当前位置:文档之家› 杆塔工频接地电阻测试讲议解析

杆塔工频接地电阻测试讲议解析

杆塔工频接地电阻测试讲议解析
杆塔工频接地电阻测试讲议解析

杆塔工频接地电阻测试

讲议

云南电力研究院

一、 接地电阻测试基本原理

接地电阻是电流I 经接地电极流入大地时接地极电位U 和I的比值,即I

U

R

。如图1所示,零电位区位于无穷远处,因此要直接测量电流注入点到无穷远处的零电位区的电位差U 在工程实际中无法实现。

为解决测量问题,引入了电流极C ,则地中电位分布如图2所示。由于电流极的引入,可把无穷远零电位面移到了电极连线中部,使测量电极与零电位区的电位差成为可能。

从图1、图2两条曲线对比可以看出:由于电流极的引入,使零位面移近了。但在同一注入电流I 下,有电流极存在时的接地电极和零位面之间的电位差要比无电流极在时小。

图1:半球形电极在地中的电位分布

图2:引入电流极后半球形电极在地中的电位分布

二、 接地电阻测试常用方法 1. 0.618法

0.618法测量接线如图3所示。

图3:0.618法测量接线示意图

假设接地极G为半径为a 的半球,则电压表量出GP 间电压,并由此得到的电阻值为:

)1111(2PC

GC GP D D D a R +--=

πρ (1) 但半球形接地极的实际接地电阻为:

a

R πρ

20=

(2) 要使测得的电阻R 符合R 0,则有:

0111=+--

PC

GC GP D D D (3) 令GC GP D D α=,则上式可得:

011

11=---α

α, α=0.618。 即电压极并不选择在50%D GC 的零电位面处,而是右移到61.8%的负电位处,则电压表的读数相应增大,从而补偿了由于零电位移近而带来的固有误差。因此0.618法又称为补偿法。

从上面公式推导可看出,0.618法是有使用条件限制的,即: (1)有完全同质的土壤;

(2)有足够大的间距,以便电极可采取半圆的形式; 2. 电位降法

当接地装置所处的土壤不均匀时,零电位区就会偏离0.618D GC ,此时,可将电压极沿直线方向,在

50%D GC 到80%D GC 范围内以5%D GC 的间距测量多个电压值,绘制电压变化曲线,找到零电位区,确定地网的接地电阻值,即电位降法。其试验接线如图4所示:

3. 30度夹角法

30度夹角法测量接线如图5所示

与0.618法推导方法完全相同,但有:

θcos 22

2GC GP GC GP PC D D D D D -+=

最终可得:

2

2

22)1(2)1)(1(cos +-++=

αααααθ 当电压极引线与电流极引线等长(即:1=α)时,0

3096.28≈=θ。 与0.618法相同,30度夹角法也有使用条件限制,即:

图4:电位降法测量接线示意图

图5:30度夹角法测量接线示意图

(1

)有完全同质的土壤;

(2)有足够大的间距,以便电极可采取半圆的形式;

由于云南山区地形复杂,30度夹角不易控制,建议在云南测量杆塔接地电阻时不宜采用该方法。 4. 钳表法

钳表法测量接线如图6所示,

则钳表测量值为:

()n x R R R R R //...////21+=测量

当并联杆塔足够多时,可认为 n R R R //...////21足够小,则x R R ≈测量;

因此,钳表法测量值不但包括了被测杆塔接地电阻,还包括了被测杆塔接地引下线与接地网的接触电阻、架空地线与杆塔的接触电阻、架空地线电阻、相邻杆塔的接地电阻等。要保证钳表法测量精度满足工程测试精度要求,必须满足以下条件限制:

(1)杆塔所在的输电线路具有避雷线,且多基杆塔的避雷线直接接地; (2)测量所在线路区段中直接接地的避雷线上并联的杆塔数量满足表1的规定。

图6:钳表法测量接线示意图

三、影响测量结果的因素

1.放线长度对测试结果的影响

从以上测试原理的介绍中可以看出,无论是0.618法还是30度夹角法,都要求有足够大的间距,以便电极可采取半圆的形式,才能保证测试精度满足工程精度要求。若放线长度过小,会造成测试值严重偏小。按DL/T 887-2004 《杆塔工频接地电阻测量》要求:电流极长度D GC取4L,最小不得小于3L;(L为杆塔接地装置放射形接地极的最大长度,如果被测杆塔无放射形接地极,则L按照不小于杆塔接地极最大几何等效半径选取。)表2:不同长度电流引线对测试结果的影响

表2为某杆塔不同长度电流引线下测量结果对比,该杆塔接地装置射线长度50m;从结果对比可以看出,由于电流测量引线过短,造成杆塔接地电阻测量值严重偏小,偏差达-39.3%。

目前,云南电网系统内采用的杆塔接地电阻测量仪器多为陕西贝特电力技术有限公司生产的M12124通过接地电阻测试仪。该仪器标配引线长度为40m,多数供电局采用标配引线进行杆塔接地电阻测量,引线长度不够是造成杆塔接地电阻测量结果偏小的首要原因。2.土壤不均匀对测量结果的影响

0.618法是基于理想半球形接地网、均匀土壤而得的。实际测量中,测量结果会受到土壤不均匀性的影响,造成不同布线方向测量值不同。土壤不均匀对于变电站、发电厂大型地网的影响较大,因此在进行大型地网接地电阻测试时一般不用0.618法直接测量,而是采用电位降法寻找零位区。对于杆塔接地电阻测量,由于杆塔接地装置较小,布线长度较短,土壤不均匀对测试结果影响较小,可直接采用0.618法直接测量。此处介绍土壤不均匀对测量结果的影响旨在使测试人员对测量结果偏差有所了解。

(1)垂直地面方向两层土壤状况下0.618法测量误差

垂直地面方向两层土壤如图7所示:

图7:土壤垂直分层示意图

土壤垂直分层时,0.618法测量所产生的误差决定于:地网尺寸a 与上层土壤厚度h 的比值、上下层土壤电阻率差值。

图8:土壤垂直分层下0.618法测量误差与土壤结构关系

其中:1

21

2ρρρρ+-=

k

从图8可以看出,当地网尺寸与上层土壤厚度可比时,误差较大;当两者相差较大时,误差较小。当下层土壤电阻率大于上层土壤电阻率时,测量结果偏小。当下层土壤电阻率是上层土壤电阻率的40倍以上时,测量结果偏小可达38%;当下层土壤电阻率小于上层土壤电阻率时测量结果偏大,最大偏差可达10%。 (2)水平方向两层土壤状况下0.618法测量误差

土壤水平分层时,0.618法测量所产生的误差决定于:分层界面到地网的距离b 与地网半径的比值及两层土壤电阻率的差值,见图9;及电流线与水平分界面的夹角,见图10。

图9:水平方向两层土壤状况下 0.618法测量误差与土壤结构关系

地网距水平分层界面越近,0.618法测量误差越大;电流线与土壤分界面垂直时误差较大,与分界面平行时误差为零。当电流极处于高电阻率土壤区时,测量结果偏大;当电流极处于低电阻率土壤区时,测量结果偏小。

表3:电位降法测杆塔接地电阻(电流极引线长度200m ) 电压极距离(m )

接地电阻值(Ω)

变化率(%)

