当前位置:文档之家› 物理化学第三章本章重点

物理化学第三章本章重点

物理化学第三章本章重点
物理化学第三章本章重点

第三章 热力学第二定律

一.基本要求

1.了解自发变化的共同特征,熟悉热力学第二定律的文字和数学表述方式。

2.掌握Carnot 循环中,各步骤的功和热的计算,了解如何从Carnot 循环引出熵这个状态函数。

3.理解Clausius 不等式和熵增加原理的重要性,会熟练计算一些常见过程如:等温、等压、等容和,,p V T 都改变过程的熵变,学会将一些简单的不可逆过程设计成始、终态相同的可逆过程。

4.了解熵的本质和热力学第三定律的意义,会使用标准摩尔熵值来计算化学变化的熵变。

5.理解为什么要定义Helmholtz 自由能和Gibbs 自由能,这两个新函数有什么用处?熟练掌握一些简单过程的,,H S A ???和G ?的计算。

6.掌握常用的三个热力学判据的使用条件,熟练使用热力学数据表来计算化学变化的r m H ?,r m S ?和r m G ?,理解如何利用熵判据和Gibbs 自由能判据来判断变化的方向和限度。

7.了解热力学的四个基本公式的由来,记住每个热力学函数的特征变量,会利用d G 的表示式计算温度和压力对Gibbs 自由能的影响。

二.把握学习要点的建议

自发过程的共同特征是不可逆性,是单向的。自发过程一旦发生,就不需要环境帮助,可以自己进行,并能对环境做功。但是,热力学判据只提供自发变化的趋势,如何将这个趋势变为现实,还需要提供必要的条件。例如,处于高山上的水有自发向低处流的趋势,但是如果有一个大坝拦住,它还是流不下来。不过,一旦将大坝的闸门打开,水就会自动一泻千里,人们可以利用这个能量来发电。又如,氢气和氧气反应生成水是个自发过程,但是,将氢气和氧气封在一个试管内是看不到有水生成的,不过,一旦有一个火星,氢气和氧气的混合物可以在瞬间化合生成水,人们可以利用这个自发反应得到热能或电能。自发过程不是不能逆向进行,只是它自己不会自动逆向进行,要它逆向进行,环境必须对它做功。例如,用水泵可以将水从低处打到高处,用电可以将水分解成氢气和氧气。所以

学习自发过程的重要性在于如何利用自发过程为人类做功,而不要拘泥于自发过程的定义。

热力学第二定律就是概括了所有自发的、不可逆过程的经验定律,通过本章的学习,原则上解决了判断相变化和化学变化的自发变化的方向和限度的问题,完成了化学热力学的最基本的任务。所以,学好本章是十分重要的。

通过学习Carnot 循环,一方面要熟练不同过程中功和热的计算,另一方面要理解热机效率总是小于1的原因。了解如何从Carnot 循环导出熵函数,以及了解Carnot 定理及其推论与热力学第二定律的联系。

Clausius 不等式就是热力学第二定律的数学表达式,从这个不等式可以引出熵判据,并从熵判据衍生出Helmholtz 自由能判据和Gibbs 自由能判据,原则上完成了化学热力学判断变化方向和限度的主要任务。

从Carnot 定理引入了一个不等号,I R ηη≤,通过熵增加原理引出了熵判据。但必须搞清楚,用绝热过程的熵变只能判断过程的可逆与否,而只有用隔离系统的熵变才能判断过程的可逆与否及自发与否。要计算隔离系统的熵变,必须知道如何计算环境的熵变。

在计算熵变时,一定要用可逆过程的热效应。如果实际过程是一个不可逆过程,则要设计始、终态相同的可逆过程,所以要掌握几种设计可逆过程的方法。例如,如何将不可逆相变,设计成可逆地绕到可逆相变点(如熔点、沸点或饱和蒸汽压点)的可逆过程,并能熟练地掌握可逆过程中,,H S ??和G ?的计算。

不一定完整地了解熵的本质和热力学第三定律(因为本教材没有介绍统计热力学),只需要了解,熵是系统的混乱度的一种量度,凡是混乱度增加的过程都是自发过程。由于热力学能的绝对值无法计算,所以使得与热力学能有联系的其他函数如,H A 和G 的绝对值也无法计算,所以,只能计算它们的变化值。在使用这些函数时,都要加上“?”的符号,即U ?,H ?,A ?和G ?。原则上熵的绝对值也是不知道的,但是,热力学第三定律规定了:在0 K 时,完整晶体的熵等于零这个相对标准,由此而得到的熵值称为规定熵。在298 K 时的常见物质的规定熵,即标准摩尔熵值,可以从热力学数据表上查阅,并可以用来计算化学反应的熵变。

