(GTR开关电源、场效应管 (MOSFET开关电源和绝缘栅双极型晶体管(IGBT开关电源。 (四)按输入/输出电压大小划分

2018年613药学综合

第一部分:药理学 一、名词解释 1.etiological treatment 2.后遗效应 3.抗生素后效应 4.效能 二、简答题 1.β受体阻断药的临床应用和注意事项 2.ACEI和ARB药物作用的异同点;ACEI抗高血压和慢性心功能不全的机制 3.抗肿瘤药物的毒性反应 4.β内酰胺类抗生素的作用机制和耐药机制 三、问答题 1.抗高血压药物的分类;降压药一线用药的特点 2.治疗甲亢的药物分类;用药原则? 3.何为身体依赖性,产生的机制 第二部分:药物分析 一、名词解释 1.Assay 2.Standard Curve 3.相对校正因子 4.崩解时限 二、简答题 1.抗生素药物的特点?根据抗生素类的过敏反应性,抗生素如何监控质量? 2.中药的重金属来源;中药中砷盐的检查方法 3.低剂量固体制剂的特点和质量控制 4.疫苗没有冷链储存会对质量如何影响?生物制品分析方法 三、问答题 1.药品质量研究内容 2.色谱方法在药物分析中的作用 第三部分:药剂学 一、名词解释 1.CMC 2.Flocculation 3.DV 4.Effervescent tablet 二、简答题 1.洁室分级和标准 2.增加药物溶解度的方法 3.缓控释制剂分类和缓控释原理 4.片剂的成型因素 三、问答题 1.直肠吸收的影响因素

2.制剂设计的基本原则 3.择时控药的分类,原理 第四部分:药物化学 一、名词解释 https://www.doczj.com/doc/576891448.html,B 2.ACEI 3.SUZUKI reaction 4.hyperlipoproteinemia 二、简答题 1.巴比妥类合成通法、性质;为什么双取代才有效? 2.卡托普利为代表的ACEI类降压药的机制?卡托普利合成,针对其结构缺点进行结构改造 3.为什么质子泵抑制剂用于抑制胃酸分泌的作用强、选择性高 4.抗代谢抗肿瘤药物的设计原理?为什么环磷酰胺其他氮芥类毒性小? 三、问答题 1.普鲁卡因稳定性特点?为什么要进行对羟基甲酸的检查?具体检查原理?合成? 2.抗心绞痛的病因和治病机理?抗心绞痛药分为哪几种,分别的机制?硝酸异山梨酯的合成?从结构看有什么特点? 3.普洛加安和洛伐他汀为什么作为前药?洛伐他汀代谢物的特点?

降压式变换电路(Buck电路)详解

降压式变换电路(Buck电路)详解 一、BUCK 电路基本结构 开关导通时等效电路开关关断时等效电路 二、等效的电路模型及基本规律 (1)从电路可以看出,电感L 和电容C 组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。 (2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上输出的直流电压Uo 有:电容上电压宏观上可以看作恒定。电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面 周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。(4)开关S 置于1 位时,电感电流增加,电感储能;而当开关S 置于2 位时,电感电流减小,电感释能。假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:此增量将产生一个平均感应电势:此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。这种

降压斩波电路__课程设计

辽宁工业大学 电力电子技术课程设计(论文)题目:降压直流斩波电路实验装置 院(系):新能源学院 专业班级:电气131班 学号: 学生姓名: 指导教师:(签字) 起止时间:2011-12-26至2011-01-6

课程设计(论文)任务及评语 院(系):新能源学院教研室:电气 目录 第1章绪论 (4)

1.1 降压直流斩波电路的基本概念 (5) 1.2 降压直流斩波电路的发展 (5) 第2章降压直流斩波斩波电路设计 2.1 降压斩波电路工作原理 (7) 2.1.1降压斩波电路(Buck Chopper) (7) 2.1.2 IGBT驱动电路选择 (8) 2.2 整流电路 (8) 2.3 斩波信号产生电路 (9) 2.3.1由分立元件组成的驱动电路 (9) 2.3.2集成驱动电路 (10) (2)电路原理图及工作原理简介 (11) 2.4 最优参数选择 (13) 2.4.1 整流电路部分 (13) 2.4.2 斩波主电路部分 (13) 2.5 生成总的电路图 (15) 2.5.1 总原理图 (15) 2.5.2 此电路的主要功能 (16) 2.6 保护电路 (16) 2.6.1 整流桥电路部分 (16) 2.6.2 驱动电路部分 (17) 第3章课程设计总结 (18) 参考文献 (18)

