当前位置:文档之家› 说明PWM调速系统的工作原理

说明PWM调速系统的工作原理

说明PWM调速系统的工作原理
说明PWM调速系统的工作原理

说明PWM调速系统的工作原理

脉冲宽度调制脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。

脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。

多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。

许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:

* 设置提供调制方波的片上定时器/计数器的周期

* 在PWM控制寄存器中设置接通时间

* 设置PWM输出的方向,这个输出是一个通用I/O管脚

* 启动定时器

* 使能PWM控制器

PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。

对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。

总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。

几种PWM控制方法

采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率.

PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法.

1 .相电压控制PWM

1.1 等脉宽PWM法[1]

VVVF(Variable V oltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化.相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量.

1.2 随机PWM

在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路.

1.3 SPWM法

SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案.

1.3.1 等面积法

该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.

1.3.2 硬件调制法

硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制.

1.3.3 软件生成法

由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法.

1.3.3.1 自然采样法[2]

以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波

交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制.

1.3.3.2 规则采样法[3]

规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样.

规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小. 以上两种方法均只适用于同步调制方式中.

1.3.4 低次谐波消去法[2]

低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法.其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波.

该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点.该方法同样只适用于同步调制方式中.

1.4 梯形波与三角波比较法[2]

前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%.因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制.

由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率.但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波.

2 .线电压控制PWM

前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦.因此,提出了线电压控制PWM,主要有以下两种方法.

2.1 马鞍形波与三角波比较法

马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率.在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波[4].

除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线

电压.这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波.

2.2 单元脉宽调制法[5]

因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外

两个线电压负值之和.现在把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu 作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负.把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了.这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了.

该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小.

3 .电流控制PWM

电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变.其实现方案主要有以下3种.

3.1 滞环比较法[4]

这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化.该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量.其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多.

3.2 三角波比较法[2]

该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波.此时开关频率一定,因而克服了滞环比较法频率不固定的缺点.但是,这种方式电流响应不如滞环比较法快.

3.3 预测电流控制法[6]

预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差.该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应.目前,这类调节器的局限性是响应速度及过程模型系数参数的准确性.

4 .空间电压矢量控制PWM [7]

空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形.此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通).

具体方法又分为磁通开环式和磁通闭环式.磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量.此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小.磁通闭环式引

入磁通反馈,控制磁通的大小和变化的速度.在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形.这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音.但由于未引入转矩的调节,系统性能没有得到根本性的改善.

5 .矢量控制PWM[8]

矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,

通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制.其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制.通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制.

但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足.此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便.

6 .直接转矩控制PWM[8]

1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control 简称DTC).直接转矩控制与矢量控制不同,它不是通过控制电流,磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想,简洁明了的系统结构,优良的动静态性能得到了迅速发展.

但直接转矩控制也存在缺点,如逆变器开关频率的提高有限制.

7. 非线性控制PWM

单周控制法[7]又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的.单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器,其控制原理如图1所示.图中K可以是任何物理开关,也可是其它可转化为开关变量形式的抽象信号.

单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法.

8 .谐振软开关PWM

传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小,重量减轻,成本下降,性能提高,特别当开关频率在18kHz以上时,噪声将已超过人类听觉范围,使无噪声传动系统成为可能.

谐振软开关PWM的基本思想是在常规PWM变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感,谐振电容

和功率开关组成.开关转换时,谐振网络工作使电力电子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现.从而既保持了PWM技术的特点,又实现了软开关技术.但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用.

总结

PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.由于当今科学技术的发展已经没有了学科之间的界限,结

合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一.