定义新函数的出发点就是为了使用方便。在用熵作为判据时,既要利用可逆过程的热效应计算系统的熵变,又要计算环境的熵变,这很不方便。而平时实验是在等温、等容的条件下进行(较少),或在等温、等压的条件下进行(绝大多数),所以定义了Helmholtz自由能和Gibbs自由能这两个新函数,希望利用系统本身的性质作为判据,显然,Gibbs自由能的用处更广。既然是定义的函数,说明它实际上是不存在的,所以只有在特定的条件下才有一定的物理意义。

化学热力学之所以能判断变化的方向和限度,主要是利用判据,熵判据是最根本的,而Helmholtz自由能和Gibbs自由能判据是在熵判据的基础上衍生出来的。今后Gibbs自由能判据用得最多,因为大部分化学反应实验都是在等温、等压和不做非膨胀功的条件下进行的。在使用判据时,必须满足判据所需要的适用条件。

四个热力学基本公式的导出,主要是通过热力学第一定律和热力学第二定律的联合公式,以及,,

H A G的定义式,它们与第一定律的适用条件一样,只适用于恒定组成的均相封闭系统,并且还引入了不做非膨胀功的限制条件。从这四个基本公式,可以知道每个热力学函数的特征变量,这在今后定义化学势时很有用。四个基本公式中,公式d d d

=-+在今后将用得最多,必须记住。

G S T V p

至于Maxwell方程,它主要用在求算热力学函数与,,

p V T之间的变化关系,把实验可测量(如,,

p V T)去替代实验不可测量(如熵),或在做证明题时,知道如何进行偏微分公式的变换。对于非化学专业的学生,这部分内容本教材已删除了,免得陷在偏微分方程中,感到热力学是如此的难学而失去信心,其实这部分并非是化学热力学的主要研究任务。

初学者对热力学的基本概念不容易掌握,课听懂了,书看懂了,但是碰到具体问题还是不会判断。所以,在学完热力学第一和第二定律之后,最好要总结一下各种热力学函数变量的计算,讨论一些容易混淆的问题,或精选一些选择题,搞一次抢答竞赛,活跃一下学习气氛,便于在愉快的气氛中,理解和巩固热力学的基本概念。

物理化学第七章 电化学习题及解答

第七章 电化学习题及解答 1. 用铂电极电解CuCl 2溶液。通过的电流为20 A ,经过15 min 后,问:(1)在阴极上能析出多少质量的Cu ; (2) 在27℃,100 kPa 下,阳极析出多少Cl 2? 解:电极反应为 阴极:Cu 2+ + 2e - = Cu 阳极: 2Cl - - 2e - = Cl 2 电极反应的反应进度为ξ = Q /(ZF) =It / (ZF) 因此: m Cu = M Cu ξ = M Cu It /( ZF ) = 63.546×20×15×60/(2×96485.309)=5.928g V Cl 2 = ξ RT / p =2.328 dm 3 2. 用银电极电解AgNO 3溶液。通电一定时间后,测知在阴极上析出1.15g 的Ag ,并知阴极区溶液中Ag +的总量减少了0.605g 。求AgNO 3溶液中的t (Ag +)和t (NO 3-)。 解: 解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区溶液中Ag +的总量的改变D m Ag 等于阴极析出银的量m Ag 与从阳极迁移来的银的量m’Ag 之差: D m Ag = m Ag - m’Ag m’Ag = m Ag - D m Ag t (Ag +) = Q +/Q = m’Ag / m Ag = (m Ag - D m Ag )/ m Ag = (1.15-0.605)/1.15 = 0.474 t (NO 3-) = 1- t (Ag +) = 1- 0.474 = 0.526 3. 已知25 ℃时0.02 mol/L KCl 溶液的电导率为0.2768 S/m 。一电导池中充以此溶液,在25 ℃时测得其电阻为453Ω。在同一电导池中装入同样体积的质量浓度为0.555g/L 的CaCl 2溶液,测得电阻为1050Ω。计算(1)电导池系数;(2)CaCl 2溶液的电导率;(3)CaCl 2溶液的摩尔电导率。 解:(1)电导池系数K Cell 为 K Cell = k R = 0.2768×453 =125.4 m -1 (2)CaCl 2溶液的电导率 k = K Cell /R = 125.4/1050 = 0.1194 S/m (3)CaCl 2溶液的摩尔电导率 Λm = k/C = 110.983×0.1194/(0.555×1000)= 0.02388 S·m 2 ·mol - 4. 25 ℃时将电导率为0.141 S/m 的KCl 溶液装入一电导池中,测得其电阻为525Ω。在同一电导池中装入0.1mol/L 的NH 4OH 溶液,测得电阻为2030Ω。利用表7.1.4中的数据计算NH 4OH 的解离度α及解离常数K 。 解:查表知NH 4OH 无限稀释摩尔电导率为 ∞Λm (NH 4OH)=∞Λm (NH 4+)+∞ Λm (OH -) =73.4×10-4+198.0×10-4 =271.4 ×10-4S·m 2 ·mol - 因此, α = ∞ΛΛm m O H)(NH O H)(NH 44= O H) (NH O H)l)/cR(NH k(KCl)R(KC 4m 4Λ∞