摘要 直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。 TDC-1型学习机是为了配合高等工科院校及高等专科技术学校的“电力电子”或“半导体变流技术”等课程中的直流斩波电路实验并根据当今电力电子技术的发展方向及应用而设计的新型实验装置。该学习机面板上画有原理图。各测试点均装有测试探头可以钩住的端子。测试电压及波形十分方便。使学生在实验课中安全、方便、直观地观察到各种电压、电流的波形及数据。学生实验可以更加深入了解直流斩波电路的工作原理及其典型的应用电 . 关键词:直流;电力电子;变换电路;

高频开关电源中隔离降压式DC

高频开关电源中隔离降压式DC/DC变换器的制作方法 电力电子技术中,高频开关电源的设计主要分为两部分,一是电路部分的设计,二是磁路部分的设计。相对电路部分的设计而言,磁路部分的设计要复杂得多。磁路部分的设计,不但要求设计者拥有全面的理论知识,而且要有丰富的实践经验。在磁路部分设计完毕后,还必须放到实际电路中验证其性能。由此可见,在高频开关电源的设计中,真正难以把握的是磁路部分的设计。高频开关电源的磁性元件主要包括变压器、电感器。为此,本文将对高频开关电源变压器的设计,特别是正激变换器中变压器的设计,给出详细的分析,并设计出一个用于输入48V(36~72V),输出2.2V、20A的正激变换器的高频开关电源变压器。 2正激变换器中变压器的制作方法 正激变换器是最简单的隔离降压式DC/DC变换器,其输出端的LC滤波器非常适合输出大电流,可以有效抑制输出电压纹波。所以,在所有的隔离DC/DC变换器中,正激变换器成为低电压大电流功率变换器的首选拓扑结构。但是,正激变换器必须进行磁复位,以确保励磁磁通在每一个开关周期开始时处于初始值。正激变换器的复位方式很多,包括第三绕组复位、RCD复位[1,2]、有源箝位复位[3]、LCD无损复位[4,5]以及谐振复位[6]等,其中最常见的磁复位方式是第三绕组复位。本文设计的高频开关电源变压器采用第三绕组复位,拓扑结构如图1所示。 开关电源变压器是高频开关电源的核心元件,其作用有三:磁能转换、电压变换和绝缘隔离。在开关管的作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,输出所需要的电压,将输入功率传递到负载。开关变压器的性能好坏,不仅影响变压器本身的发热和效率,而且还会影响到高频开关电源的技术性能和可靠性。所以在设计和制作时,对磁芯材料的选择,磁芯与线圈的结构,绕 图1 第三绕组复位正激变换器 正激变换器中变压器的制作 制工艺等都要有周密考虑。开关电源变压器工作于高频状态,分布参数的影响不能忽略,这些分布参数有漏感、分布电容和电流在导线中流动的趋肤效应。一般根据高频开关电源电路设计的要求提出漏感和分布电容限定值,在变压器的线圈结构设计中实现,而趋肤效应影响则作为选择导线规格的条件之一。 2.1变压器设计的基本原则 在给定的设计条件下磁感应强度B和电流密度J是进行变压器设计时必须计算的参数。当电路主拓扑结构、工作频率、磁芯尺寸给出后,变压器的功率P与B和J的乘积成正比,即P∝B·J。 当变压器尺寸一定时,B和J选得高一些,则某一给定的磁芯可以输出更大的功率;反之,为了得到某一给定的输出功率,B和J选得高一些,变压器的尺寸就可以小一些,因而可减小体积,减轻重量。但是,B和J的提高受到电性能各项技术要求的制约。例如,若B过大,激磁电流过大,造成波形畸变严重,会影响电路安全工作并导致输出纹波增加。若J很大,铜损增大,温升将会超过规定值。因此,在确定磁感应强度和电流密度时,应把对电性能要求和经济设计结合起来考虑。 2.2各绕组匝数的计算方法 正激变换器中的变压器的磁芯是单向激磁,要求磁芯有大的脉冲磁感应增量。变压器初级工作时,次级也同时工作。 1)计算次级绕组峰值电流IP2 变压器次级绕组的峰值电流IP2等于高频开关电源的直流输出电流Io,即