相关应用领域:

PWM控制结束主要应用在电力电子技术行业,具体讲,包括风力发电、电机调速、直流供电等领域,由于其四象限变流的特点,可以反馈再生制动的能量,对于目前国家提出的节能减排具有积极意义。

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

PWM整流电路概述

PWM整流电路概述 1引言 在电力系统中,电压和电流应是完好的正弦波。但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上对PWM整流技术的发展方向加以探讨。 2功率开关器件 PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt 和dv/dt。目前在PWM整流器中得到广泛应用的电力电子器件主要有如下几种:

PWM整流工作原理

PWM整流工作原理

图6-28 单相PWM 整流电路 整流电路也可分为电压型和电流型两大类,目前半桥电路直流侧电容必须由两个电容串联,其中点和交流电源单相半桥电路 交流侧电感电感和交流电源内部电感,是电全桥电路直流侧电容只要一个就可以。 单相全桥电路 6-8 电力电子技术 (1)单相全桥PWM 整流电路的工作原理 正弦信号波和三角波相比较的方法对图6-28b 中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。 u AB 中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于L s 的滤波作用,谐波电压只使i s 产生很小的脉动。 当正弦信号波频率和电源频率相同时,i s 也为与电源频率相同的正弦波。 u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。 改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 6.4.1 PWM 整流电路的工作原理

6-12 电力电子技术 (2)对单相全桥PWM 整流电路工作原理的进一步说明 整流状态下: u s > 0时,(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s < 0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 6.4.1 PWM 整流电路的工作原理

PWM整流电路控制原理及技术研究_杨红举

317 华章 二 ○一一年第十八期 Magnificent Writing 杨红举,张玉珍,淅川县电业局。 作者简介:PWM 整流电路控制原理及技术研究 杨红举,张玉珍 (淅川县电业局,河南淅川474450) [摘要]PWM控制技术是在电力电子领域有着广泛的应用,使电力电子技术的性能大大的提高,并对电力电子技 术产生了十分深远影响的一项技术。笔者就PWM整流电路的工作原理和PWM整流电路的控制方法进行了详细的阐述,以供读者参考。 [关键词]PWM整流电路;原理;控制方法PWM (Pulse Width Modulation )控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。如图1所示。PWM 的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM 相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM 用于通信的主要原因。从模拟信号转向PWM 可以极大地延长通信距离。在接收端,通过适当的RC 或LC 网络可以滤除调制高频方波并将信号还原为模拟形式。PWM 控制技术一直是变频技术的核心技术之一。1964年A.Schonung 和H.stemmler 首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。 目前,实用的整流电路几乎都是晶闸管整流或二极管整流。晶闸管相控整流电路输入电流滞后于电压,且其中谐波分量大,因此功率因数很低。而二极管整流电路虽位移因数接近1,但输入电流中谐波分量很大,所以功率因数也很低。把逆变电路中的SPWM 控制技术用于整流电路,就形成了PWM 整流电路。控制PWM 整流电路,使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为1,也称单位功率因数变流器,或高功率因数整流器。下面就PWM 整流电路及其控制方法进行详细的阐述。 1、PWM 整流电路的工作原理 PWM 整流电路也可分为电压型和电流型两大类,目前电压型的较多。 1.1单相PWM 整流电路。半桥电路直流侧电容必须由两个电容串联,其中点和交流电源连接。交流侧电感包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。 全桥电路直流侧电容只要一个就可以。 1.1.1单相全桥PWM 整流电路的工作原理。正弦信号波和三角波相比较的方法对图2中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 1.1.2对单相全桥PWM 整流电路工作原理的进一步说明整流状态下: u s >0时,如图2所示。(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。 V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s <0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 1.2三相PWM 整流电路。三相桥式PWM 整流电路,是最基本的PWM 整流电路之一,应用最广。工作原理和前述的单相全桥电路相似,只是从单相扩展到三相。如图3所示。进行SPWM 控制,在交流输入端A 、B 和C 可得SPWM 电压,按图4a 的相量图控制,可使i a 、i b 、i c 为正弦波且和电压同相且功率因数近似为1 。 2、PWM 整流电路的控制方法 2.1间接电流控制。间接电流控制也称为相位和幅值控制。图5 为间接电流控制的系统结构图。 图中的PWM 整流电路为图4的三相桥式电路,控制系统的闭环是整流器直流侧电压控制环。 2.2直接电流控制。通过运算求出交流输入电流指令值,再引入交流电流反馈,通过对交流电流的直接控制而使其跟踪指令电流值。有不同的电流跟踪控制方法,图6给出一种最常用 的采用电流滞环比较方式的控制系统结构图。 3、结语 综上所述,PWM 控制技术用于整流电路即构成PWM 整流电路,也可看成逆变电路中的PWM 技术向整流电路的延伸,其控制系统结构简单,电流响应速度快,系统鲁棒性好,目前在电力电子行业已获得了一些应用,并有良好的应用前景。 【参考文献】 [1]刘海云,韩继征,李玉仓,张浩,胡雪生.交直交变频三电平矢量脉宽调制模式的原理及调制算法探讨[A ].第十一届全国自动化应用技术学 术交流会论文集[C ].2006. [2]姚旺,王京.基于VxWorks 下的三电平PWM 整流器的控制研究[A ].自动化技术与冶金流程节能减排——全国冶金自动化信息网2008 年会论文集[C ].2008.

