当前位置:文档之家› 反比例函数常见几何模型

反比例函数常见几何模型

反比例函数常见几何模型
反比例函数常见几何模型

反比例函数常见模型

一、知识点回顾

1..反比例函数的图像是双曲线,故也称双曲线y=k

x

(k≠0).其解析式有三种表示方法:

①x

k y =

(0≠k );②1-=kx y (0≠k );③k xy = 2.反比例函数y=k

x

(k≠0)的性质

(1)当k>0时?函数图像的两个分支分别在第一,三象限内?在每一象限内,y 随x 的增大而减小.

(2)当k<0时?函数图像的两个分支分别在第二,四象限内?在每一象限内,y 随x 的增大而增大.

(3)在反比例函数y=k

x

中,其解析式变形为xy=k ,故要求k 的值(也就是求其图像上一点横坐标与纵坐标之积).

(4)若双曲线y=

k

x

图像上一点(a ,b )满足a ,b 是方程Z 2-4Z -2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k ,∴k=-2,故双曲线的解析式是y=2

x

-.

(5)由于反比例函数中自变量x 和函数y 的值都不能为零,所以图像和x 轴,y 轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.

二、新知讲解与例题训练 模型一:

如图,点A 为反比例函数x

k y =图象上的任意一点,且AB 垂直于x 轴,

则有2||k S OAB =

?

例1:如图ABC Rt ?的锐角顶点是直线y=x+m 与双曲线y=

x

m

在第一象限的交点,且3=?AOB S ,(1)求m 的值 (2)求ABC ?的面积

变式题

1、如图所示,点1A ,2A ,3A 在x 轴上,且O 1A =21A A =32A A ,分别过1A ,2A ,3A 作y 轴平行线,与反比例函数y=

x

8

(x>0)的图像交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连结321,,OB OB OB ,那么图中阴影部分的面积之和为__________

2、 如图,点A 在双曲线1y x =

上,点B 在双曲线3

y x

=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .

模型二:

如图:点A 、B 是双曲线)0(≠=k x

k y 任意不重合的两点,直线AB 交x 轴于M

点,交y 轴于N 点,再过A 、B 两点分别作y AD ⊥轴于D 点,x BF ⊥轴于F 点,再连结DF 两点,则有:AB DF ||且BM =AN

D

F

A

B

D

F M

N

x

y O

例2:如图,一次函数y a x b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数k

y x

=

的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①DEF CEF S S ??=;②AOB ?相似于FOE ?;③△DCE ≌△CDF ;④A C B D =其中正确的结论是 .(把你认为正确结论的序号都填上)

例3:一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数

k

y x

=

的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD .

(1)若点A B ,在反比例函数k

y x

=

的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形;②AN BM =. (2)若点A B ,分别在反比例函数k

y x

=

的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论.

y x D

C A B O F E

图 1

图2

模型三:

如图,已知反比例函数k

y x

=(k ≠0,x>0)上任意两点P 、C ,过P 做PA ⊥x 轴,

交x 轴于点A ,过C 做CD ⊥x 轴,交x 轴于点D ,则OPC PADC S S ?=梯形.

例4:如图,在直角坐标系中,一次函数y =k 1x+b 的图象与反比例函数2

k y x

=的图象交于A (1,4)、B (4,1)两点,则△AOB 的面积是______.

例5:如图,在直角坐标系中,一次函数1y k x b =+的图象与反比

例函数2

k

y x

=

的图象交于A (1,4)、B (3,m )两点,则△AOB 的面积是______.

例6:如图1,已知直线12y x =与双曲线(0)k

y k x

=>交于A 、B 两

点,且点A 的横坐标为4. (1)求k 的值;

(2)如图2,过原点O 的另一条直线l 交双曲线(0)k

y k x

=>于C 、D 两点(点

C 在第一象限且在点A 的左边),当四边形ACB

D 的面积为24时,求点C 的坐标.

模型四:

在矩形AOBC 中,OB =a ,OA =b ,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是BC 上的一个动点(不与B 、C 重合),过F

点的反比例函数(0)k

y x x =>的图象与AC 边交于点E ,则CE a CF b

=.

例7:两个反比例函数k y x =

和1

y x

=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1

y x =

的图象于点B ,当点P 在k

y x

=的图象上运动时,以下结论:

①△ODB 与△OCA 的面积相等;②四边形P AOB 的面积不会发生变化;③P A 与

PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 _________(把你认为正确结论的序号都填上).