160 47.7 —— 140 37.7 -20.96 120 31.8 -15.65 100 26.7 -16.04 80 21.3 -20.22 60

13.45

-36.85

表3为采用电位降法测得的某杆塔接地电阻值,从数据可看出:采用电位降法找到的零电位区,就在0.618D GC 附近。所以,由于杆塔接地装置面积小,布线长度短,土壤不均匀对测试结果影响较小,采用0.618法直接测量能够满足测量精度要求。杆塔接地电阻可采用0.618法直接测量而不用考虑土壤不均匀所造成的影响。 3. 布线方向对测试结果的影响 表4:不同布线方向测试结果对比

测试结果 偏差 垂直输电线路方向布线 19.33Ω

6.57%

平行输电线路方向布线

18.06Ω

图10:0.618法测量相对误差与布线方向关系 (地网中心位于水平方向土壤分界面)

表4为某杆塔不同布线方向所测得的接地电阻值,从数据对比可以看出,不同布线方向对测量结果影响小于10%,能够满足工程测量精度要求,一般情况下,测量杆塔接地电阻时,可不用考虑布线方向对测量结果的影响。

在个别情况下,如果地中有部分或完全埋地的金属物体(如铁轨、水管或其它工业金属管道等),可能出现不同方向测试值偏差较大的情况。因此,当测试结果与相邻同地质条件杆塔接地电阻值相比,明显偏大或偏小时,应考虑改变电极布置方式,使布线方向与金属垂直,消除金属物体对测量结果的影响。

4.电压极、电流极引线间互感对测量结果的影响

两平行导线间的互感计算模型如图11所示,距离为D的两平行导体,土壤电阻率为ρ,则其中一根导线作为电流线以大地回流时,两导体之间的单位长度互感阻抗为:

)

/

(

10

)

ln

4

(4

2km

D

D

f

j

f

Z eΩ

?

+

=-

?

π

π

其中:ρ

80

=

e

D(m)称为等价镜像距离。

互感、土壤电阻率和导线间距三者间的关系如图12所示。两导线间的互感最大可达0.6Ω/km。

对于变电站、发电厂主接地网测量,由于地网接地电阻值较小(<0.5Ω),布线长度较长(数公里),必须考虑测量引线间的互感影响。但对于杆塔接地电阻测量,由于接地电阻值较大(几欧至几十欧),布线长度较短(100米至200米)其互感影响较小,可不用考虑。

因此,在进行杆塔接地电阻测试时,可将电流引线与电压引线并在一起收放线。一方面图11:两平行导线互感感抗计算模型

图12:两平行导体互感感抗

与土壤电阻率、导体距离关系

可以减少布线工作量,另一方面也在一定程度上减小了由于电流引线与电压引线曲折系数不一致而使电压极偏离0.618D GC所造成的测量误差。

5.钳表法测量误差

由钳表法测量原理所决定,钳表法测量值比接地电阻真实值偏大。其增量来源于两部份:其一:由于并联杆塔基数不够,造成测试回路附加电阻不可忽略。因此,在进行钳表法测量前,要确定测量所在线路区段中直接接地的避雷线上并联杆塔数量是否满足表1的要求。若不能满足表1要求,则不能用钳表法进行测量。

其二:测量值包括了杆塔接地引下线与接地装置的接触电阻、架空地线与杆塔的接触电阻、架空地线电阻、相邻杆塔的接地引下线与接地装置的接触电阻等。须说明的是,这些电阻也是雷电流泄放通道所经过的电阻,该值对杆塔耐雷水平评估更具指导意义,这是钳表法的优点之一;

五、云南电网杆塔接地电阻测量推荐方法及要求

从前面的分析对比,可以看到:在测量杆塔接地装置这类小地网时,0.618法与电位降法测量值基本相同,0.618法可以满足工程测试精度的要求。为减轻现场测试的工作量,可采用0.618法测量杆塔接地电阻。该方法应作为确定接地装置接地电阻是否超标的最终测试方法。30度夹角法的测量原理及限制条件与0.618法一样,但考虑到云南山区地形复杂,杆塔附近难有平坦开阔地带,要确定30度夹角比较困难,建议不采用30度夹角法进行测量;钳表法与0.618法相比,具有工作强度小、效率高、能有效检测接地引下线、避雷线联结好坏的优点,在测试方法正确的前提下,测量值较0.618法偏大,因此钳表法可作为杆塔接地电阻普测的测量方法,若测量值超标,再用0.618法复测。

1.0.618法要求

图13:0.618法测试接线图

0.618法试验接线如图13所示。

(1)试验前应查阅被测杆塔接地装置型号,明确接地装置放射线长度L。电流极引线长度至少3L,鉴于目前110kV及220kV杆塔接地装置射线长度一般为50米,最大不超过60米,建议电流极引线长度为200米;由于互感对杆塔接地电阻影响较小,为方便工作,可将200米电流线与160米电压线并在一起收放线,以减小收放线工作量。

(2)当采用三端子测试接线时,应注意从接地装置到接地电阻测试仪引线端子G的引线应尽可能短,以消除引线电阻带来的测量误差;

(3)测量前应拆除被测杆塔所有接地引下线,把杆塔塔身与接地装置之间的电气连接全部断开;

(4)应注意保持接地电阻测试仪各接线端子、电极和接地装置等电气连接位置的接触良好;

(5)布线方向可根据杆塔所处位置,以便于布线为原则视实际情况确定。但若测试数据与历史数据或相邻同地质条件杆塔接地电阻值比较有较大差异时,应考虑更换布线方向进行复测。

2.钳表法要求

钳表法测接线如图6所示。

(1)测试前应明确被测杆塔所在的输电线路具有与杆塔连接良好的避雷线,且多基杆塔的避雷线直接接地。测试杆塔所在线路区段中直接接地的避雷线上并联的杆塔数满足表1的规定。不能满足表1规定的不能用钳表法测量;

(2)被测杆塔的接地装置应只保留一根接地引下线与杆塔塔身相连,其余接地引下线均应与杆塔塔身断开。对于杆塔各脚接地装置未联在一起的,应用导线将断开的其它接地线与被保留的接地线并联,将杆塔接地装置作为整体进行测试。当测试值明显偏小(小于1 )时,应注意确认其余接地引下线是否与杆塔塔身完全断开,因为当有两根接地引下线与杆塔塔身相连时,钳表法测到的是两接地引下线间的回路电阻,而非接地装置接地电阻;

(3)测量前应使用标配精密环路电阻对钳表进行自检,测量时应注意保持钳口清洁,防止夹入野草、泥土等影响测量精度。测试时应注意使接地线居中,并尽可能垂直于钳口所在平面。

六、云南电网杆塔接地电阻测量作业程序

1.步骤一:作业准备

包括测试设备准备及资料准备。

测试设备准备工作主要包括:检查测试设备是否在检定有效期内;开机检查是否正常;测试线、接地桩、皮尺、工具等准备、使用标配精密环路电阻对钳表进行自检;

(试研院使用的仪表:C.A6415钳形地阻仪,法国C.A公司生产;SATURN GEO接地电阻测试仪,瑞士莱姆公司生产;仅供参考。)

资料准备工作主要包括:确定被测杆塔所在线路避雷线直接接地情况是否满足钳表法测试要求;确认被测杆塔接地装置放射线长度;