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结 第一章.气体 一、理想气体适用 ①波义耳定律:定温下,一定量的气体,其体积与压力成反比 pV=C ②盖·吕萨克定律:对定量气体,定压下,体积与T成正比 V t=C`T ③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。 ④理想气体状态方程式 pV=nRT 推导:气体体积随压力温度和气体分子数量改变,即: V=f(p,T,N) 对于一定量气体,N为常数dN=0,所以 dV=(?V/?p)T,N dp+(?V/?T)p,N dT 根据波义耳定律,有V=C/P,∴(?V/?p)T,N=-C/p2=-V/p 根据盖·吕萨克定律,V=C`T,有(?V/?T)p,N=C`=V/T 代入上式,得到 dV/V=-dp/p+dT/T 积分得 lnV+lnp=lnT+常数

若所取气体为1mol,则体积为V m,常数记作lnR,即得 pV m=RT 上式两边同时乘以物质的量n,则得 pV=nRT ⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。 ⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。 ⑦气体分子在重力场的分布 设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh 假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式, -dp/p=Mgdh/RT 对上式积分,得lnp/p0=-Mgh/RT ∴p=p0exp(-Mgh/RT) ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT) 二、实际气体适用 ①压缩因子Z Z=pV m/RT 对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。当Z小于1,情况则相反。 ②范德华方程式

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

物理化学习题七章 电化学

第七章电化学 一.基本要求 1.理解电化学中的一些基本概念,如原电池与电解池的异同点,电极的阴、阳、正、 负的定义,离子导体的特点与Faraday 定律等。 2.掌握电导率、摩尔电导率的定义、计算、与浓度的关系及其主要应用等。了解 强电解质稀溶液中,离子平均活度因子、离子平均活度与平均质量摩尔浓度的定义,掌握离子强度的概念与离子平均活度因子的理论计算。 3.了解可逆电极的类型与正确书写电池的书面表达式,会熟练地写出电极反应、电 池反应,会计算电极电势与电池的电动势。 4.掌握电动势测定的一些重要应用,如:计算热力学函数的变化值,计算电池反应 的标准平衡常数,求难溶盐的活度积与水解离平衡常数,求电解质的离子平均活度因子与测定溶液的pH等。 5.了解电解过程中的极化作用与电极上发生反应的先后次序,具备一些金属腐蚀 与防腐的基本知识,了解化学电源的基本类型与发展趋势。 二.把握学习要点的建议 在学习电化学时,既要用到热力学原理,又要用到动力学原理,这里偏重热力学原理在电化学中的应用,而动力学原理的应用讲得较少,仅在电极的极化与超电势方面用到一点。 电解质溶液与非电解质溶液不同,电解质溶液中有离子存在,而正、负离子总就是同时存在,使溶液保持电中性,所以要引入离子的平均活度、平均活度因子与平均质量摩尔浓度等概念。影响离子平均活度因子的因素有浓度与离子电荷等因素,而且离子电荷的影响更大,所以要引进离子强度的概念与Debye-Hückel极限定律。 电解质离子在传递性质中最基本的就是离子的电迁移率,它决定了离子的迁移数与离子的摩尔电导率等。在理解电解质离子的迁移速率、电迁移率、迁移数、电导率、摩尔电导率等概念的基础上,需要了解电导测定的应用,要充分掌握电化学实用性的一面。 电化学在先行课中有的部分已学过,但要在电池的书面表示法、电极反应与电池反应的写法、电极电势的符号与电动势的计算方面进行规范,要全面采用国标所规定的符号,以便统一。会熟练地书写电极反应与电池反应就是学好电化学的基础,以后在用Nernst方程计算电极电势与电池的电动势时才不会出错,才有可能利用正确的电动势的数值来计算其她物理量的变化值,如:计算热力学函数的变化值,电池反应的标准平衡常数,难溶盐的活度积,水的解离平衡常数与电解质的离子平均活度因子等。

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

物理化学第七章课后答案完整版

第七章电化学 7.1用铂电极电解溶液。通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的?(2) 在的27 ?C,100 kPa下的? 解:电极反应为 电极反应的反应进度为 因此: 7.2在电路中串联着两个电量计,一为氢电量计,另一为银电量计。当电路中通电1 h后,在氢电量计中收集到19 ?C、99.19 kPa的;在银电量计中沉积。用两个电量计的数据计算电路中通过的电流为多少。 解:两个电量计的阴极反应分别为 电量计中电极反应的反应进度为 对银电量计

对氢电量计 7.3用银电极电解溶液。通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。求溶液中的和。 解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差: 7.4用银电极电解水溶液。电解前每溶液中含。阳极溶解下来的银与溶液中的反应生成,其反应可表示 为 总反应为 通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重,其中含。试计算溶液中的和。

解:先计算是方便的。注意到电解前后阳极区中水的量不变,量的改变为

该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极 7.5用铜电极电解水溶液。电解前每溶液中含。通电一定时间后,测得银电量计中析出,并测知阳极区溶液重,其中含。试计算溶液中的和。 解:同7.4。电解前后量的改变 从铜电极溶解的的量为 从阳极区迁移出去的的量为 因此,