课堂练习: 一、选择题

1、已知m<0,则函数mx y =1与x

m

y -=2的图像如图,大致是( )

x

B F

C E A O

y

A. B. C. D 2、如图,点A 在双曲线

x

y 6

=

上,且OA=4,过点 A 作AC ⊥x 轴,垂足为c ,OA 的垂直平分线交OC 于B,则ABC ?的周长为( )

A.72

B.5

C.74

D.22 3、如图,双曲线x

k

y =

(k>0)经过矩形OABC 的边BC 的中点E ,交AB 于点D ,若梯形ODBC 的面积为3,则双曲线的解析式为( ) A.x y 1=

B. x y 2=

C. x y 3=

D. x

y 6=

题 3 题 4 题5

4、如图,A,B 是函数x

y 2

=

的图像上关于原点对称的任意两点,BC//x 轴,AC//y 轴,ABC ?的面积记为S ,则

S ( )

A.S=2

B.S=4

C.2

D.S>4

5、如图所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,若双曲线y=k x

(k≠0)与△ABC 有交点,则k 的取值范围是( )

A .1

B .1≤k≤3

C .1≤k≤4

D .1≤k<4

二、填空题

D

B A

y

x

O C

1、如图,点A 在双曲线1y x =

上,点B 在双曲线3

y x

=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为

.

2、如图,双曲线)0(2

x x

y =

经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四

边形OABC 的面积是 .

3、如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB =60°,点A 在第一象限,过点A 的双曲线为y = k x

,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是 .

(2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是

.

4、如图,已知双曲线(0)k

y k x

=

<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 .

5、双曲线1y 、2y 在第一象限的图像如图,14y x

=

, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B ,

交y 轴于C ,若1AOB S ?=,则2y 的解析式是 .

课后习练

一、填空题

1、如图,直线y=kx (k>0)与双曲线y=4

x

交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1的值等于_______.

2、反比例函数y=

k

x

的图像上有一点P (a ,b ),且a ,b 是方程t 2-4t -2=0的两个根,则k=_______;点P 到原点的距离OP=_______.

3、已知双曲线xy=1与直线y=-x+b 无交点,则b 的取值范围是______.

4、反比例函数y=

k

x

的图像经过点P (a ,b ),其中a ,b 是一元二次方程x 2+kx+4=0的两个根,那么点P 的坐标是_______. 5、如图,已知双曲线)0k (x

k

y >=

经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =___.

5题图 第6题图

像与反比例函数y=

2

x

的图6、如图,已知点A 是一次函数y=x 的图像在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那

么△AOB 的面积为( ) A .2 B .2

2

C .2

D .22 7、

已知P 为函数y=2

x

的图像上一点,且P 到原点的距离为3,则符合条件的P 点数为( ) A

B

C

D E

y

x

O

A.0个B.2个C.4个D.无数个

小学数学常见几何模型典型例题及解题思路

* 小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半。 2、在长方形ABCD 中,BE=5,EC=4,CF=4,FD=1。△AEF 的面积是多少答案:20 |

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E 、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米答案: (2)如果已知长方形ABCD 的面积是64平方厘米,那么阴影部分的面积是多少平方厘米答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。请问CE 的长是多少厘米。答案:8 @

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。求S 4。答案:10 D C E F S 1 S 2 S 3 S 4 思路:求S4需要知道FC 和EC 的长度;FC 不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S1÷AD ×2得到,同理EC 也求。最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,AD=15。求四边形EFGO 的面积。答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

反比例函数中的模型

1 反比例函数中的模型(讲义) 一、知识点睛 与反比例函数相关的几个结论,在解题时可以考虑调用. ① OCD ABCD △梯形 ② 结论:AB =CD ③ 结论:BD ∥CE 二、精讲精练

2 1. 如图,已知点A ,B 在双曲线y x = (x>0)的图象上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 相交于点P ,且P 是AC 的中点.若△ABP 的面积为3,则k =________. 2. 如图,A ,B 是双曲线y x = (k >0)上的点,且A ,B 两点的横坐标分别为a ,2a ,线段AB 的延长线交x 轴于点C .若S △AOC =6,则k =________. 第2题图 第3题图 3. 如图,直线3y x = 与双曲线y x =(x >0)交于点A .将直线3y x =向右平移2个单位后,与双曲线y x = (x >0)交于点B ,与x 轴交于点C ,若 2=BC ,则k =________. 4. 如图,平行四边形AOBC 中,对角线交于点E ,双曲线y x = (k >0)经过A ,E 两点.若平行四边形AOBC 的面积为18, 则k =________. 第4题图 第5题图 5. 如图,已知函数的图象与x 轴、y 轴分别交于C ,B 两点,与双曲线y x = 交于A ,D 两点.若AB+CD=BC ,则k 的值为________.