盐酸普萘洛尔综述

盐酸普萘洛尔综述 摘要:盐酸普萘洛尔是一种广泛使用的非选择性?肾上腺素受体阻滞剂。在本文中将介绍其药理作用,适应症以及临床表现,国内外使用现状,相关合成线路,生产厂家等。 关键词:盐酸普萘洛尔,药理作用,合成线路,生产厂家 1)盐酸普萘洛尔的理化性质及参数 分子量:295.81 化学名:1-异丙基-3-(1-萘氧基)-2-丙醇盐酸盐 英文名:Propranolol 商品名:心得安 理化性质:白色或乳白色结晶粉末,无臭,味微甜后苦。熔点96℃,盐酸盐熔点163-164℃.干燥失重<0.5%。在有机溶剂里的溶解度有较大差异。甲醇中的溶解度最高。水溶液PH5.0-6.0,遇光着色。 2)药理毒理 1.普萘洛尔为非选择性竞争抑制肾上腺素β受体阻滞剂。阻断心脏上的β1、β2受体,拮抗交感神经兴奋和儿茶酚胺作用,降低心脏的收缩力与收缩速度,同时抑制血管平滑肌收缩,降低心肌耗氧量,使缺血心肌的氧供需关系在低水平上恢复平衡,可用于治疗心绞痛。 2.抑制心脏起搏点电位的肾上腺素能兴奋,用于治疗心律失常。盐酸普萘洛尔片亦可通过中枢、肾上腺素能神经元阻滞,抑制肾素释放以及心排出量降低等作用,用于治疗高血压。 3.竞争性拮抗异丙肾上腺素和去甲肾上腺素的作用,阻断β2受体,降低血浆肾素活性。可致支气管痉挛。抑制胰岛素分泌,使血糖升高,掩盖低血糖症状,延迟低血糖的恢复。

4.有明显的抗血小板聚集作用,这主要与药物的膜稳定作用及抑制血小板膜Ca+转运有关。致癌、致突变和生殖毒性在18个月内,大鼠或小鼠每日给药150mg/kg,为期18个月,无明显毒性反应,无与药物相关的致癌作用。生殖实验未见与普萘洛尔作用有关的生殖能力损伤。当给与动物10倍于人用剂量时,显示盐酸普萘洛尔片有胚胎毒性。【1】 3)药代动力学 该品口服后胃肠道吸收较完全,广泛地在肝内代谢,生物利用度约30%。药后1-1.5小时达血药浓度峰值,消除半衰期为2-3小时,血浆蛋白结合率90-95%。【2】个体血药浓度存在明显差异,表观分布容积3.9±6.0L/kg。经肾脏排泄,主要为代谢产物,小部分(<1%)为母药。不能经透析排出。 4)适应症 1.作为二级预防,降低心肌梗死死亡率。 2.高血压(单独或与与其它抗高血压药合用)。 3.劳力型心绞痛。 4.控制室上性快速心律失常、室性心律失常,特别是与儿茶酚胺有关或洋地黄引起心律失常。可用于洋地黄疗效不佳的房扑、房颤心室率的控制,也可用于顽固性期前收缩,改善患者的症状。 5.减低肥厚型心肌病流出道压差,减轻心绞痛、心悸与昏厥等症状。 6.配合α受体阻滞剂用于嗜铬细胞瘤病人控制心动过速。 7.用于控制甲状腺机能亢进症的心率过快,也可用于治疗甲状腺危象。【3】 5)药物的相互作用 1.与抗高血压药物相互作用:盐酸普萘洛尔片与利血平合用,可导致体位性低血压、心动过缓、头晕、晕厥。与单胺氧化酶抑制剂合用,可致极度低血压。 2.与洋地黄合用,可发生房室传导阻滞而使心率减慢,需严密观察。 3.与钙拮抗剂合用,特别是静脉注射维拉帕米,要十分警惕盐酸普萘洛尔片对心肌和传导系统的抑制。 4.与肾上腺素、苯福林或拟交感胺类合用,可引起显著高血压、心率过慢,也可出现房室传导阻滞。 5.与异丙肾上腺素或黄嘌呤合用,可使后者疗效减弱。 6.与氟哌啶醇合用,可导致低血压及心脏停博。 7.与氢氧化铝凝胶合用可降低普萘洛尔的肠吸收。 8.酒精可减缓盐酸普萘洛尔片吸收速率。 9.与苯妥英、苯巴比妥和利福平合用可加速盐酸普萘洛尔片清

(完整word版)湖南工程学院2014直流降压斩波电路课程设计..