7.6在一个细管中,于的溶液的上面放入的 溶液,使它们之间有一个明显的界面。令的电流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。以后,界面在管内向下移动的距离相当于 的溶液在管中所占的长度。计算在实验温度25 ?C下,溶液中的和。 解:此为用界面移动法测量离子迁移数 7.7已知25 ?C时溶液的电导率为。一电导池中充以此溶液,在25 ?C时测得其电阻为。在同一电导池中装入同样体积的质量浓度为的溶液,测得电阻为。计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。 解:(1)电导池系数为 (2)溶液的电导率

物理化学第七章电化学

第七章电化学 7.1电极过程、电解质溶液及法拉第定律 原电池:化学能转化为电能(当与外部导体接通时,电极上的反应会自发进行,化学能转化为电能,又称化学电源) 电解池:电能转化为化学能(外电势大于分解电压,非自发反应强制进行) 共同特点: (1)溶液内部:离子定向移动导电 (2)电极与电解质界面进行的得失电子的反应----电极反应(两个电极反应之和为总的化学反应,原电池称为电池反应,电解池称为电解反应) 不同点: (1)原电池中电子在外电路中流动的方向是从阳极到阴极,而电流的方向则是从阴极到阳极,所以阴极的电势高,阳极的电势低,阴极是正极,阳极是负极;(2)在电解池中,电子从外电源的负极流向电解池的阴极,而电流则从外电源的正极流向电解池的阳极,再通过溶液流到阴极,所以电解池中,阳极的电势高,阴极的电势低,故阳极为正极,阴极为负极。不过在溶液内部阳离子总是向阴极移动,而阴离子则向阳极移动。

两种导体:第一类导体(又称金属导体,如金属,石墨); 第二类导体(又称离子导体,如电解质溶液,熔融电解质) 法拉第定律: 描述通过电极的电量与发生电极反应的物质的量之间的关系 =F = n z Qξ F 电 F -- 法拉第常数; F = Le =96485.309 C/mol = 96500C/mol Q --通过电极的电量; z -- 电极反应的电荷数(即转移电子数),取正值; ξ--电极反应的反应进度; 结论:通过电极的电量,正比于电极反应的反应进度与电极反应电荷数的乘积,比例系数为法拉第常数。 依据法拉第定律,人们可以通过测定电极反应的反应物或产物的物质的量的变化来计算电路中通过的电量。相应的测量装置称为电量计或库仑计coulometer,通常有银库仑计和铜库仑计。 7.2 离子的迁移数 1. 离子迁移数:电解质溶液中每一种离子所传输的电量在通过的总电量中所占的百分数,用tB表示

物理化学重点超强总结归纳

第一章热力学第一定律 1、热力学三大系统: (1)敞开系统:有物质和能量交换; (2)密闭系统:无物质交换,有能量交换; (3)隔绝系统(孤立系统):无物质和能量交换。 2、状态性质(状态函数): (1)容量性质(广度性质):如体积,质量,热容量。 数值与物质的量成正比;具有加和性。 (2)强度性质:如压力,温度,粘度,密度。 数值与物质的量无关;不具有加和性,整个系统的强度性质的数值与各部分的相同。 特征:往往两个容量性质之比成为系统的强度性质。 3、热力学四大平衡: (1)热平衡:没有热隔壁,系统各部分没有温度差。 (2)机械平衡:没有刚壁,系统各部分没有不平衡的力存在,即压力相同 (3)化学平衡:没有化学变化的阻力因素存在,系统组成不随时间而变化。 (4)相平衡:在系统中各个相(包括气、液、固)的数量和组成不随时间而变化。 4、热力学第一定律的数学表达式: ?U = Q + W Q为吸收的热(+),W为得到的功(+)。