3 6. 已知:如图,直线64y x =+与双曲线y x =(x <0)相交于A ,B 两点,与x 轴、y 轴分别交于D , C 两点,若AB =5,则k =_________. 7. y 轴交于点A ,与双曲线x y =在第一象限交于B ,C 两点,且4AB AC ?=, 则k =_______ 8. 双曲线1y x =,2 y x =A 作x 轴的平行线,交 B ,交y 轴于点 C ,过点A 作x D ,交x 轴于点 E ,连接BD ,CE , 则 CE =________. 第9题图 第10题图

初中数学9大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED O D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2 O A B C D E O C D E 图 1 图 2

二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEA=∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BE=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 2 1 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- O C O C D E O B C D E O C D A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

初中中考数学常见几何模型简介

几何问题 初中几何常见模型解析 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②;③平分。(3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②;③平分。?

(1)一般情况 ?条件:,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③;④;⑤连接AD、BC,必有 ; ⑥(对角线互相垂直的四边形) ?

(1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明;?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120° ?条件:①;②平分; ?结论:①;②;③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 ?当的一边交AO的延长线于点D时(如上图右): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②;③ . ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。 ◇请思考初始条件的变化对模型的影响。

? 如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下: 结论:①;②;③.

全等三角形常见的几何模型

1、绕点型(手拉手模型) (1)自旋转:?????? ?,造中心对称遇中点旋 全等遇等腰旋顶角,造旋转 ,造等腰直角 旋遇,造等边三角形旋遇自旋转构造方法00 00018090906060 (2 )共旋转(典型的手拉手模型) 例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC ( 3) AE 与DC 的夹角为60。 (4) △AGB ≌△DFB (5) △ EGB ≌△CFB (6) BH 平分∠AHC (7) GF ∥AC 变式练习1、如果两个等边三角形△ABD 和△BCE ,连接 AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC (3) AE 与DC 的夹角为60。 (4) AE 与DC 的交点设为H,BH 平分∠AHC 变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC (3)AE 与DC 的夹角为60。 (4)AE 与DC 的交点设为H,BH 平分∠AHC

3、(1)如图1,点C 是线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由. (2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN ”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. 例4、例题讲解: 1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ? ②AC=CF+CD. (2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 例1、如图,正方形ABCD 的边长为1,AB,AD 上各存在一点P 、Q ,若△APQ 的周长为2, 求PCQ 的度数。 Q

(精心整理)反比例函数中的模型

反比例函数中的模型(讲义) 一、知识点睛 与反比例函数相关的几个结论,在解题时可以考虑调用. ① 结论:2||ABO ABCO S S k ==△矩形 结论:OCD ABCD S S =△梯形 ② 结论:AB =CD ③ 结论:BD ∥CE 二、精讲精练 1. 如图,已知点A ,B 在双曲线k y x =(x>0)的图象上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与 BD 相交于点P ,且P 是AC 的中点.若△ABP 的面积为3,则k =________ .

2. 如图,A ,B 是双曲线k y x = (k >0)上的点,且A ,B 两点的横坐标分别为a ,2a ,线段AB 的延长线交x 轴于点C .若S △AOC =6,则k =________. 第2题图 第3题图 3. 如图,直线43y x = 与双曲线k y x =(x >0)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(x >0)交于点B ,与x 轴交于点C ,若2=BC AO ,则k =________. 4. 如图,平行四边形AOBC 中,对角线交于点E ,双曲线k y x = (k >0)经过A ,E 两点.若平行四边形AOBC 的面积为18, 则k =________. 第4题图 第5题图 5. 如图,已知函数1+-=x y 的图象与x 轴、y 轴分别交于C ,B 两点,与双曲线k y x = 交于A ,D 两点.若AB+CD=BC ,则k 的值为________. 6. 已知:如图,直线364y x =+与双曲线k y x =(x <0)相交于A ,B 两点,与x 轴、y 轴分别交于D , C 两点,若AB =5,则k =_________. 7. 如图,直线b x y +- =33与y 轴交于点A ,与双曲线x k y =在第一象限交于B ,C 两点,且4AB AC ?=,

