当前位置:文档之家› 地下建筑火灾中的烟气特点及加强控制分析通用范本

地下建筑火灾中的烟气特点及加强控制分析通用范本

地下建筑火灾中的烟气特点及加强控制分析通用范本
地下建筑火灾中的烟气特点及加强控制分析通用范本

内部编号:AN-QP-HT448

版本/ 修改状态:01 / 00

The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis,

Implementation, Follow-Up And Interactive Correction, Summary, Etc.

编辑:__________________

审核:__________________

单位:__________________

地下建筑火灾中的烟气特点及加强控

制分析通用范本

地下建筑火灾中的烟气特点及加强控制

分析通用范本

使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。

引言

随着经济的发展以及人口的增长,城市的用地正在逐渐的紧缺,人类在不断的拓展生存空间,一方面向高层空间发展,建起了许多高层或超高层建筑;另一方面又向地下空间发展,建起了各种用途的地下建筑。两类特殊建筑一旦发生火灾,将会给人们的生命和财产带来巨大的伤害和损失。表一给出了2001和20xx年高层建筑与地下建筑火灾伤亡和财产损失数据。

由表可知,地下建筑火灾次数虽然只是高

层建筑火灾次数的1/8,但是死亡人数却是高层建筑的近1/4,火灾损失达到高层的1/5,可见地下建筑的火灾危险性更大。本文在分析地下建筑火灾烟气特点的基础上,结合当前地下建筑火灾烟气控制的现状和存在的问题,综述了地下建筑火灾烟气的控制方法并提出了一些建议。

一、地下建筑火灾烟气特点

地下建筑,其概念一般是指建造在岩石和土层中的比附近地面标高低2m以上的建筑。一般可分为附建式、单建式和隧道工程等。附建式是指建在高层或多层建筑的地下(如:地下商场、旅馆、电影院、停车库等),有单层

和多层之分,甚至多达四层;单建式地下工程主要是人防工程;地下隧道主要为地下铁道和公路隧道。

一是火灾烟气大,具有阴燃性。地下建筑处于封闭状态,空气流通不畅,出入口少,供气不足,发生火灾后大量的物质在燃烧情况下得不到充足的空气,使燃烧速度与燃烧的充分性受到影响,由于火灾时发烟量与可燃物物理化学特性、燃烧状态和供气程度有关,而地下建筑一般供气不足,因此阴燃时间较长,故发烟量较大。20xx年4月智利北部卡拉马城的一座地下建筑发生阴燃,时间长达4个月之久。

二是烟气的窒息性、减光性、恐怖性。地

下建筑内各种可燃物燃烧时产生的大量烟气和有毒气体(一氧化碳、二氧化碳和其他有毒气体)难以排出,热烟气流错综复杂,不仅严重遮挡视线,使能见度大大降低,影响疏散速度,还会使人产生恐惧心理,极易造成群死群伤事故。20xx年2月18日,韩国大邱地铁发生火灾,由于列车内部装修地板、墙壁为氮化塑料,顶部为聚氨脂材质,燃烧后产生了大量的有毒气体。人们吸入有毒气体后,咽部损伤严重,呼吸衰竭致死,共造成192人死亡,148人受伤。

三是易发生轰燃。由于地下空间的相对封闭性,温度升高,高温热烟气流的体积膨胀快,压力增加快,热烟气流积聚,极易产生轰

燃。1987年伦敦国王十字地铁火灾中,起火6分钟后发生了轰燃,给灭火带来极大危险。

四是热灼伤性。由于地下建筑的排烟排热性差,阴燃时间长,内部空间温度上升快,温度瞬间可高达800~900℃,甚至高达千度以上,人员吸入热烟气后会严重灼伤气管,呼吸衰竭致死[2]。

二、研究地下建筑火灾烟气控制的意义

据统计表明火灾伤亡者中多因烟气毒害所致,因CO中毒窒息死亡或被其它有毒烟气熏死者占火灾总死亡人数的40%~50%,而被烧死的人中,多数是先中毒窒息晕倒后被烧死的。

例如:1999年12月26日,吉林省长春市夏威夷大酒店地下一层的洗浴中心发生火灾,共造成20人死亡,其中18人窒息死亡。因此了解和掌握地下建筑火灾中烟气流动规律,有效控制烟气流动对保障人民生命财产安全意义重大。