12、在通常温度下,对理想气体来说,定容摩尔热容为: 单原子分子系统 ,V m C =32 R 双原子分子(或线型分子)系统 ,V m C =52R 多原子分子(非线型)系统 ,V m C 6 32 R R == 定压摩尔热容: 单原子分子系统 ,52 p m C R = 双原子分子(或线型分子)系统 ,,p m V m C C R -=,72 p m C R = 多原子分子(非线型)系统 ,4p m C R = 可以看出: ,,p m V m C C R -= 13、,p m C 的两种经验公式:,2p m C a bT cT =++ (T 是热力学温度,a,b,c,c ’ 是经 ,2' p m c C a bT T =++ 验常数,与物质和温度范围有关) 14、在发生一绝热过程时,由于0Q δ=,于是dU W δ= 理想气体的绝热可逆过程,有:,V m nC dT pdV =- ? 22 ,11 ln ln V m T V C R T V =- 21,12ln ,ln V m p V C Cp m p V ?= ,,p m V m C pV C γγ=常数 =>1. 15、-焦耳汤姆逊系数:J T T =( )H p μ??- J T μ->0 经节流膨胀后,气体温度降低; J T μ-<0 经节流膨胀后,气体温度升高; J T μ-=0 经节流膨胀后,气体温度不变。 16、气体的节流膨胀为一定焓过程,即0H ?=。 17、化学反应热效应:在定压或定容条件下,当产物的温度与反应物的温度相同而在反应过程中只做体积功不做其他功时,化学反应所 吸收或放出的热,称为此过程的热效应,或“反应热”。 18、化学反应进度:()()() n B n B B ξ ν-= 末初 (对于产物v 取正值,反应物取负值) 1ξ=时,r r m U U ξ ??= ,r r m H H ξ ??= 19、(1)标准摩尔生成焓(0 r m H ?):在标准压力和指定温度下,由最稳定的单质生成单位物质的量某物质的定压反应热,为该物质的 标准摩尔生成焓。 (2)标准摩尔燃烧焓(0 c m H ?):在标准压力和指定温度下,单位物质的量的某种物质被氧完全氧化时的反应焓,为该物质的标 准摩尔燃烧焓。 任意一反应的反应焓0 r m H ?等于反应物燃烧焓之和减去产物燃烧焓之和。 20、反应焓与温度的关系-------基尔霍夫方程

物理化学上册知识点总结

1 第一章:气体 1、掌握理想气体的状态方程( )及分压力、分体积等概念,会进行简单计算 2、理解真实气体与理想气体的偏差及原因,了解压缩因子Z 的定义及数值大小的意义,熟悉范德华方程(理想气体基础上引入压力、体积修正项) 第二章:热力学第二定律;第三章:热力学第三定律 1、系统性质(广度、强度性质) 2、状态函数特性(如:异途同归,值变相等;周而复始,数值还原及在数学上具有全微分的性质等) 3、热力学第一定律:ΔU =Q+W (Q 、W 取号的规定及各种过程对应计算) 4、恒容热、恒压热及之间的关系式,能进行简单计算,掌握焓的定义式,会应用赫斯定律 5、掌握各种不同过程的热力学函数计算(单纯PVT 变化时自由膨胀、等温、等压、等容及绝热可逆或不可逆等过程的U 、H 、A 、G 、S 等函变以及正常、非正常相变过程焓变、吉布斯函变和熵变计算(状态函数法) 6、理解理想气体的一些性质(如U 、H 仅为温度函数、Cp 与Cv 的差值及单原子、双原子理想气体的C V ,m 和绝热可逆过程过程方程式等)、实际气体—节流膨胀过程(等焓过程,了解焦-汤系数等) 7、反应进度 8、如何由标准摩尔生成焓、燃烧焓计算标准摩尔反应焓变以及相关规定 9、反应焓变与温度的关系(基尔霍夫定律) 10、自发过程及其共同特征;热力学第二定律文字描述 11、卡诺循环、卡诺定理、热机效率;熵的定义式及克劳修斯不等式 12、判断过程可逆性及自发变化方向的各种判据 13、了解热力学第三定律,掌握根据规定熵、标准摩尔生成焓、标准摩尔生成吉布斯函变计算化学变化过程中对应函数的变化值 14、热力学函数间的关系及麦克斯韦关系式的应用(应用于各函数间的相互计算以及一些证明),了解各函数特征变量 15、了解Clapeyron 方程,掌握Clausius-Clapeyron 方程各种形式 第四章:多组分系统热力学及其在溶液中的应用 1、 熟悉偏摩尔量、化学势表示,了解偏摩尔量加和公式和吉布斯-杜亥姆公式,掌握相平衡、 化学平衡条件 2、 了解各种不同情况化学势的表达式,假想标准态等概念 3、 掌握稀溶液中两个经验定律:拉乌尔、亨利定律表达式及简单计算 4、 掌握理想液态混合物的通性 5、了解依数性的一些结论 第五章:化学平衡 1、会表示任意化学反应的标准平衡常数、其它各种平衡常数,并能相互换算 2、熟悉化学反应等温方程,并能应用其判断反应方向 3、掌握范特霍夫方程各种形式并进行相关计算 4、了解温度、压力等各种因素对化学平衡影响的相关结论 5、掌握使用标准平衡常数定义式以及热力学相关公式进算平衡组成的计算。 第六章:相平衡(相图分析) 1、掌握相律的形式并会计算其中各个量 2、杠杆规则、对拉乌尔定律发生正负偏差,从而相图上出现最高、最低点、恒沸混合物、蒸馏或精馏基本原理等(完全互溶双液系) 4、、能看懂相图并会使用相律分析相图,并绘制步冷曲线(如较复杂的低共熔二元相图、形成化合物系统及固态部分互溶的二组分相图) pV nRT