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中几何常见九大模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有;③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②; ③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③

?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导? 模型四:角含半角模型90° (1)角含半角模型90°-1 ?条件:①正方形;②; ?结论:①;②的周长为正方形周长的一半; 也可以这样: ?条件:①正方形;② ?结论:

初中几何模型及常见结论的总结归纳

初中几何模型及常见结论的总结归纳 三角形的概念 三角形边、角之间的关系:①任意两边之和大于第三边(任意两边之差小于第三边);②三角形内角和为0180(外角和为0 360);③三角形的外角等于不相邻的两内角和。 三角形的三线:(1)中线(三角形的顶点和对边中点的连线);三角形三边中线交于一点(重心) 如);DE 之到?S 如图,已知AB ,AC 的长,求AF 的取值范围时。我们可以通过倍长 中线。利用三角形边的关系在三角形ABD 中构建不等关系。(AC AB AF AC AB +- 2). (2)角平分线(三角形三内角的角平分线);三角形的三条内角平分线交于一点(内心)

如等 OE ; r = 2

(3)垂线(三角形顶点到对边的垂线);三角形三条边上的高交于一点(垂心) 如图,O为三角形ABC的垂心,我们可以得到比较多的锐角相等如 COD ABC ACO ABO∠ = ∠ ∠ = ∠;等。因此垂线(或高)这样的条件在题目中出现,我们往往可以得出比较多的锐角相等。(等角或同角的余角相等),此外,如果要求垂线段的长度或与垂线段有关的长度问题,我们通常用面积法求解。在上图中,若已知CE AC AB, ,的长度,求BE的长。 特别注意:在等腰三角形中,我们通常所指的三线合一就是指中线、角平分线、高线。三线合一:已知三角形三线中的任意两个条件是重合的,那么就可以得出第三条线也是重合的。在具体运用时,我们往往时把三线合一的等腰三角形补充完整再加以运用。 三角形全等 三角形全等我们要牢记住它的五个判定方法。(SSS,SAS,ASA,AAS,HL) 在具体运用时,我们需要找出判定三角形全等的各种条件,不外乎是关于边相等或相等的问题。 对于寻找角相等:常有四种方法:①两条平行线被第三条直线所截得出的“三线八角”的结论;②对顶角相等;③锐角互余;④三角形的外角等于不相邻的两内角和。 对于寻找边相等:常有三种方法:①特殊图形中隐含的条件(如等腰三角形、等边三角形、菱形、正方形。。。。。);②利用三线合一的正逆定理;③通过已有的全等三角形性质得出。对于证明角相等,证明边相等,我们都要优先考虑边或角所在的三角形全等。(一定要注意对应)如果不能直接通过全等证明,我们就要转化角或转化边(用上面的几种方法)然后再考虑全等。 全等三角形的基本图形: 平移类全等;对称类全等;旋转类全等;

盘点小升初平面几何常考五大模型

盘点小升初平面几何常考五大模型 (一)等积变换模型性质与应用简介 导读:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,这一期我们讲解了解一下五大模型第一块——等积变换模型。 等积变换模型例题讲解与课后练习题 (一)例题讲解与分析 ?【例1】:如右图,在△ABC中,BE=3AE,CD=2AD.若△ADE的面积是1平方厘米,那么三角形ABC的面积是多少 【解答】连接BD,S△ABD和S△ AED同高,面积比等于底边比,所以三角形ABD的面积是4, S△ABD和S△ABC同高面积比等于底边比,三角形ABC的面积是ABD的3倍,是12. 【总结】要找准那两个三角形的高相同。 【例2】:如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少