湖南工程学院应用技术学院课程设计 课程名称电力电子技术 课题名称DC-DC变换电路分析 专业电气工程 班级 学号 姓名 指导教师李祥来 2014 年月日

湖南工程学院 课程设计任务书 课程名称:电力电子技术 题目:DC-DC变换电路分析 专业班级:电气1184 学生姓名: 学号: 指导老师: 审批: 任务书下达日期2014年月日 设计完成日期2014年月日

前言 直流-直流变流电路(DC-DC Converter)的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路,直接直流变流电路也称斩波电路(DC Chopper),它的功能是将直流电变为另一固定电压或者可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此,也称为带隔离的直流-直流变流电路或直-交-直电路。习惯上,DC-DC变换器包括以上两种情况,且甚至更多地指后一种情况。 直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。 降压斩波电路(Buck Chopper)的设计与分析是接下来课程设计的主要任务。。

目录 一.降压斩波电路 (7) 1.1 降压斩波原理: (7) 1.2 工作原理 (8) 1.3 IGBT结构及原理 (8) 二.直流斩波电路的建模与仿真 (11) 2.1IGBT驱动电路的设计.................................... 错误!未定义书签。 2.2电路各元件的参数设定................................ 错误!未定义书签。 2.3元件型号选择 ............................................... 错误!未定义书签。 2.4仿真软件介绍 ............................................... 错误!未定义书签。 2.5仿真电路及其仿真结果................................ 错误!未定义书签。 2.6仿真结果分析 ............................................... 错误!未定义书签。三.课设体会与总结. (19) 四.附录(完整电路图) (19) 五.参考文献 (19) 六.课程设计成绩表 (19)

常用acei类降压药的药理作用

ACEI类降压药的种类 1、卡托普利,巯甲丙脯酸,开博通,刻甫定, 性状:白色或类白色结晶性粉末;有类似蒜的特臭,味咸。在甲醇、乙醇或氯仿中易溶,在水中溶解。熔点104-110℃。 药理及应用:为血管紧张素转化酶(ACE)抑制剂,对多种类型血压高均有明显降压作用,并能改善充血性心力衰竭患者的心脏功能。对不同肾素分型血压高患者的降压作用以高肾素和正常肾素两型最为显著;对低肾素型在加用利尿剂后降压作用亦明显。其降压机制为抑制血管紧张素转化酶活性、降低血管紧张素Ⅱ水平、舒张小动脉等。口服起效迅速,经1小时达最高血浓度,t1/2约4小时,作用维持6~8小时。增加剂量可延长作用时间,但不增加降压效应。临床适用于治疗各种类型血压高,特别是常规疗法无效的严重血压高。由于本品通过降低血浆血管紧张素Ⅱ和醛固酮水平而使心脏前、后负荷减轻,故可用于顽固性慢性心力衰竭,对洋地黄、利尿剂和血管扩张剂无效的心力衰竭患者出有效。 用法:口服:1次25~50mg,1日75~150mg。开始时每次25mg,1日3次(饭前服用);渐增至每次50mg,1日3次。每日最大剂量为450mg。儿童,开始每日1mg/kg,最大6mg/kg,分3次服。注意:(1)常见有皮疹、瘙痒、味觉障碍。个别有蛋白尿、粒细胞缺乏症、中性白细胞减少,但减量或停药后可消失或避免。(2)过敏体质者习用。肾功能不全患者慎用。制剂:片剂:每片12.5mg;25mg;50mg;100mg。 2、依那普利恩纳普利,苯丁酯脯酸,苯酯丙脯酸,益压利,悦宁定,为不含巯基的强效血管紧张素转换酶抑制剂,它在体内水解为依普利拉(苯丁羧脯酸,enalaprilate)而发挥作用,比卡托普利强10倍,且更持久。其降压作用慢而持久。其血流动力学作用与卡托普利相似,能降低总外周阻力和肾血管阻力,能增加肾血流量。口服后吸收迅速,0.5~2小时后血药浓度达峰值。在体内可被水解,但水解产物仍具药理活性。可用于血压高及充血性心力衰竭的治疗。口服10mg,日服1次,必要时也可静注以加速起效。可根据病人情况增加至日剂量40mg。片剂为5mg;10mg 及20mg。注意:与利尿剂合用可引起首剂低血压反应。副作用较少,偶可引起低血压、氮质血症和血钾增高。

XL4015降压型直流电源变换器芯片(大功率型)

n LCD Monitor and LCD TV n Portable instrument power supply n Telecom / Networking Equipment component count. Figure1. Package Type of XL4015

Pin Configurations Figure2. Pin Configuration of XL4015 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into XL4015. 2 FB Feedback Pin (FB). Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 1.25V . 3 SW Power Switch Output Pin (SW). SW is the switch node that supplies power to the output. 4 VC Internal V oltage Regulator Bypass Capacity. In typical system application, The VC pin connect a 1uf capacity to VIN. 5 VIN Supply V oltage Input Pin. XL4015 operates from a 8V to 36V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.