PWM整流电路工作原理

PWM整流电路的原理分析 摘要:无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术》教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式。通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装置获得较高的功率因数。 1 概述 传统的整流电路中,晶闸管相控整流电路的输人电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输人中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输人电流中谐波分量很大,功率因数也较低。 PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输人电流非常接近正弦波,且和输人电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。 参考文献[1]在第6章“PWM控制技术”中增添了“PWM整流电路及其控制方法”这一部分内容。但在PWM整流电路的工作原理中介绍篇幅较少,只是针对PWM整流电路的运行方式相量图进行分析,没有分析其工作过程。对PWM 整流电路不熟悉的教师在了解这部分内容时普遍感觉吃力。 1 单相电压型桥式PWM整流电路 电压型单相桥式PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供直流中间环节,其电路如图I所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电抗器,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图 1 电压型单相桥式PWM整流电路 除必须具有输人电感外,PWM整流器的电路结构和PWM逆变电路是相同的。按照

单相电压型PWM整流电路原理分析与仿真

单相电压型PWM整流电路原理分析与仿真 0 引言众所周知,在传统的整流电路中,晶闸管可控整流装置的功率因数会随着其触发角的增加而变坏,这不但使得电力电子类装置成为电网中的主要谐波因素,也增加了电网中无功功率的消耗。PWM 整流电路是采用脉宽调制技术和全控型器件组成的整流电路,能有效地解决传统整流电路存在的问题。通过对PWM 整流电路进行有效的控制,选择合适的工作模式和工作时序,从而调节了交流侧电流的大小和相位,使之接近正弦波并与电网电压同相或反相,不但有效地控制了电力电子装置的谐波问题,同时也使得变流装置获得良好的功率因数。 1 单相电压型桥式PWM 整流电路的结构单相电压型桥式PWM 整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1 所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L 为交流侧附加的电抗器,起平衡电压,支撑无功功率和储存能量的作用。图1 中 uN(t)是正弦波电网电压;Ud 是整流器的直流侧输出电压;us(t)是交流侧输入 电压,为PWM 控制方式下的脉冲波,其基波与电网电压同频率,幅值和相位可控;iN(t)是PWM 整流器从电网吸收的电流。由图1 所示,能量可以通过构成桥式整流的整流二极管VD1~VD4 完成从交流侧向直流侧的传递,也可以经全控器件VT1~VT4 从直流侧逆变为交流,反馈给电网。所以PWM 整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视VT1~VT4 的脉宽调制方式而定。 因为PWM 整流器从交流电网吸取跟电网电压同相位的正弦电流,其输入端的功率是电网频率脉动的两倍。由于理想状况下输出电压恒定,所以此时的输出电流id 与输入功率一样也是网频脉动的两倍,于是设置串联型谐振滤波器

三相PWM整流器

摘要 随着绿色能源技术的快速发展,PWM整流器技术己成为电力电子技术研究的热点和亮点。PWM整流器可成为用电设备或电网与其它电气设备的理想接口,因为它可以实现网侧电流正弦化和功率因数可调整。 本文首先分析了PWM整流器的基本原理,然后根据三相电压源型PWM整流器各相电压电流之间的关系和桥路的工作状态,给出系统在三相ABC坐标系和两相dq坐标系中的数学模型,利用电流反馈解耦控制,以及系统的基本控制框图。并设计了电压环和电流环数字化PI调节器,结合理论分析和实际对其参数进行了优化整定。 关键词:三相电压型PWM整流器;数学模型;dq变换。