2.步骤二:使用钳表测量

若测量结果合格,则进行下一基杆塔测试,若不合格进行步骤三;

3.步骤三:使用0.618法测量

若测试结果合格,则判断是接地引下线与杆塔连接处缺陷,应对接地引下线作除锈处理,并拧紧连结螺栓;处理完毕后再次用钳表进行测试,若合格则进行下一基杆塔测量,若仍不合格,则判断是避雷线与杆塔接触不良,应在适当时候登杆检查。

若测试结果仍不合格,则应更换塔角接地点再次测量,若合格则说明原塔角接地引下线与地网连接不良,应开挖检查并处理。若仍不合格,则确认该基杆塔接地电阻不合格。需采取措施对接地网进行改造

测试过程中应注重相邻同土壤构造杆塔接地电阻值的比较,若发现测试值有明显偏差,应改变布线方向,进行复测。

杆塔接地电阻测量作业流程

避雷线分流对杆塔接地电阻测量的影响

避雷线分流对杆塔接地电阻测量的影响 发表时间:2019-07-16T16:24:17.150Z 来源:《基层建设》2019年第12期作者:张全升陈惠敏韩雪 [导读] 摘要:采用电流-电压三极法测量架空线路杆塔的工频接地电阻时,架空避雷线对注入杆塔地网的测量电流具有分流作用,从而影响接地电阻的测量精度。 河南送变电建设有限公司河南郑州 450007 摘要:采用电流-电压三极法测量架空线路杆塔的工频接地电阻时,架空避雷线对注入杆塔地网的测量电流具有分流作用,从而影响接地电阻的测量精度。建立了架空避雷线对注入杆塔地网的测量电流的分流模型,分析了避雷线分流的程度和影响分流效果的因素及其影响规律。 关键词:杆塔;接地电阻;架空避雷线;分流;相角差 1 前言 目前杆塔工频接地电阻的测量方法主要是电流压三极法和钳表法。由于钳表法在原理上具有很大的局限性,杆塔工频接地电阻的测量宜采用电流-电压三极法。 2 杆塔接地电阻阻抗试验 各个接入地电流以及接地网中分散的电流在空间任一点产生的点位总量就是此点的电位,这就是电场叠加原理。接地网中的主接地网、电缆线路以及架空点设置组成了接地网的拓扑结构。电流经过接地网时,其拓扑系统中的架空地线能够对经过的电流形成分流作用,我们通过节点电流的规律可以得出,在接地线路中同一时间、同一节点的电流流入量和电流流出量的值是相等的。 2.1 使用接地电阻测试仪等仪器 这种测试方案不能直接进行测试。因所有杆塔接地装置都是并联在一起,使用这种注入电流的测试方案,会因接地装置的分流,而导致测试结果偏小,造成很大的数据误差,所以使用注入电流的方案测试,需要将杆塔接地装置与避雷线断开,同时设置辅助电极进行测试。 2.2 使用钳形接地电阻表进行测试 这种方案不需要外接设备电源,不需要断开接地导体,不需要设置辅助电极,测试时只需要用钳表卡在接地导体上,即可测试此杆塔的接地电阻。如果忽略分流部分,直接用测量电流进行接地电阻计算,会使得测量电阻值小于真实接地电阻值;而忽略分流电流与测量电流的相角差,通过用分流系数修正接地电阻测量值,来消除分流影响的做法并不准确,同样会造成较大的测量误差。用钳型接地电阻测试仪测量电力线路杆塔接地电阻方法简单,测量结果可信度高,但只能用于有架空地线的高压线路上,测量时待测杆塔只允许存在一条接地引下线,如各塔脚的地网是不连通的,应将其余各脚的接地引下线拆开后用临时线与测量脚的引下线连通(连通点在钳表之下)。通过对测量结果的分析,可以判断出各塔脚的地网是否连通,接地引下线是否存在接触不良的隐患。 本文在分析避雷线分流原理的基础上,建立架空避雷线对注入杆塔地网的测量电流的分流模型;在此基础上通过对模型的仿真分析,指出避雷线分流大小的主要影响因素及其影响规律。此外,对测量计算接地电阻时是否考虑分流作用以及是否考虑分流电流的相位进行对比分析,指出用分流系数修正接地电阻值而忽略分流电流与测量电流之间的相角差的弊端。 避雷线又称架空地线,架设在杆塔顶部,一根或二根,用于防雷,110-500kV线路一般沿全线架设。在测量时应断开避雷线或地下金属管网的连接,这样才能测量出实际的接地网的接地阻抗。运行中的接地网均与输变线的避雷线,地下金属管网相联,这些均影响测量的实测值,会使接地电阻值变小,不能得到接地网的真实接地电阻值。因此国标DL475-92《接地装置工频特性参数的测量导则》;GB/T17949.1-2000《接地系统的土壤电阻率、接地阻抗和地面电位测量导则》规定在测量接地网接地电阻时,应将其联结断开,但在实际工作中往往无法实现。为了能较准确的测量发电厂、变电站接地网接地电阻的实际值,并能与设计值进行比较,做出安全性评估的结论,应排除避雷线对其测量值的影响。 3 测量杆塔工频接地电阻的方法 3.1 钳表法测量杆塔接地电阻 目前110kV及以下输电线路巡检工作通常采用钳表法测量杆塔工频接地电阻。钳表法由于其具有快速测试、操作简单等优点因此被普遍使用,但是使用钳表测量时必须满足所测线路杆塔具有避雷线,且多基杆塔的避雷线直接接地的要求,且该种测量方法在着精度不高特,而且钳口法测量采用电磁感应原理,易受干扰,测量误差比较大,不能满足高精度测量要求。 其中Rx为被测杆塔的接地电阻,R1,R2...Rn分别为通过避雷线连接的各基杆塔的接地电阻;E为接地装置的对地电压,即接地体与大地零电位参考点之间的电位差;I为通过接地装置泄放人大地的电流。 不过接地引下线并不是不能拆除,而是拆除工作比较繁琐,10m一下防松防盗,同时反复拆卸会对杆塔的主材造成有形磨损,容易造成主材生锈等不利影响,同时指出三极法并非是真正意义的“工频杆塔接地电阻测试”,而钳表法受方法影响,地线的感应电压造成测试的误差不准确的特点。 钳表法虽然使用起来简单方便,工作量小,但对于钳形接地电阻测试仪最理想的应用是用在分布式多点接地系统中。架空输电线路在满足以下条件时可以使用钳表法测量工频接地电阻: (1)杆塔所在输电线路具有避雷线,且多基杆塔的避雷线直接接地。 (2)测量所在线路区段中直接接地的避雷线上并联的杆塔数量满足表规定。 3.2 测量杆塔接地电阻的方法 (1)如果在雷雨天气,输电线路受到雷电的袭击导致线路出现跳闸的现象,在测量时必须要按照DL/T621-1997《交流电气装置的基地电阻测试导则》中对杆塔接地电阻测量的要求故障杆塔的电流辅助射线是人工敷设接地线长的4倍,而电压测量的辅助射线长度是人工敷设接地线长度的2.5倍。只有按照这个要求进行测量,才能为技术部门提供准确的数据,使防雷设施能够更有效,从而真正保证输电线路的正常运行。 (2)如果对正常使用的杆塔的接地电阻进行两年或者是五年的周期检测时,可以按照DL/T741《架空送电线路运行规程》中的规定进行,在检测过程中最好是使用法国生产的C?A6411钳型接地电阻检测仪。如果采用这种仪器进行检测可以不用铺设接地辅助射线,在检测过