物理化学第七章课后答案完整版

第七章电化学 用铂电极电解溶液。通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的(2) 在的27 C,100 kPa下的 解:电极反应为 电极反应的反应进度为 因此: 在电路中串联着两个电量计,一为氢电量计,另一为银电量计。当电路中通电1 h后,在氢电量计中收集到19 C、kPa的;在银电量计中沉积。用两个电量计的数据计算电路中通过的电流为多少。 解:两个电量计的阴极反应分别为 电量计中电极反应的反应进度为 对银电量计

对氢电量计 用银电极电解溶液。通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。求溶液中的和。 解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差: 用银电极电解水溶液。电解前每溶液中含。阳极溶解下来的银与溶液中的反应生成,其反应可表示为 总反应为 通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重,其中含。试计算溶液中的和。 解:先计算是方便的。注意到电解前后阳极区中水的量不变,量的改变为 该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极

用铜电极电解水溶液。电解前每溶液中含。通电一定时间后,测得银电量计中析出,并测知阳极区溶液重,其中含。试计算溶液中的和。 解:同。电解前后量的改变 从铜电极溶解的的量为 从阳极区迁移出去的的量为 因此, 在一个细管中,于的溶液的上面放入的溶液,使它们之间有一个明显的界面。令的电流直上而下通过该管,界面不断向下移动,

并且一直是很清晰的。以后,界面在管内向下移动的距离相当于的溶液在管中所占的长度。计算在实验温度25 C下,溶液中的和。 解:此为用界面移动法测量离子迁移数 已知25 C时溶液的电导率为。一电导池中充以此溶液,在25 C时测得其电阻为。在同一电导池中装入同样体积的质量浓度为的 溶液,测得电阻为。计算(1)电导池系数;(2)溶液的电导率;(3) 溶液的摩尔电导率。 解:(1)电导池系数为 (2)溶液的电导率 (3)溶液的摩尔电导率 已知25 C时溶液的电导率为。一电导池中充以此溶液,在25 C时测得其电阻为。在同一电导池中装入同样体积的浓度分别为,,和的溶液,测出其电阻分别为,,和。试用外推法求无限稀释时的摩尔电导率。

物理化学第7章-电化学参考答案

第7章 电化学 习题解答 1. 将两个银电极插入AgNO 3溶液,通以0.2 A 电流共30 min ,试求阴极上析出Ag 的质量。 解:根据B ItM m zF = 得 Ag Ag 0.23060107.87 g 0.4025 g 196500 ItM m zF ???= = =? 2. 以1930 C 的电量通过CuSO 4溶液,在阴极有0.009 mol 的Cu 沉积出来,问阴极产生的H 2的物质的量为多少? 解:电极反应方程式为: 阴极 2Cu 2e Cu(s)+ -+→ 阳极 222H O(l)H (g)2OH 2e -- →++ 在阴极析出0.009 mol 的Cu ,通过的电荷量为: Cu Q (0.009296500) C 1737 C nzF ==??= 根据法拉第定律,析出H 2的物质的量为 2H Cu 19301737 mol 0.001 mol 296500 Q Q Q n zF zF --= = ==? 3. 电解食盐水溶液制取NaOH ,通电一段时间后,得到含NaOH 1 mol/dm 3 的溶液0.6 dm 3 , 同时在与之串联的铜库仑计上析出30.4 g 铜,试问制备NaOH 的电流效率是多少? 解:根据铜库仑计中析出Cu(s)的质量可以计算通过的电荷量。 Cu Cu 30.4 mol 0.957 mol 11 63.5 2 m n M = ==?电 理论上NaOH 的产量也应该是0.957 mol 。而实际所得NaOH 的产量为 (1.0×0.6) mol = 0.6 mol 所以电流效率为实际产量与理论产量之比,即 0.6 100%62.7%0.957 η= ?= 4. 如果在10×10 cm 2 的薄铜片两面镀上0.005 cm 厚的Ni 层[镀液用Ni(NO 3)2],假定镀层能均匀分布,用2.0 A 的电流强度得到上述厚度的镍层时需通电多长时间?设电流效率为 96.0%。已知金属的密度为8.9 g/cm 3 ,Ni(s)的摩尔质量为58.69 g/mol 。 解:电极反应为: 2+Ni (aq)2e Ni(s)-+= 镀层中含Ni(s)的质量为:

物理化学第七章课后题目解析

7.13 电池电动势与温度 的关系为 263)/(109.2/10881.10694.0/K T K T V E --?-?+= (1)写出电极反应和电池反应; (2)计算25℃时该反应的Θ Θ Θ ???m r m r m r H S G ,,以及电池恒温可逆放电时该反应 过程的。 (3)若反应在电池外在相同温度下恒压进行,计算系统与环境交换的热。 解:(1)电极反应为 阳极 +-→-H e H 22 1 阴极 --+→+Cl Hg e Cl Hg 222 1 电池反应为 (2)25 ℃时 {} V V E 3724.015.298109.215.19810881.10694.0263=??-??+=-- 1416310517.115.298108.510881.1)( -----??=???-?=??K V K V T E