1 三相电压源型PWM 整流器工作原理及数学模型 1.1 PWM 整流器原理 1.1.1 PWM 整流电路工作原理 将普通整流电路中的二极管或晶闸管换成IGBT 或MOSFET 等自关断器件,并将SPWM 技术应用于整流电路,这就形成了PWM 整流电路。通过对PWM 整流电路的适当控制,不仅可以使输入电流非常接近正弦波,而且还可以使输入电流和电压同相位,功率PWM 整流电路由于需要较大的直流储能电感以及交流侧LC 滤波环节所导致的电流畸变、振荡等问题,使其结构和控制复杂化,从而制约了它的应用和研究。相比之下,电压型PWM 整流电路以其结构简单,较低的损耗等优点,电压型PWM 整流电路的成功应用更现实鸭故选择电压型PWM 整流电路进行研究。下面分别介绍单相和三相PWM 整流电路的拓扑结构和工作原理。 图1-2 单相PWM 整流电路 图1-2为单相全桥PWM 整流电路,交流侧电感s L 包含外接电抗器的电感和交流电源内部电感,是电路正常工作所必需的。电阻s R 包含外接电抗器的电阻和交流电源内部电阻。同SPWM 逆变电路控制输出电压相类似,可在PWM 整流电路的交流输入端AB 产生一个正弦调制PWM 波AB u ,AB u 中除含有和开关频率有关的高次谐波外,不含低次谐波成分。由于电感s L 的滤波作用,这些高次谐波电压只会使交流电流

单相电压型PWM整流电路原理分析与仿真

论文(设计)撰写指导 文献综述 题目:单相电压型PWM整流电路原理分析与仿真 学院:人民武装学院 专业:电子信息科学与技术 班级: 2013级(专升本) 学号: 1320070193 学生姓名:丁武荣 指导教师:王代强 2014年7 月15 日

单相电压型PWM整流电路原理分析与仿真 在生活中很多地方往往要用到直流电源来供电,直流电源是能够维持电路中形成稳恒电流的装置,所以直流电源在生活中的地位也非常重要,但是在生活中用到的电源,往往是交流电,怎样将交流电转换成直流电呢?那就需要整流电路来实现。整流电路(rectifying circuit)把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压。习惯上称单向脉动性直流电压。 传统的整流电路中,晶闸管相控整流电路的输入电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输入中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输入电流中谐波分量很大,功率因数也较低。传统低频整流电路存在的问题【1】PWM整流电路是采用脉宽调制技术和全控型器件组成的整流电路,能有效地解决传统整流电路存在的问题。通过对PWM整流电路进行有效的控制,选择合适的工作模式和工作时序,从而调节了交流侧电流的大小和相位,使之接近正弦波并与电网电压同相或反相,不但有效地控制了电力电子装置的谐波问题,同时也使得变流装置获得良好的功率因数。PWM(Plll∞Width Modulation)控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换【2】。PWM整流器种类较多,根据输入交流电源相数分为单相和三相P W M整流电路;按主电路结构分为单开关与多开关型;根据PWM整流器直流侧电能输出环节的不同,又可以将PWM整流器分为电压型PWM整流器和电流型PWM整流器;按桥路结构可分为半桥电路和全桥电路;另外,还有新型的三电平PWM整流器等。【3】PWM 整流电路的控制方法有直接电流控制和间接电流控制两种。直接电流控制引入交流输入电流反馈实行闭环控制,其电流指令运算电路比不引入交流输入电流反馈的间接电流控制简单,因此,本文采用直接电流控制方法。【4】单相电压型PWM整流电路与三相整流电路相比较,三相电压型PWM 整流器的工作原理,它具有高功率因数,低谐波污染等显著优点,必将在节能降耗,改善供电质量方面起到巨大的应用。【5】单相电压型PWM整流电路的结构图如下:

PWM整流技术原理及在和谐号机车上的应用应用

课程名称:牵引电机课程设计 设计题目:PWM整流技术在和谐号 系列机车上的应用 院系:电气工程系 专业:电力机车 年级:2009级 姓名: 指导教师: 西南交通大学峨眉校区 2012 年10 月25 日