输电线路杆塔接地电阻测量方法

输电线路杆塔接地电阻测量方法 文章介绍了输电线路杆塔工频接地电阻的测量方法:三极法和钳表法。分别介绍了这两种方法的工作原理及测量方法,并将测量结果进行比较,比较发现,三极法测量繁琐,工作量大,但测量准确;钳表法测量方法简单,仪器携带方便,但测量结果偏差较大。最后得出结论:将三极法和钳表法配合使用的方法效率最高、测量结果最可靠。 标签:杆塔;接地电阻;测量方法;三极法;钳表法 1 概述 接地电阻就是电流由接地装置流入大地再经大地向远处扩散所遇到的电阻[1]。输电线路杆塔接地电阻的大小,直接关系到线路的耐雷水平,影响输电线路遭受雷击时的安全运行。线路的接地电阻越小,线路耐雷水平越高,线路雷击跳闸率越小[2]。因此,输电线路杆塔工频接地电阻的测量非常重要,准确地测量可以及时对接地电阻较高的输电线路杆塔进行改造,降低线路雷电事故,保证高压输电线路安全稳定运行,防止输电线路雷击跳闸事故的发生,提高供电系统的可靠性[3]。 2 接地电阻测量方法 输电线路杆塔接地电阻测量的方法主要有三种:伏安法、三极法和钳表法。伏安法比较繁琐、工作量大,且受外界干扰极大,已经基本淘汰。目前,常用的方法主要是三极法和钳表法,这两种方法各有优缺点,采用三极法测量接地电阻准确,而且测量方法简单,性能稳定,但测量时需要的人力物力较多,效率低;采用钳表法测量接地电阻比三极法方便、快捷省力,只要用钳表钳住接地线引下线就能测出接地电阻,效率高,但有时会有比较大的测量误差。所以工作人员必须十分熟悉这两种测量方法的工作原理、测量方法及相关要求,结合被测杆塔的实际情况选择适当的测量方法。 2.1 三极法测量接地电阻 三极法是由接地装置、电流极和电压极组成三个电极测量接地电阻的方法[4]。在输电线路杆塔附近分别布置电流极和电压极,用电压表测量接地装置G 与电压极P之间的电位差Ug,电流表测量通过接地装置流入地中的电流Ig,得到了Ug和Ig,就可以求出接地装置的工频接地电阻Rg,即Rg=Ug/Ig,如图1所示。在使用三极法测量时要合理布置电流极和电压极的位置,其布置方式主要有两种:直线法和夹角法。 2.1.1 直线三极法 电压极与电流极测量线在同一水平线上,如图1。电流极C到被测杆塔距离

ZC-8型接地电阻测量仪及其使用方法

一、土壤电阻率检测仪 (本指导书主要介绍ZC-8型接地摇表) 一、定义 土壤电阻率检测仪也称接地摇表,主要用语直接测量各种接地装置的接地电阻值。目前,ZC-8型接地摇表有两种,一种为三个端钮;另一种为四个端钮。 二、结构 ZC-8型接地电阻测量仪主要是由手摇发电机、相敏整流放大器、电位器、电流互感器及检流计等构成,全部密封在铝合金铸造的外壳内。仪表都附带有两根探针,一根是电位探针,另一根是电流探针。 (三端钮的接地摇表)(四端钮的接地摇表) 三、仪表量程 ZC-8型接地摇表有两种量程,一种是0-1-10-100Ω;另一种是0-Ω。 四、正确读数 ZC-8型接地摇表的数字盘上显示为1、2、3…10共10个大格,每个大格中有10个小格。三端钮的接地摇表倍数盘内有1、10、100三种倍数;四端钮的接地摇表倍数盘内有、1、10三种倍数。在规定转速内,仪表指针稳定时指针所

指的数乘以所选择的倍数即是测量结果。如:当指针指在,而选择的倍数为10时,测量出来的电阻值为×10=88Ω (三端钮摇表最大倍率)(四端钮摇表最大倍率) 五、对接地探针的要求 用接地摇表测量接地电阻,关键是探针本身的接地电阻,如果探针本身接地电阻较大,会直接影响仪器的灵敏度,甚至测不出来。一般电流探针本身的接地电阻不应大于250Ω,电位探测针本身的接地电阻不应大于1000Ω,这些数值对大多数种类的土质是容易达到的。如在高土壤电阻率地区进行测量,可将探针周围的土壤用盐水浇湿,探针本身的电阻就会大大降低。探针一般采用直径为,长度为的镀锌铁棒制作而成。 六、仪表好坏检查 1、外观检查。先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P) 短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向;四端钮的接 地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端 钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直

ETCR2000 钳形接地电阻测试仪接地电阻测量方法.

1. 多点接地系统 某些建筑物等),它们通过架空地线(通信电缆的屏蔽层)连接,组成了接地系统。见下图。 R0为所有其它杆塔的接地电阻并联后的等效电阻。 虽然,从严格的接地理论来说,由于有所谓的“互电阻”的存在,R0并不是通常的电工学意义上的并联值(它会比电工学意义上的并联值稍大),但是,由于每一个杆塔的接地半球比起杆塔之间的距离要小得多,而且毕竟接地点数量很大,R0要比R1小得多。因此,可以从工程角度有理由地假设R0=0。这样,我们所测的电阻就应该是R1了。

多次不同环境、不同场合下与传统方法进行对比试验,证明上述假设是完全合理的。 2. 有限点接地系统 这种情况也较普遍。例如有些杆塔是5个杆塔通过架空地线彼此相连;再如 某些建筑物的接地也不是一个独立的接地网,而是几个接地体通过导线彼此连接。在这种情况下,如果将上图中的R0视为0则会对测量结果带来较大误差。出于与上述同样的理由,我们忽略互电阻的影响,将接地电阻的并联后的等效电阻按通常意义上的计算方法计算。这样,对于N 个(N 较小,但大于2)接地体的接地系统,就可以列出N 个方程: R 1 + 1 ++ ...... +2 R 3 R N 1= R 1T =R 2T ++...... +R 1R 3R N 1R N +=R NT ++...... +R 1R 2R (N -1 R 2+ 其中:R1、R2、…….RN 是我们要求得的N 个接地体的接地电阻。R1T 、 R2T 、……RNT 分别是用钳表在各接地支路所测得的电阻。 这是一个有N 个未知数,N 个方程的非线性方程组。它是有确定解的,但是人工解它是十分困难的,当N 较大时甚至是不可能的。 为此,请选购我公司的有限点接地系统解算程序软件,用户即可使用办公电脑或手提电脑进行机解。从原理上来说,除了忽略互电阻以外,这种方法不存在忽略R0所带来的测量误差。但是,用户需要注意的是:您的接地系统中,有几个彼此相连接的接地体,就必须测量出同样个数的测试值供程序解算,不能或多或少。而程序也是输出同样个数的接地电阻值。 3. 单点接地系统 从测试原理来说,ETCR2000系列钳表只能测量回路电阻,对单点接地是测不出来的。但是,用户完全可以利用一根测试线及接地系统附近的接地极,人为地制