因此, 1193.35)3724.0309.964851(--?-=???-=-=?mol kJ mol kJ zEF G m r 1111464.1410157.1309.964851-----??=?????=??=?K mol J K mol J T E zF S m r 11357.3164.1415.2981093.35--?-=??+?-=?+?=?mol kJ mol kJ S T G H m r m r m r 11,365.479.1615.298--?=??=?=mol kJ mol kJ S T Q m r m r (3)1,57.31-?-=?=mol kJ H Q m r m p 7.14 25℃时,电池AgCl s AgCl kg mol ZnCl Zn )()555.0(1-?电动势E=1.015V ,已知,,7620.0)(2V Zn Zn E -=+ΘV Ag AgCl Cl E 2222.0)(=-Θ,电池电动势的温度系数141002.4)( --??-=??K V T E p (1)写出电池反应; (2)计算电池的标准平衡常数; (3)计算电池反应的可逆热; (4)求溶液中2ZnCl 的标准粒子活度因子。 解:(2)ΘΘΘ=-k F RT E E ln z 左右 可以得到331088.1?=Θk (3)P m r m r T E TzF S T Q )( ,??=?=得到 =m r Q ,-23.131-?mol kJ

物理化学知识点归纳77421

110112班期末物理化学知识点归纳 预祝大家物化期末考试取得好成绩! ——孔祥鑫 2012年5月27日第二章热力学第一定律 一、热力学基本概念 1.状态函数 状态函数,是指状态所持有的、描述系统状态的宏观物理量,也称为状态性质或状态变量.系统有确定的状态,状态函数就有定值;系统始、终态确定后,状态函数的改变为定值;系统恢复原来状态,状态函数亦恢复到原值。 2.热力学平衡态 在指定外界条件下,无论系统与环境是否完全隔离,系统各个相的宏观性质均不随时间发生变化,则称系统处于热力学平衡态。热力学平衡须同时满足平衡(△T=0)、力平衡(△p=0)、相平衡(△μ=0)和化学平衡(△G=0)4个条件。 二、热力学第一定律的数学表达式 1。△U=Q+W 或dU=ΔQ+δW=δQ-p amb dV+δW` 规定系统吸热为正,放热为负。系统得功为正,对环境做功为负。式中p amb为环境的压力,W`为非体积功。上式适用于封闭系统的一切过

程。 2.体积功的定义和计算 系统体积的变化而引起的系统和环境交换的功称为体积功。其定义式为: δW=—p amb dV (1)气体向真空膨胀时体积功所的计算 W=0 (2)恒外压过程体积功 W=p amb(V1—V2)=—p amb△V 对于理想气体恒压变温过程 W=-p△V=—nR△T (3)可逆过程体积功 W r=?2 1p V V dV (4)理想气体恒温可逆过程体积功 W r=?2 1p V V dV=—nRTln(V1/V2)=—nRTln(p1/p2)(5)可逆相变体积功 W=—pdV 三、恒热容、恒压热,焓 1。焓的定义式 H def U + p V 2.焓变

物理化学第七章电化学习题及解答

第七章 电化学习题及解答 1. 用铂电极电解CuCl 2溶液。通过的电流为20 A ,经过15 min 后,问:(1)在阴极上能析出多少质量的Cu ; (2) 在27℃,100 kPa 下,阳极析出多少Cl 2? 解:电极反应为 阴极:Cu 2+ + 2e - = Cu 阳极: 2Cl - - 2e - = Cl 2 电极反应的反应进度为ξ = Q /(ZF) =It / (ZF) 因此: m Cu = M Cu ξ = M Cu It /( ZF ) = 63.546×20×15×60/(2×96485.309)=5.928g V Cl 2 = ξ RT / p =2.328 dm 3 2. 用银电极电解AgNO 3溶液。通电一定时间后,测知在阴极上析出1.15g 的Ag ,并知阴极 区溶液中Ag +的总量减少了0.605g 。求AgNO 3溶液中的t (Ag +)和t (NO 3-)。 解: 解该类问题主要依据电极区的物料守恒(溶液是电中性的)。显然阴极区溶液中Ag +的总量的改变D m Ag 等于阴极析出银的量m Ag 与从阳极迁移来的银的量m’Ag 之差: D m Ag = m Ag - m’Ag m’Ag = m Ag - D m Ag t (Ag +) = Q +/Q = m’Ag / m Ag = (m Ag - D m Ag )/ m Ag = (1.15-0.605)/1.15 = 0.474 t (NO 3-) = 1- t (Ag +) = 1- 0.474 = 0.526 3. 已知25 ℃时0.02 mol/L KCl 溶液的电导率为0.2768 S/m 。一电导池中充以此溶液,在25 ℃时测得其电阻为453Ω。在同一电导池中装入同样体积的质量浓度为0.555g/L 的CaCl 2溶液,测得电阻为1050Ω。计算(1)电导池系数;(2)CaCl 2溶液的电导率;(3)CaCl 2溶液的摩尔电导率。 解:(1)电导池系数K Cell 为 K Cell = k R = 0.2768×453 =125.4 m -1 (2)CaCl 2溶液的电导率 k = K Cell /R = 125.4/1050 = 0.1194 S/m (3)CaCl 2溶液的摩尔电导率 Λm = k/C = 110.983×0.1194/(0.555×1000)= 0.02388 S·m 2 ·mol - 4. 25 ℃时将电导率为0.141 S/m 的KCl 溶液装入一电导池中,测得其电阻为525Ω。在同一电导池中装入0.1mol/L 的NH 4OH 溶液,测得电阻为2030Ω。利用表7.1.4中的数据计算NH 4OH 的解离度α及解离常数K 。 解:查表知NH 4OH 无限稀释摩尔电导率为 ∞ Λm (NH 4OH)=∞Λm (NH 4+)+∞Λm (OH - ) =73.4×10-4+198.0×10-4 =271.4 ×10-4S·m 2 ·mol - 因此, α =∞ΛΛm m OH)(NH OH)(NH 44= OH)(NH OH)l)/cR(NH k(KCl)R(KC 4m 4Λ∞