【解答】S△ADO=5,S△DOC=4根据结论2,△ADO与△DOC同高所以面积比等于底的比,即AO/OC=5:4同理S△AOB/S△BOC=AO/OC=5:4,因为S△AOB=15所以S△BOC=12。 【总结】从这个题目我们可以发现,题目的条件和结论都是三角形的面积比,我们在解题过程中借助结论2,先把面积比转化成线段比,再把线段比用结论2转化成面积比,解决了问题。事实上,这2次转化的过程就相当于在条件和结论中搭了一座“桥梁”,请同学们体会 一下。 (二)课后练习题讲解与分析 (二)鸟头定理(共角定理)模型 导语:平面几何问题,是历年小升初的必考题目,也在各大杯赛中占有很大比例,这些题目都是以等积变形为主导思想,结合五大模型的变化应用交织而成的,第二期我们讲解了解一下五大模型第二块——鸟头定理(共角定理)模型。

(完整版)中考数学常见几何模型简介

初中几何常见模型解析 模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有 (2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形)

模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明 为等边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①; ②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导?

中考(初中)反比例函数图象中的等角模型及其在中考题中的应用(整理者14232)

支付宝首页搜索“933314”领红包,每天都能领。付款前记得用红包反比例函数图象中的等角模型及其在中考题中的 应用 原先自己研究反比例函数图象,得到了以下三条结论,当时以为解决反比例函数图象难题,用好这三条就足够了。 三条结论分别是: 结论一:过反比例函数一支上两点分别向x轴和y轴作垂线段,则垂足连线与原两点连线平行。如图,即AB∥CD。 证明:根据平行线带来的等面积转换,S△ACD=S△ACO=∣k∣/2=S△BDO=S△BDC,即 A,B两点到直线CD的距离相等,且位于CD同侧,故AB∥CD。

结论二:三顶点分别在原点、x轴上,y轴上的矩形,若反比例函数图象经过其两边,则两边被分出的两条线段之比对应相等。 如图,即EA:AC=EB:BD

证明:连AB,CD,由结论一有AB∥CD,根据相似知识显然结论二成立。 结论三:过双曲线一支上两点作直线与坐标轴相交,则每点与其相邻坐标轴交点构成的线段长相等。如图,即AE=BF

证明:过A作y轴垂线段垂足为C,过B作x轴垂线段垂足为D。连接CD,由结论一有AB∥CD,则四边形ACDF与BDCE均为平行四边形,得到AC=DF,CE=DB,再通过全等得到△ACE≌△FDB,AE=BF。 至于设点坐标用代数证,一来略超纲,二来繁琐,最重要是没有美感,反正我没有这个习惯。 这三个结论还有一些小的变形,比如一支上的两点变两支上的两点,作垂线的顺序改变等,基本都是结论相同,证明类似,且这些不是今天要讲的重点内容而只是铺垫,因此不再赘述只是给出几张图。

今天要讲的内容:后来才发现,反比例函数图象还有一些模型和结论,不能由前三个结论直接解决,但可以以前三个结论为基础推出结果间接解决。有如下结论(个人称为等角模型): 结论四:双曲线一支上任取两点A,B,在围着双曲线该支所在象限的坐标轴上再取两点C,D,使ABCD构成平行四边形。则有:∠DCO=∠BCx,∠CDO=∠ADy

小学数学常见几何模型典型例题及解题思路

小学数学常见几何模型典型例题及解题思路(1) 巧求面积 常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变 1、ABC G是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE,求阴影部分的面积。答案:72 A H F E C B I D G 思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半. 2、在长方形ABCD 中,B E=5,EC =4,CF=4,FD =1。△AEF 的面积是多少?答案:20

A D B F C E 思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求 3、如图所示的长方形中,E、F 分别是AD 和DC 的中点。 (1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米?答案:22。5 (2)如果已知长方形ABC D的面积是64平方厘米,那么阴影部分的面积是多少平方厘米?答案:24 B C D F E 思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型 4、正方形A BCD 边长是6厘米,△AF D(甲)是正方形的一部分,△CEF(乙)的面积比△AFD (甲)大6平方厘米。请问C E的长是多少厘米.答案:8

A B D C F 思路:差不变 5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S2、S 3、S4,且S1=S 2=S 3+S 4。求S4.答案:10 D C E F S 1S 2 S 3S 4 思路:求S4需要知道FC 和EC 的长度;FC不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S 1÷AD ×2得到,同理EC 也求.最后一句三角形面积公式得到结果。 6、长方形ABCD 内的阴影部分面积之和为70,AB=8,A D=15。求四边形E FGO 的面积.答案10。 A B C D F O E G 思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三