冲击接地电阻模型对输电线路耐雷水平的比较研究_刘杰

收稿日期:2014-10-29 作者简介:刘杰(1988—),男,硕士,助理工程师,现从事电力系统过电压防护工作。 冲击接地电阻模型对输电线路耐雷水平的比较研究 刘 杰1,刘 春2,周国伟1,刘 德1,顾用地1 (1.国网浙江省电力公司检修分公司,杭州310018;2.华中科技大学电气与电子工程学院,武汉430074) 摘要:对规程法冲击接地电阻模型、火花效应接地电阻模型以及暂态接地电阻模型等三种 不同的接地模型进行了分析。结合220kV 双回输电线路,在ATP/EMTP 中建立了相应的输电线路耐雷水平模型。在该耐雷模型中,使用无损多波阻抗模拟输电线路杆塔,同时考虑了工频电压对耐雷水平的影响。分别在工频电压初相角为0°、60°、120°、180°、240°以及300°等6种情况下计算了模型的反击和绕击耐雷水平。仿真结果表明:在相同的条件下,反击耐雷水平从高到低依次为火花效应模型、规程法模型、暂态电阻特性模型,而这三种接地模型下的线路绕击耐雷水平一样。随着电源初相角的改变,输电线路耐雷水平也随之发生相应改变。 关键词:冲击接地电阻;输电线路杆塔;耐雷水平;火花放电模型;暂态电阻模型 Study on Impulse Grounding Resistance Model to Lightning Withstand Level of Transmission Line LIU Jie 1,LIU Chun 2,ZHOU Guowei 1,LIU De 1,GU Yongdi 1 (1.Maintenance Company of State Grid Zhejiang Electric Power Company,Hangzhou 310018,China ;2.School of Electric and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China ) Abstract :Impulse grounding resistance has a big impact on transmission line lightning withstand level.Three models of the impulse grounding resistance such as procedure method model,spark discharge model and transient resistance model are https://www.doczj.com/doc/576251443.html,bined 220kV double transmission lines,a model of transmission line lightning withstand level in ATP/EMTP is made,in which lossless multi-wave impedance is used to simulate transmission line tower,and the effect of power voltage is also considered.Respectively,the initial phase of 0°,60°,120°,180°,240°and 300°,etc.,is considered to calculate the lightning withstand levels of counterattack and shielding failure.It is shown that under the same conditions,the counterattack withstand level from high to low in turn,the order is spark discharge model,procedure method model,transient resistance model.The shielding failure lightning level of these three models is almost the same.With the change of the initial phase of power voltage,the withstand level also change accordingly. Keywords:Impulse grounding resistance ;transmission line tower ;lightning withstand level ;spark discharge model ;transient resistance model 引言 架空线路杆塔接地对电力系统的安全稳定运行 至关重要,降低杆塔接地电阻是提高线路耐雷水平,减少线路雷击跳闸率的主要措施[1]。现行的研究中 有对变电站接地网冲击接地电阻的研究[2-6],也有对输电线路杆塔冲击接地电阻的研究[7-13]。输电线路杆塔冲击接地电阻的大小直接影响线路的耐雷水平,而以往的研究中多以固定的冲击接地电阻进行研究,这样势必降低了冲击接地电阻对耐雷水平的影 2015年第6期(总第268期) 2015年12月电瓷避雷器 Insulators and Surge Arresters No6.2015(Ser.№.268) Dec.2015 DOI :10.16188/j.isa.1003-8337.2015.06.023

接地电阻摇表使用方法及标准

接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。 以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。测量屏蔽体电阻时,应松开镀铬铜板,一个E接线柱接接地体,另一个E接线柱接屏蔽。 (2)P柱接随仪表配来的20m纯铜导线,导线另一端接插针。 (3)C柱接随仪表配来的40m纯铜导线,导线的另一端接插针2。 2 接地电阻测试仪设置的技术要求 (1)接地电阻测试仪应放置在离测试点1~3m处,放置应平稳,便于操作。 (2)每个接线头的接线柱都必须接触良好,连接牢固。 (3)两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置;如果用一直线将两插针连接,待测接地体应基本在这一直线上。 (4)不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (5)如果以接地电阻测试仪为圆心,则两支插针与测试仪之间的夹角最小不得小于120°,更不可同方向设置。 (6)两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (7)雨后连续7个晴天后才能进行接地电阻的测试。 (8)待测接地体应先进行除锈等处理,以保证可靠的电气连接。 3 接地电阻测试仪的操作要领

杆塔接地电阻测量

杆塔接地电阻测量

1 适用范围 1.1 本作业指导书适用于10kV-35kV架空送电线路测量杆塔接地电阻标准化作业。 1.2 本作业指导书规定了测量接地电阻所需的人员配置、工器具要求、天气及作业现场的要求、检修作业工序、工艺质量记录卡等内容。 1.3 本作业指导书适用于四川省电力公司所属的各供电企业(公司)。 2 引用文件 2.1 DL/T 887-2004《杆塔工频接地电阻测量》 2.2GBJ 233 《110~500kV架空电力线路施工及验收规范》 2.3 《国家电网公司电力安全工作规程》(电力线路部分)(试行) 2.4 DL/T 5092—1999 《110kV-500kV架空送电线路设计技术规程》 2.5 DL/T 741—2001 《架空送电线路运行规程》 2.7 《电力建设安全工作规程》(架空电力线路部分) 2.9 国电发[2002]659号《输电网安全性评价(试行)》 2.10 国电发[2002]777号《电力安全工器具预防性试验规程》(试行) 2.11 国电发[2003]481号《架空输电线路管理规范》

6.2.1一般性规定 a)采用三极法测量前,应将杆塔塔身与接地极之间的电气连接全部断开。 b)测量前应核对被测杆塔的接地极布置型式和最大射线长度,记录杆塔编号、接地极编号、接地极型式、土壤状况和当地气温。c)布置电流极和电压极时,宜避免将电流极和电压极布置在接地装置的射线方面上。 d)在工业区或居民区,地下可能具有部件或完全埋地的金属物件时,电极应布置在与金属物体垂直的方向上,并且要求最近的测量电极与地下管道之间距离不小于电极之间的距离。 e)电压极和电流极的辅助接地电阻不应超过测量仪表规定的范围。在测量时,测量电极插入土壤深度不低于0.6米,并与土壤接触良好。 f)测量时应注意保持接地电阻测试仪各接线端子、电极和接地装置等电气连接的接触良好。g)测量接线时,应尽量缩短接地电阻测试仪的接地端子与接地装置之间的引线长度。 h)当杆塔是单点接地时,只测试一个电阻值,当杆塔是两点或四点接地时,必须每个接地点都应进行测量,且每个电阻值都应进行记录。 i)所测得的接地电阻值应根据土壤干燥及潮湿情况乘以季节系数后才是最终的接地电阻值。 杆塔防雷接地装置的季节系数为:

用摇表测接地电阻的方法和参数

一般使用的是摇表测量 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一 你搞错了,你所说的这种ZC25-3型表是兆欧表,是不能用来测接地电阻的,只能测某线路或设备间的绝缘电阻或其对地的绝缘电阻,因为绝缘电阻越大越好,所以用兆欧(1000000欧),型号普遍都是为ZC25等 而接地电阻值是越小越好的,所以一般要求测能到0.01欧及以下,这种接地电阻仪型号一般为ZC29开头,上面一般有四个端子:C1、C2、P1、P2(还有一种三个端子,分别为E、P、C),其中C2和P2是连通的(带接地符号),直接接被测物接地极;然后P1端接20米线,拉直后将探针插入地下;C1端接40米线,拉直后要和接地极以及之前插入地下的探针在同一直线上,在这个位置插入第二根探针。

摇表的时候保持摇速120转/分,打好1x几,大转盘的一格就是几,转动大转盘使指针停在中间,大转盘上被箭头对准的数就是电阻值。 比如如打好1x0.1,大转盘上被箭头对准的数是2.2,电阻值就是为0.22欧。 摇表使用及接地电阻测试 收藏此信息打印该信息添加:佚名来源:未知 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。

降低杆塔冲击接地电阻的有效方法

降低杆塔冲击接地电阻的有效方法 江西省电力科学研究院 章叔昌 [摘要] 输电线路的跳闸原因大多由雷击引起,降低输电线路雷击跳闸率的主要措施之一是降低线路杆塔接地装置的冲击接地电阻。本文对杆塔接地装置的基本冲击特性进行了论述,提出了降低杆塔接地装置冲击接地电阻的基本原则。介绍了采用接地模块环形集中接地方式对线路杆塔接地装置进行防雷接地改造的基本方法,总结了采用该方式对一条输电线路杆塔进行接地改造后的效果。 [关键词] 高压输电线路;防雷接地;冲击接地电阻;接地模块 1 概述 高压输电线路的跳闸原因大多由雷击引起,直接影响供电的可靠性。输电线路杆塔接地装置的主要作用是泄放雷电流,当雷电直击输电线路塔顶或避雷线时,雷电流将经过杆塔及其接地装置向大地流散。在此过程中,雷电流在杆塔的电感及其接地装置的接地阻抗(通常称其为接地电阻)上产生的压降将会使塔顶电位升高,当这一电位升高达到一定值时会使线路的绝缘子串击穿,从而可能引起输电线路因雷电过电压造成的反击而跳闸。对于一般高度的杆塔,引起塔顶电位升高的主要因素是线路杆塔的接地电阻。因此,杆塔的接地电阻是影响输电线路反击耐雷水平的重要参数。由于雷电流高频高幅值的特点,使接地装置的冲击接地电阻与工频接地电阻之间存在显著差异。当雷电流通过杆塔及其接地装置向大地散流时,使塔顶电位升高起主要作用的是冲击接地电阻而不是工频接地电阻。因此要降低线路的雷击跳闸率,主要措施之一是降低线路杆塔的冲击接地电阻。 2 杆塔接地装置的基本冲击特性 冲击接地电阻与工频接地电阻之所以存在较大区别,其主要原因之一是由于高幅值的雷电冲击电流流过接地装置时,会引起接地体周围的土壤发生电离(火花效应),土壤电离后的作用相当于增大了接地体的截面积,因此会使冲击接地电阻降低。但是当接地体的截面积足够大时,这种火花效应将不明显。传统的杆塔接地装置主要是放射型接地体,当放射型接地体通过雷电流时,沿接地体长度方向各点上的电位差别很大,因此引起周围土壤电离的长度很有限,而当放射型接地体的长度超过一定值后,对雷电流的泄放所起的作用将非常小;另外,雷电流在通过接地装置向大地流散过程中会发生一系列复杂的过渡过程,在该过程中的每一时刻接地装置所呈现的冲击接地电阻都存在差异,而且呈现的最大冲击接地电阻有可能并不是雷电流到达幅值的时刻。同时由于雷电流的陡度,即di/dt 很大,因此当雷电流经接地装置向大地散流时,在接地装置接地阻抗中感性分量上的压降不容忽视。对于射线式接地装置其本身的电感与其长度成正比,长度越长则其呈现的电感则越大,因此射线式接地装置的冲击系数将随其长度的增加而增大。 有关的研究结果表明,接地装置的冲击特性主要与土壤电阻率、接地装置的几何形状及尺寸、雷电流的波形及幅值密切相关。 3 降低杆塔冲击接地电阻的基本原则 根据波过程理论,接地装置的冲击接地电阻ch R 是雷电波通过接地装置向大地流散时所遇到的 波阻抗,即C L R ch ,因此要降低接地装置的冲击接地电阻,应该设法增加散流路径中的电容和 减小散流路径中的电感。

ZC-8型接地电阻测量仪使用方法

一、接地电阻检测仪 (本指导书主要介绍ZC-8型接地摇表) 一、定义 接地电阻测量仪也称接地摇表,主要用语直接测量各种接地装置的接地电阻值。目前,我局的ZC-8型接地摇表有两种,一种为三个端钮;另一种为四个端钮。 二、结构 ZC-8型接地电阻测量仪主要是由手摇发电机、相敏整流放大器、电位器、电流互感器及检流计等构成,全部密封在铝合金铸造的外壳。仪表都附带有两根探针,一根是电位探针,另一根是电流探针。 (三端钮的接地摇表)(四端钮的接地摇表)三、仪表量程 ZC-8型接地摇表有两种量程,一种是0-1-10-100Ω;另一种是0-10-100-1000Ω。我局现有的接地摇表中,三个端钮的量程为0-10-100-1000Ω;四个端钮的量程为0-1-10-100Ω。 四、正确读数

ZC-8型接地摇表的数字盘上显示为1、2、3…10共10个大格,每个大格中有10个小格。三端钮的接地摇表倍数盘有1、10、100三种倍数;四端钮的接地摇表倍数盘有0.1、1、10三种倍数。在规定转速,仪表指针稳定时指针所指的数乘以所选择的倍数即是测量结果。如:当指针指在8.8,而选择的倍数为10时,测量出来的电阻值为8.8×10=88Ω (三端钮摇表最大倍率)(四端钮摇表最大倍率) 五、对接地探针的要求 用接地摇表测量接地电阻,关键是探针本身的接地电阻,如果探针本身接地电阻较大,会直接影响仪器的灵敏度,甚至测不出来。一般电流探针本身的接地电阻不应大于250Ω,电位探测针本身的接地电阻不应大于1000Ω,这些数值对大多数种类的土质是容易达到的。如在高土壤电阻率地区进行测量,可将探针周围的土壤用盐水浇湿,探针本身的电阻就会大大降低。探针一般采用直径为0.5cm,长度为0.5m的镀锌铁棒制作而成。 六、仪表好坏检查 1、外观检查。先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)

杆塔接地电阻测试作业指导书

杆塔接地电阻测试作业 指导书 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

前言 为提高云南电网公司供电企业输变电设备的运行、检修、试验水平,规范操作方法,确保人身和设备安全,由云南电网公司生产技术部组织,编写了目前我公司输电线路杆塔接地装置接地电阻测试作业指导书。编写中遵循了我国标准化、规范化和国际通用的贯标模式的要求。该指导书纳入公司生产技术管理标准体系。 本指导书由云南电网公司生产技术部提出。 本指导书由云南电网公司生产技术部归口。 本指导书由云南省电力试验研究院(集团)有限公司负责编写。 本指导书主编人:陈宇民 本指导书主要起草人:陈宇民 本指导书主要审核人: 本指导书审定人: 本指导书批准人: 本指导书由云南电网公司生产技术部负责解释。