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

初中物理化学知识点

初中物理重要知识点总结
记住的常量
1.光(电磁波)在真空中传播得最快,c=3×105Km/s=3×108m /s。光在其它透明物质中传播比在 空气中传播都要慢 2.15℃的空气中声速:340m/s,振动发声 ,声音传播需要介质,声音在真空中不能传播。一般声 音在固体中传播最快,液体中次之,气体中最慢。 3.水的密度:1.0×103Kg/m3=1g/cm3=1.0Kg/dm3。 1 个标准大气压下的水的沸点:100℃,冰的熔点 O℃, 水的比热容 4.2×103J/(Kg·℃)。 4.g=9.8N/Kg,特殊说明时可取 10 N/Kg 5.一个标准大气压=76cmHg==760mmHg=1.01×105Pa=10.3m 高水柱。 6.几个电压值:1 节干电池 1.5V,一只铅蓄电池 2V。 照明电路电压 220V,安全电压不高于 36V。 7.1 度=1 千瓦·时(kwh)=3.6×106J。 8.常见小功率用电器:电灯、电视、冰箱、电风扇; 常见大功率用电器:空调、电磁炉、电饭堡、微波炉、电烙铁。
物理量的国际单位
长度(L 或 s) :米(m) 时间(t) :秒(s)面积(S) :米 2(m2)体积(V) :米 3(m3)速度(v) :米/秒(m/s)温度(t) : 摄氏度(℃) (这是常用单位) 质量(m) :千克(Kg)密度(ρ ) :千克/米 3(Kg/m3) 。力(F) :牛顿(N)功(能,电功,电能) (W) :焦耳(J) 功率(电功率) (P) :瓦特(w)压强(p) :帕斯卡(Pa)机械效率(η )热量(电热) (Q) :焦耳(J) 比热容(c) :焦耳/千克 摄氏度(J/Kg℃)热值(q) :J/kg 或 J/m3 电流(I) :安培(A)电压(U) :伏特(V) 电阻(R) :欧姆(Ω ) 。
单位换算
1nm=10-9m,1mm=10-3m,1cm=10-2m;1dm=0.1m,1Km=103m,1h=3600s,1min=60s, 1Kwh=3.6×106J.1Km/h=5/18m/s=1/3.6m/s,1g/cm3=103Kg/m3,1cm2=10-4m2, 1cm3=1mL=10-6m3,1dm3=1L=10-3m3, 词冠:m 毫(10-3),μ 微(10-6),K 千(103) ,M 兆(106)
公式
1.速度 v=s/t; 2.密度ρ =m/v; 3.压强 P=F/s=ρ gh; 4.浮力 F=G 排=ρ 液 gV 排=G(悬浮或漂浮)=F 向上-F 向下=G-F’ ; 5.杠杆平衡条件:F1L1=F2L2;6.功 w=Fs=Gh(克服重力做功)=Pt;7.功率 p=W/t=Fv; 8.机械效率η =W 有/W 总=Gh/Fs=G/nF=G/(G+G 动) =fL/Fs(滑轮组水平拉物体克服摩擦力作功); 9.热量:热传递吸放热 Q=cm△t;燃料完全燃烧 Q=mq=Vq;电热:Q= I2Rt 10.电学公式:电流:I=U/R=P/U 电阻:R=U/I=U2/P 电压:U=IR=P/I 电功:W=Pt =UIt =I2Rt=U2t/R 电热:Q= I2Rt(焦耳定律)=UIt==U2t/R 电功率:P=W/t= UI=I2R=U2/R 串联电路特点:I=I1=I2,U=U1+U2,R=R1+R2 U1:U2=P1:P2=Q1:Q2=W1:W2=R1:R2 并联电路特点:I=I1+I2,U=U1=U2,1/R=1/R1+1/R2 I1:I2=P1:P2=Q1:Q2=W1:W2=R2:R1
1

相关主题
文本预览
相关文档 最新文档