20182019学年九年级数学初中常见几何模型汇总

初中常见几何模型汇总 全等变换 平移:平行等线段(平行四边形) 对称:角平分线或垂直或半角 旋转:相邻等线段绕公共顶点旋转 对称全等模型 说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。 对称半角模型 说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。 旋转全等模型 半角:有一个角含1/2角及相邻线段

自旋转:有一对相邻等线段,需要构造旋转全等 共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题 旋转半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。 自旋转模型 构造方法: 遇60度旋60度,造等边三角形 遇90度旋90度,造等腰直角 遇等腰旋顶点,造旋转全等 遇中点旋180度,造中心对称

共旋转模型 说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。 模型变换

说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。 当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。 中点旋转:

说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。 几何最终模型 对称最值(两点间线段最短)

反比例函数常见几何模型

一、知识点回顾 k 1..反比例函数的图像是双曲线,故也称双曲线y= k(k≠0).其解析式有三种表示方法: x k ①y= (k0);②y=kx-1(k0);③xy=k x k 2 .反比例函数y= k(k≠0)的性质 x (1)当k>0 时函数图像的两个分支分别在第一,三象限内在每一象限内,y 随x 的增大而减小. (2)当k<0 时函数图像的两个分支分别在第二,四象限内在每一象限内,y 随x 的增大而增大. k (3)在反比例函数y=k中,其解析式变形为xy=k,故要求k 的值(也就是求其图像 x 上一点横坐标与纵坐标之积). k (4)若双曲线y= k图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求x 双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是-2 y= . x (5)由于反比例函数中自变量x和函数y 的值都不能为零,所以图像和x 轴,y 轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势. 二、新知讲解与例题训练 模型一: 如图,点 A 为反比例函数y = k图象上的任意一点,且AB垂直

S OAB |k| 2 于x轴,x 则有

m 例1:如图Rt ABC的锐角顶点是直线y=x+m 与双曲线y=m在第一象限的交点,且S AOB =3,(1)求m的值(2)求ABC的面积 变式题 1、如图所示,点A1, A2, A3在x 轴上,且O A1= A1A2 = A2A3,分别过A1, A2, A3作y 轴平 8 行线,与反比例函数y= 8(x>0)的图像交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平 x 13 2、如图,点A在双曲线y = 1上,点B在双曲线y = 3上,且AB∥x轴,C、D在x轴 上,xx 若四边形ABCD 为矩形,则它的面积为 . 行线,分别与y 轴交于点C1,C2,

反比例函数的模型

反比例函数的模型 1、一个圆柱的侧面展开图是一个面积为4平方单位的矩形,那么这个圆柱的母线长ι和底面半径r 之间的函数关系是( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、二次函数 2、向高层建筑屋顶的水箱注水,水对水箱底部的压强P 与水深h 的函数关系的图象是下图中的(水箱能容水的最大深度为H )( ) 3、如果矩形的面积为6cm 2 ,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( ) 4、受力面积S (米2)(S 为常数,0S ≠)的物体,所受的压强P (帕)与压力F (牛)的函数关系为F P S =,则这个函数的图象是( ) 5、某变阻器两端的电压为220伏,则通过变阻器的电流()I A 与它的电阻()R Ω之间的函数关系的图象大致为( ) x 7、已知圆柱的侧面积是100πcm 2,若圆柱底面半径为r (cm 2),高线长为h (cm ),则h 关于r 的函数的图象大致是( ) 8、当路程s 一定时,速度v 与时间t 之间的函数关系是( ) A 正比例函数 B 反比例函数 C 一次函数 D 二次函数 P (帕) F (牛) O P (帕) F (牛) O P (帕) F (牛) O P (帕) F (牛) O A B C D O y O x y O x y O x y A B C D o y x y x o y x o y x o

9、某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千 帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单 位) (1)写出这个函数的解析式; (2)当气球的体积为0.8立方米时,气球内的气压是多少千帕? (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体 积应不小于多少立方米? 10、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。 (1)求I与R之间的函数关系式 (2)当电流I=0.5安培时,求电阻R的值;