目次 1目的.....................................................................................................................1 2适用范围 (1) 3引用标准 (1) 4支持性文件 (1) 5技术术语 (1) 6安全措施 (1) 7作业准备 (2) 8作业周期 (2) 9工期定额 (2) 10设备主要技术参数 (2) 11作业流程 (2) 12作业项目、工艺要求及质量标准 (2) 13作业中可能出现的主要异常现象及对策 (9) 14作业后的验收与交接 (9)

输电线路杆塔接地电阻测试作业指导书 1目的 为规范云南电网公司的供电企业输电线路杆塔的接地电阻测试作业方法,保证安全,提高试验质量。 2适用范围 适用于云南电网公司供电企业输电线路杆塔的接地电阻试验作业。 3引用标准 下列标准所包含的条文,通过引用而构成本作业指导书的条文。本书出版时,所示版本均为有效。所有标准都会被修订,使用本书的各方,应探讨使用下列标准最新版本的可能性。 GB/T 《接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测量》 DL/T 887-2004《杆塔工频接地电阻测量》 DL/T 475-2006《接地装置工频特性参数的测量导则》 DL/T 621-1997 《交流电气装置的接地》 Q/CSG 10007-2004《电力设备预防性试验规程》 4支持性文件 高压电气设备试验方法 《云南电力技术监督系统》(待批) 5技术术语 接地体:埋入地中并直接与大地接触的金属导体,称为接地体。接地体分为水平接地体和垂直接地体。 接地引下线:电力设备应接地的部位与地下接地体或中性线之间的金属导体,称为接地引下线。 接地装置:接地体和接地引下线的总和,称为接地装置。 接地电阻:接地体或自然接地体的对地电阻和接地线电阻的总和,称为接地装置的接地电阻。接地电阻的数值等于接地装置对地电压与通过接地体流入地中电流的比值。 工频接地电阻:按通过接地体流入地中工频交流电流求得的电阻,称为工频接地电阻。 6安全措施

杆塔接地电阻测试作业指导书

前言 为提高电网公司供电企业输变电设备的运行、检修、试验水平,规操作方法,确保人身和设备安全,由电网公司生产技术部组织,编写了目前我公司输电线路杆塔接地装置接地电阻测试作业指导书。编写中遵循了我国标准化、规化和国际通用的贯标模式的要求。该指导书纳入公司生产技术管理标准体系。 本指导书由电网公司生产技术部提出。 本指导书由电网公司生产技术部归口。 本指导书由省电力试验研究院(集团)负责编写。 本指导书主编人:宇民 本指导书主要起草人:宇民 本指导书主要审核人: 本指导书审定人: 本指导书批准人: 本指导书由电网公司生产技术部负责解释。

目次 1 目的 (1) 2 适用围 (1) 3 引用标准 (1) 4 支持性文件 (1) 5 技术术语 (1) 6 安全措施 (1) 7 作业准备 (2) 8 作业周期 (2) 9 工期定额 (2) 10 设备主要技术参数 (2) 11 作业流程 (2) 12 作业项目、工艺要求及质量标准 (2) 13 作业中可能出现的主要异常现象及对策 (9) 14 作业后的验收与交接 (9)

输电线路杆塔接地电阻测试作业指导书 1目的 为规电网公司的供电企业输电线路杆塔的接地电阻测试作业方法,保证安全,提高试验质量。 2适用围 适用于电网公司供电企业输电线路杆塔的接地电阻试验作业。 3引用标准 下列标准所包含的条文,通过引用而构成本作业指导书的条文。本书出版时,所示版本均为有效。所有标准都会被修订,使用本书的各方,应探讨使用下列标准最新版本的可能性。 GB/T 17949.1-2000《接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测量》DL/T 887-2004《杆塔工频接地电阻测量》 DL/T 475-2006《接地装置工频特性参数的测量导则》 DL/T 621-1997 《交流电气装置的接地》 Q/CSG 10007-2004《电力设备预防性试验规程》 4支持性文件 高压电气设备试验方法 《电力技术监督系统》(待批) 5技术术语 接地体:埋入地中并直接与接触的金属导体,称为接地体。接地体分为水平接地体和垂直接地体。 接地引下线:电力设备应接地的部位与地下接地体或中性线之间的金属导体,称为接地引下线。 接地装置:接地体和接地引下线的总和,称为接地装置。 接地电阻:接地体或自然接地体的对地电阻和接地线电阻的总和,称为接地装置的接地电阻。接地电阻的数值等于接地装置对地电压与通过接地体流入地中电流的比值。 工频接地电阻:按通过接地体流入地中工频交流电流求得的电阻,称为工频接地电阻。 6安全措施 。 6.1试验应在干燥季节进行。进入工作现场的工作人员必须戴安全帽。

ZC8型接地电阻测量仪及其使用方法

一、土壤电阻率检测仪 (本指导书主要介绍ZC-8型接地摇表) 一、定义 土壤电阻率检测仪也称接地摇表,主要用语直接测量各种接地装置的接地电阻值。目前,ZC-8型接地摇表有两种,一种为三个端钮;另一种为四个端钮。二、结构 ZC-8型接地电阻测量仪主要就是由手摇发电机、相敏整流放大器、电位器、电流互感器及检流计等构成,全部密封在铝合金铸造的外壳内。仪表都附带有两根探针,一根就是电位探针,另一根就是电流探针。 (三端钮的接地摇表) (四端钮的接地摇表) 三、仪表量程 ZC-8型接地摇表有两种量程,一种就是0-1-10-100Ω;另一种就是0-10-100-1000Ω。 四、正确读数 ZC-8型接地摇表的数字盘上显示为1、2、3…10共10个大格,每个大格中有10个小格。三端钮的接地摇表倍数盘内有1、10、100三种倍数;四端钮的接地摇表倍数盘内有0、1、1、10三种倍数。在规定转速内,仪表指针稳定时指针

所指的数乘以所选择的倍数即就是测量结果。如:当指针指在8、8,而选择的倍数为10时,测量出来的电阻值为8、8×10=88Ω (三端钮摇表最大倍率) (四端钮摇表最大倍率) 五、对接地探针的要求 用接地摇表测量接地电阻,关键就是探针本身的接地电阻,如果探针本身接地电阻较大,会直接影响仪器的灵敏度,甚至测不出来。一般电流探针本身的接地电阻不应大于250Ω,电位探测针本身的接地电阻不应大于1000Ω,这些数值对大多数种类的土质就是容易达到的。如在高土壤电阻率地区进行测量,可将探针周围的土壤用盐水浇湿,探针本身的电阻就会大大降低。探针一般采用直径为 0、5cm,长度为0、5m的镀锌铁棒制作而成。 六、仪表好坏检查 1、外观检查。先检查仪表就是否有试验合格标志,接着检查外观就是否完好;然后瞧指针就是否居中;最后轻摇摇把,瞧就是否能轻松转动。 2、开路检查。三个端钮的接地摇表:将仪表电流端钮(C)与电位端钮(P)短 接,然后轻摇摇表,摇表的指针直接偏向读数最大方向;四端钮的接地 摇表:将仪表上的电流端纽(C1)与电位端纽(P1)短接,再将接地两端钮 (C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏 向读数最大方向。