课程设计任务书 专业姓名学号 开题日期:年月日完成日期:年月日 题目PWM整流技术在和谐号系列机车上的应用 一、设计的目的 通过该设计,使学生初步掌握PWM整流技术的组成系统、作用原理以及其在和谐号机车上的应用。 二、设计的内容及要求 1.画出PWM蒸馏技术的原理图; 2.并说明图中各主要部件的作用、性能; 3.掌握PWM调频调压技术的工作原理; 4.掌握PWM整流技术在和谐号及车上的应用。 三、指导教师评语 四、成绩 指导教师(签章) 年月日

PWM整流技术原始资料PWM整流电路是PWM控制方式和全控型器件组成的整流电路。就整流电路而言,按相数不同有单相和三相之分,按滤波环节所用器件不同,又有电压型和电流型两种,而现在普遍使用的是电压型整流电路。对PWM 整流电路的控制方式,在机车上我们采用的是以正弦信号为调制波的正弦脉宽调制(简称SPWM)。 一:单相桥式电压型PWM整流电路 单相桥式电压型PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供中间环节,器电路如图1所示。每个桥臂有一个全控器件和反并联的整流二极管在组成。L为交流侧附加的电抗,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图1 单相桥式电压型PWM整流电路 二:三相电压型PWM整流电路 图2为三相电压型PWM整流电路,其应用非常广泛,工作原理与单相桥式PWM整流电路相似。对六个全控器件按一定要求和反式进行控制,在

PWM整流电路工作原理

P W M整流电路工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

PWM整流电路的原理分析 摘要:无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术》教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式。通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装置获得较高的功率因数。 1 概述 传统的整流电路中,晶闸管相控整流电路的输人电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输人中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输人电流中谐波分量很大,功率因数也较低。 PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输人电流非常接近正弦波,且和输人电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。 参考文献[1]在第6章“PWM控制技术”中增添了“PWM整流电路及其控制方法”这一部分内容。但在PWM整流电路的工作原理中介绍篇幅较少,只是针对PWM整流电路的运行方式相量图进行分析,没有分析其工作过程。对PWM 整流电路不熟悉的教师在了解这部分内容时普遍感觉吃力。 1 单相电压型桥式PWM整流电路 电压型单相桥式PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供直流中间环节,其电路如图I所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电抗器,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图 1 电压型单相桥式PWM整流电路

三相电压型PWM整流器PI调节器参数整定的原理和方法

三相电压源型PWM整流器 PI调节器参数整定的原理和方法 1引言 1.1 PID调节器简介 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。目前,在工业过程控制中,95%以上的控制回路具有PID结构。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的,其原理图如图1-1所示。 图1-1 PID控制系统原理图 PID控制器传递函数常见的表达式有以下两种: (1) ()i p d K G s K K s s =++ ,Kp代表比例增益,Ki代表积分增益,Kd代表微 分增益;

(2) 1 () p d i G s K T s T s =++ (也有表示成 1 ()(1) p d i G s K T s T s =++),Kp代表比 例增益,Ti代表积分时间常数,Td代表微分时间常数。 这两种表达式并无本质区别,在不同的仿真软件和硬件电路中也都被广泛采用。 ?比例(P,Proportion)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系,能及时成比例地反映控制系统的偏差信号,偏差一旦产 生,调节器立即产生控制作用,以减少偏差。当仅有比例控制时系统输 出存在稳态误差(Steady-state error)。 ?积分(I,Integral)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制 系统是有稳态误差的或简称有差系统(System with Steady-state Error)。 为了消除稳态误差,在控制中必须引入“积分项”。积分项对误差取决 于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小, 积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误 差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系 统在进入稳态后无稳态误差。积分作用的强弱取决于积分时间常数Ti, Ti越大,积分作用越弱,反之则越强。 ?微分(D,Differential)控制 在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现 振荡或者失稳。其原因是在于由于存在有较大惯性组件(环节)或有滞 后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。 解决的办法是使抑制误差的作用“超前”,即在误差接近零时,抑制误 差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是 不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微 分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就

相关主题
文本预览
相关文档 最新文档