全等三角形常见的几何模型

1绕点型(手拉手模型) 遇600旋60°,造等边三角形 遇90°旋90°,造等腰直角遇等腰旋 顶角,造旋转全等遇中点旋1800,造中 心对称 (2)共旋转(典型的手拉手模型) 例1、在直线ABC的同一侧作两个等边三角形△ (1)△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4)△ AGB ◎△ DFB (5)△ EGB ◎△ CFB (6)BH 平分/ AHC (7)GF // AC 变式练习2、如果两个等边三角形△ ABD和厶BCE,连接AE与CD,证明: ("△ ABE ◎△ DBC (2)AE=DC (3)AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH平分/ AHC [D山3 Vi壮-U (I) ? 变式练习1、如果两个等边三角形△ABD和厶BCE,连接AE与CD,证明 (1) △ ABE ◎△ DBC (2) AE=DC (3) AE与DC的夹角为60。 (4) AE与DC的交点设为H,BH 平分/ AHC (1自旋转:自旋转构造方法 ABD和厶BCE,连接AE与CD,证明:

3、(1)如图1,点C是线段AB上一点,分别以AC, BC为边在AB的同侧作等边△ ACM和厶CBN ,连接AN , BM .分别取BM, AN的中点E, F,连接CE, CF, EF.观察并猜想△ CEF的形状,并说明理由. (2)若将(1)中的“以AC , BC为边作等边△ ACM和厶CBN”改为“以AC, BC为腰在AB的同侧作等腰△ ACM和△ CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由. B 例4、例题讲解: 1.已知△ ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使/ DAF=60 ° ,连接CF. (1)如图1,当点D在边BC上时,求证:① BD=CF 宓AC=CF+CD. (2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、 CD之间存在的数量关系,并说明理由; ⑶如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。 2、半角模型 说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起, 成对称全等。 D A D A M x N rt B D 例1、如图,正方形ABCD的边长为1, AB,AD上各存在一点P、0,若厶APQ的周长为2, A P

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。 (2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?】 ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分 模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?` ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ' ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) 模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE;②;③ ?证明提示: ①作垂直,如图,证明; - ②过点C作,如上图(右),证明; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变); ②;③ 此结论证明方法与前一种情况一致,可自行尝试。 (2)全等型-120° ?条件:①; ?②平分; ?<

?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等 边三角形。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?' ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②;③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。 ?对角互补模型总结: ①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线; ②初始条件“角平分线”与“两边相等”的区别; ③两种常见的辅助线作法; ④注意平分时,相等如何推导 ? 模型四:角含半角模型90°

反比例函数常见几何模型94169

反比例函数常见几何模 型94169 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

反比例函数常见模型 一、知识点回顾 1..反比例函数的图像是双曲线,故也称双曲线y=k x (k≠0).其解析式有三种表示方法:①x k y = (0≠k );②1-=kx y (0≠k );③k xy = 2.反比例函数y=k x (k≠0)的性质 (1)当k>0时?函数图像的两个分支分别在第一,三象限内?在每一象限内,y 随x 的增大而减小. (2)当k<0时?函数图像的两个分支分别在第二,四象限内?在每一象限内,y 随x 的增大而增大. (3)在反比例函数y=k x 中,其解析式变形为xy=k ,故要求k 的值(也就是求其图像上一点横坐标与纵坐标之积). (4)若双曲线y=k x 图像上一点(a ,b )满足a ,b 是方程Z 2-4Z -2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k ,∴k=-2,故双曲线的解析式是y= 2x -. (5)由于反比例函数中自变量x 和函数y 的值都不能为零,所以图像和x 轴,y 轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势. 二、新知讲解与例题训练 模型一:

如图,点A 为反比例函数x k y =图象上的任意一点,且AB 垂直于x 轴,则有 2||k S OAB = ? 例1:如图ABC Rt ?的锐角顶点是直线y=x+m 与双曲线y= x m 在第一象限的交点,且3=?AOB S ,(1)求m 的值 (2)求ABC ?的面积 变式题 1、如图所示,点1A ,2A ,3A 在x 轴上,且O 1A =21A A =32A A ,分别过 1A ,2A ,3A 作y 轴平行线,与反比例函数y= x 8 (x>0)的图像交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连结321,,OB OB OB ,那么图中阴影部分的面积之和为 __________