杆塔接地电阻测试作业指导书

前言 为提高云南电网公司供电企业输变电设备的运行、检修、试验水平,规范操作方法,确保人身和设备安全,由云南电网公司生产技术部组织,编写了目前我公司输电线路杆塔接地装置接地电阻测试作业指导书。编写中遵循了我国标准化、规范化和国际通用的贯标模式的要求。该指导书纳入公司生产技术管理标准体系。 本指导书由云南电网公司生产技术部提出。 本指导书由云南电网公司生产技术部归口。 本指导书由云南省电力试验研究院(集团)有限公司负责编写。 本指导书主编人:陈宇民 本指导书主要起草人:陈宇民 本指导书主要审核人: 本指导书审定人: 本指导书批准人: 本指导书由云南电网公司生产技术部负责解释。

目次 1目的 (1) 2适用范围 (1) 3引用标准 (1) 4支持性文件 (1) 5技术术语 (1) 6安全措施 (1) 7作业准备 (2) 8作业周期 (2) 9工期定额 (2) 10设备主要技术参数 (2) 11作业流程…………………………………………………………………………………

(2) 12作业项目、工艺要求及质量标准 (2) 13作业中可能出现的主要异常现象及对策 (9) 14作业后的验收与交接 (9)

输电线路杆塔接地电阻测试作业指导书 1目的 为规范云南电网公司的供电企业输电线路杆塔的接地电阻测试作业方法,保证安全,提高试验质量。 2适用范围 适用于云南电网公司供电企业输电线路杆塔的接地电阻试验作业。 3引用标准 下列标准所包含的条文,通过引用而构成本作业指导书的条文。本书出版时,所示版本均为有效。所有标准都会被修订,使用本书的各方,应探讨使用下列标准最新版本的可能性。 GB/T 17949.1-2000《接地系统的土壤电阻率、接地阻抗和地面电位测量导则第1部分:常规测量》 DL/T 887-2004《杆塔工频接地电阻测量》 DL/T 475-2006《接地装置工频特性参数的测量导则》 DL/T 621-1997 《交流电气装置的接地》 Q/CSG 10007-2004《电力设备预防性试验规程》 4支持性文件 高压电气设备试验方法 《云南电力技术监督系统》(待批) 5技术术语 接地体:埋入地中并直接与大地接触的金属导体,称为接地体。接地体分为水平接地体和垂直接地体。 接地引下线:电力设备应接地的部位与地下接地体或中性线之间的金属导体,称为接地引下线。 接地装置:接地体和接地引下线的总和,称为接地装置。 接地电阻:接地体或自然接地体的对地电阻和接地线电阻的总和,称为

杆塔防雷接地电阻的改善细节

杆塔防雷接地电阻的改善细节 架空输电线路的雷击跳闸一直是困扰电网安全供电的难题。近年随着电网的发展,雷击输电线路而引起的跳闸、停电事故日益增多,据电网故障分类统计表明:高压线路运行的总跳闸次数中,由于雷击引发的故障约占50%—60%。尤其是在多雷、电阻率高、地形复杂的山区,雷击输电线路引起的故障次数更多,寻找故障点、事故抢修更困难,带来的损失更大。理论和运行实践证明,500KV及以下线路,雷击送电线路杆塔引起其电位升高造成“反击”跳闸的次数占了线路跳闸总次数的绝大部分。在绝缘配置一定时,影响雷击输电线路反击跳闸的主要因素是接地电阻的大小。所以,做好防雷接地工程使接地电阻值在规程要求范围内已成为线路防雷的一项重要工作。 为降低接地电阻,一般情况下采用放射法埋设钢筋,不过这种方法仅适用于土壤接地电阻率条件比较好的条件下,对于土壤接地电阻率过高或者石头较多的地方就不合适。当增加水平接地物的长度,电感的轻度会增大,冲击系数也会随之增大,但当接地物的长度到达极限时,长度就不会影响到冲击接地电阻。 设计过程主要会出现三种问题:第一,接地型式不合理,在高土壤电阻率地区,接地电阻与接地体的面积没有按照合适的比率安置。第二,杆塔接地电阻在一些雷电活动频繁地

区的设计值过大。第三,对一些像水田、低洼地带或者化工厂附近等这种高腐蚀性的土壤,忽视了耐腐蚀的因素,最终因接地体受腐蚀后断裂无法将雷电流排导。 输电线路的实际施工当中,实际情况与接地型式的设计有很多不同,所以一定要结合施工现场的实际情况对计划进行调整,但在许多工程中由于施工人员责任心不强,监理单位对他们的监督力度也不足,因此施工阶段可能存在一系列问题,比如回填土与要求不符、接地体埋深不足、接地引下线与接地体之间以及接地体之间的焊接与设计要求与施工规范不符等,最终导致接地电阻值较大。 杆塔接地装置在实际工程中普遍采用多根水平放射线的型式,如果能够根据工程的实际情况保证接地装置型式设计的合理,可以有效降低高土坡电阻率,并缩小占用土地面积。像水田或耕地这种电阻率较低的土壤,接地装置的型式就可以采用水平接地体结合垂直接地体的方式;如果工程开展在土壤电阻率较高的地区,或受到某些因素的限制,可以采用连续伸长接地体方案,就是沿线路埋设1~2根接地线,然后与下一基塔的接地装置连接,借助这种方法连接几条基杆塔接地,可以有效的降低高土坡电阻率地区的杆塔电阻。 输电线路杆塔工程中改造接地装置是很常见的,而且改造对象通常作为隐蔽工程进行施工。所以要特别注重接地装置

DL/T887-2019杆塔工频接地电阻测量-8页word资料

目次 1 范围 2 规范性引用文件 3 术语和定义 4 分类 5 测量杆塔工频接地电阻的一般性规定 6 测量杆塔工频接地电阻的三极法 7 测量杆塔工频接地电阻的钳表法 附录A(资料性附录)架空输电线路杆塔的钳表法增量的估算 附录B(资料性附录)架空输电线路杆塔的工频接地电阻 前言 本标准是根据原国家经济贸易委员会《关于下达2002年度电力行业标准制定和修订计划的通知》(电力[2002]973号)的安排制定的。 本标准的附录A、附录B为资料性附录。 本标准由中国电力企业联合会提出。 本标准由全国高压电气安全标准化技术委员会归口并解释。 本标准负责起草单位:武汉大学电气工程学院。 本标准参加起草单位:安徽省巢湖供电局、湖北省电力试验研究院。 本标准主要起草人:周文俊、王建国、刘泽生、傅军、梁国栋、林志伟、徐家奎。 杆塔工频接地电阻测量 1 范围 本标准规定了杆塔工频接地电阻的术语和定义、测量的一般性规定、测量杆塔工频接地电阻的三极法和钳表法。 本标准适用于采用三极法测量杆塔的工频接地电阻,也适用于采用钳表法测量有避雷线且多基杆塔避雷线直接接地的架空输电线路杆塔的工频接地电阻。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 DL/T 620—1997 交流电气装置的过电压保护和绝缘配合 DL/T 621—1997 交流电气装置的接地 3 术语和定义 下列术语和定义适用于本标准。 3.1 接地grounded 将电力系统或建筑物中电气装置、设施的某些导电部分,经过接地线连接至接地极。 [DL/T 621—1997中2.1]

相关主题
文本预览
相关文档 最新文档