降压斩波电路课程设计

电力电子技术课程设计 目录 一、引言 (2) 二、设计要求与方案 (2) 2.1设计要求.................................................. ..2 2.2方案确定.................................................. .3 三、主电路设计....................................... .3 3.1主电路方案................................................ ..3 3.2工作原理.................................................. ..4 3.3参数分析.................................................. ..5 四、控制电路设计..................................... .5 4.1控制电路方案选择.......................................... ..5 4.2工作原理.................................................. ..6 4.3控制芯片介绍............................................. ..7 五、驱动电路设计..................................... .9 5.1驱动电路方案选择.......................................... (9) 5.2工作原理..................................................... 10. 六、保护电路设计........................................ .11 6.1过压保护电路................................................ ..11 6.2过流保护电路................................................. ..12 七、系统仿真及结论....................................... .13 八、结论.......................................... .16 九、参考文献........................................... .16

常用开关电源拓扑结构

开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源https://www.doczj.com/doc/576891448.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输

卡托普利生产工艺综述

卡托普利的生产工艺研究 【摘要】卡托普利主要用于治疗各种原发性高血压,具有起效迅速、降压平稳、远期疗效突出等优点,研究最佳的生产工艺合成路线,以原料易得、廉价、条件易控制、产物无污染等进行选择,以2-甲基丙烯酸为原料进行生产制备,该法具有原料廉价易得、反应收率较高及2S和2R差向异构体成盐分离效果良好等。 【关键词】卡托普利;工艺过程;合成路线 卡托普利(Captopril)又名疏甲丙脯酸、甲疏丙脯酸、开博通等。是一种血管紧张素转化酶抑制剂(ACE inhibitor或ACEI),被应用于治疗高血压和某些类型的充血性心力衰竭。作为第一种ACEI类药物,由于其新的作用机制和革命性的开发过程,卡托普利被认为是一个药物治疗上的突破。卡托普利最早由百时美施贵宝公司(Bristol-Myers Squibb)生产,商品名是开博通(Capoten)。其结构式如下: 化学名称:1-(3-巯基-2-D-甲基-1-氧代丙基)-脯氨酸,又名巯甲丙脯酸。CAS号:62571-86-2 [ 1-(3-mercapto-2-D-methyl-1-oxopropyl-L-proline] ,分子式为:C9H15NO3S 分子量:217.286 熔点:103-108°C 比旋光度:-129.5° (c=1,乙醇) 卡托普利是最早通过基于结构的药物设计(structure-based drug design)这一革命性理念而开发的药物之一。在20世纪中叶,肾素-血管紧张素-醛固酮

系统的深入研究证明其中有数个可能的靶点可用于开发新的高血压治疗方法。最早的两个即是肾素和血管紧张素转化酶(ACE)。卡托普利就是施贵宝实验室所开发出的一种血管紧张素转化酶抑制剂。 Ondetti,Cushman及同事的工作是基于20世纪60年代英国皇家外科学院(Royal College of Surgeons)John Vane等人的成果之上。最早的突破是1967年由Kevin K.F.Ng发现血管紧张素I是在肺循环而不是血浆中转化成血管紧张素II的。而另一方面,Sergio Ferreira发现缓激肽(bradykinin)在通过肺循环后消失。而从血管紧张素I到血管紧张素II的转化与缓激肽的失活被认为是由同一个酶介导的。 20世纪70年代,运用Sergio Ferreira所提供的缓激肽增强因(bradykinin potentiating factor, BPF),Ng 和 Vane发现通过肺循环后从血管紧张素I到血管紧张素II的转化被抑制。BPF之后被发现是美洲洞蛇(Bothrops jararaca)毒液中的一种多肽(替普罗肽),它正是该种转化酶的抑制剂。通过基于构效关系的突变发现,该多肽末端的巯基具有高度抑制血管紧张素转化酶活性的药效。卡托普利就是在明确这种多肽的结构之后开发出来的。[1] 1 卡托普利的合成路线 1.1先形成酰胺碳-氮键,后完成2S与2R构型化合物分离的路线 1.1.1 线路 由施贵宝(Squibb)公司于1977年开发的一条线路,L-脯氨酸与氯甲酸苄酯反应保护胺基,在与异丁烯在浓硫酸催化下加成,形成叔丁酯来保护羧基。然后在Pb/c催化下氢解除去氨基保护基,所得化合物与3一乙酰基硫代一2一甲基丙酸的外消旋混合物反应得到胺基酰化产物。经水解除去羧基保护基后,与二环己基胺成盐,分离得到2s构型的异构体,再经过脱盐、水解除去巯基保护基,得到卡托普利。[2]

相关主题
文本预览
相关文档 最新文档