立体几何中的常见模型化方法

立体几何中的常见模型化方法 建构几何模型的两个角度:一是待研究的几何体可与特殊几何体建立关联,二是数量关系有明显特征的几何背景 例题一个多面体的三视图如图1 所示,则该多面体的体积是 A. 23/3 B. 47/6 C.6 D.7 分析该几何体的三视图为 3 个正方形,所以可建构正方体模型辅助解答. 解图 2 为一个棱长为2 的正方体. 由三视图可知,该几何体是正方体截去两个小三棱锥后余下的部分,其体积V=8-2 X 1/3X 1/2X 1 X 1 X仁23/3选A. 解后反思大部分几何体可通过对正方体或长方体分割得到,所以将三视图问题放在正方体或长方体模型中研究,能够快速得到直观图,并且线面的位置关系、线段的数量关系明显,计算简便. 变式1已知正三棱锥P-A BC,点P, A , B , C都在半径为的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为_______ 分析由于在正三凌锥P-ABC 中,PA,PB,PC 两两互 相垂直,所以可以将该正三棱锥看作正方体的一部分,构造正方体模型.

解构造如图 3 所示的正方体. 此正方体外接于球,正方体的体对角线为球的直径EP,球心为正方体对角线的中点0,且EP丄平面ABC , EP与平 面ABC相交于点F.由于FP为正方体体对角线长度的1/3, 所以又0P为球的半径,所以0P=.故球心0到截面ABC的距离解后反思从正方体的8 个顶点之中选取不共面的点,可构造出多种几何体,这些几何体可以分享正方体的结构特征. 变式2-个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为 A.3 n B.4 n C.3 n D.6 n 分析将一个正方体切掉四个大的“角” ,就可得到一个正四面体. 解如图4 所示,构造一个棱长为1 的正方体 ABCD-A1B1C1D1 ,连接AB1,AD1 ,AC,CD1,CB1, B1D1,?t 四面体B1-ACD1 为符合题意的四面体,它的外接球的直径 AC1=,所以此正方体外接球的表面积S=4 n R2=3 n .选A. 解后反思正四面体的体积也可通过这种切割的方法求 得.由图形分析可知,正四面体的体积是它的外接正方体体积的}.若正四面体的棱长为a,则其体积为 变式 3 四面体A-BCD 中,共顶点A 的三条棱两两互相垂直,且其长分别为1,2, 3.若四面体A-BCD 的四个顶点同在一个球面上,则这个球的表面积为_____________ .

初中几何常考模型汇总(完整版)

O D C B A 第01讲 8字模型与飞镖模型 模型1 角的“8”字模型 如图所示,AB 、CD 相交于点O ,连接AD 、BC 。 结论:∠A+∠D=∠B+∠C 。 模型分析 8字模型往往在几何综合题目中推导角度时用到。 模型实例 观察下列图形,计算角度: (1)如图①,∠A+∠B+∠C+∠D+∠E= ; (2)如图②,∠A+∠B+∠C+∠D+∠E+∠F= 。 图1 2 图E A B C D E F D C B A 热搜精练 1.(1)如图①,求∠CAD+∠B+∠C+∠D+∠E= ; (2)如图②,求∠CAD+∠B+∠ACE+∠D+∠E= 。 O O 图1 2 图E A B C D E D C B A 2.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H= 。 H G E F D C B A

D C B A 105 O O 120D C B A 模型2 角的飞镖模型 如图所示,有结论: ∠D=∠A+∠B+∠C 。 模型分析 飞镖模型往往在几何综合题目中推导角度时用到。 模型实例 如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M 。探究∠AMC 与∠B 、∠D 间的数量关系。 M D C B A 热搜精练 1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= ; O 135 E F D C B A 2.如图,求∠A+∠B+∠C+∠D = 。

O D C B A O D C B A O C B A O C B A 模型3 边的“8”字模型 如图所示,AC 、BD 相交于点O ,连接AD 、BC 。 结论:AC+BD>AD+BC 。 模型实例 如图,四边形ABCD 的对角线AC 、BD 相交于点O 。 求证:(1)AB+BC+CD+AD>AC+BD ; (2)AB+BC+CD+AD<2AC+2BD. 模型4 边的飞镖模型 如图所示有结论:AB+AC>BD+CD 。 模型实例 如图,点O 为三角形内部一点。 求证:(1)2(AO+BO+CO )>AB+BC+AC ; (2)AB+BC+AC>AO+BO+CO.

相关主题
文本预览
相关文档 最新文档