三、性能化设计对地下建筑火灾烟气控制提出更高的要求

目前我国只有一部《人民防空工程建筑设计防火规范(GBJ98-87)》尚可作为地下建筑防火设计可遵循的规范性文件。但由于每座建筑的结构、用途及内部可燃物的种类、数量和分布情况均不一样,按照规范统一规定的设计参

数所做出的设计方案并不能满足各个建筑的防火设计要求。目前许多人防工程被开发利用为商场、旅店、车库等,远远超过了设计的使用范围。因此,处方式规范和处方式设计方法在客观性和科学性上存在着相当大的局限性,需要根据具体场所的火灾发展特性和烟气流动规律来设置有针对性的防排烟措施。能否针对具体建筑开展合理的性能化防火设计完全取决于对该类建筑火灾和烟气流动规律的深入理解。

四、加强地下建筑烟气控制的对策分析

在目前的《人民防空工程建筑设计防火规范(GBJ98-87)》中,主要通过以下几个方面对地下建筑的防火防烟进行规定。

一是装修材料方面。(1)疏散走道、封闭楼梯间、防烟楼梯间等人员疏散的部位,其墙和顶部的装修应采用非燃材料。其他部位的装修不应采用可燃材料。严禁使用塑料类制品作装修材料(塑料壁纸除外)。(2)管道穿越防火墙、楼板及设有防火门的隔墙时,应用非燃材料将管道周围的空隙紧密填塞。(3)通过防火墙或设有防火门的隔墙下的地沟,应将防火墙或隔墙伸至地沟底板。当风道通过防火墙或设有甲级防火门的隔墙时,应采取阻火措施。(4)变形缝(包括沉降缝、伸缩缝)的表面装饰层不应采用可燃材料。

二是防火防烟分区方面。(1)人防工程内应采用防火墙划分防火分区,且防火墙上不应开设

门窗洞口,当必须开设时,应设甲级防火门窗。

(2)每个防火分区的最大允许使用面积不应超过400平方米(本规范另有规定者除外)。当设有自动灭火设备时,最大允许使用面积可增加一倍;局部设置时,增加的面积可按该局部面积的一倍计算。电影院、礼堂的观众厅,防火分区最大允许使用面积不应超过1000平方米。当设有自动灭火设备时,其最大允许使用面积也不得增加。(3)对于地下建筑,每个防烟分区的使用面积不应大于400平方米(当顶棚高度在6米以上时,可不受此限)。对于单层的地下建筑,一般按面积进行水平分区,而对于多层的地下建筑,除了水平分区外,还应进行垂直分区。(4)防排烟分区不允许跨越防火分区。(5)地下建筑应单独划分防烟分区,不能同其地上建

筑部分划分在同一防烟分区内。(6)需设排烟设施的走道,净高不超过6m的房间,应采用挡烟垂壁、隔墙或从顶棚突出不小于0.5m的梁划分防烟分区,梁或垂壁底至室内地面的高度不应小于1.8m。

三是自动消防设施方面。(l)使用面积超过1000平方米的商场、医院、旅馆、餐厅、展览厅、丙类生产车间、丙类和丁类物品库房等应设置自动喷水灭火设备和火灾自动报警系统。

(2)电影院和礼堂的舞台、放映室、观众厅、休息室等火灾危险性较大的部位应设置火灾自动报警系统,其中超过800个座位的观众厅,且吊顶下表面至观众席地面高度不超过8米时,舞台面积超过200平方米时应设置自动喷水灭

火系统。(3)代替防火墙的防火卷帘,其上部应设水幕保护。

四是防排烟系统的设计方面。(1)走道或房间采用机械排烟时,排烟风机的风量担负一个防烟分区排烟时,应按该防烟分区面积每平方米不小于60m3/h计算,但排烟风机的最小排烟风量不应小于7200m3/h;担负两个或两个以上防烟分区排烟时,应按最大防烟分区面积每平方米不小于120m3/h计算。(2)走道或房间采用自然排烟时,其排烟口总面积(当利用采光窗井排烟时为窗口排烟的有效面积)不应小于该防烟分区面积的2%。(3)防烟楼梯间及其前室,宜采用独立的机械加压送风。(4)每个防烟分区内必须设置排烟口,并应设在顶棚或墙面上部的排

烟有效部位,且与该防烟分区内最远点的水平距离不应超过30m。排烟口平时应处于关闭状态,可采用手动或自动开启方式。排烟风机与排烟口应设有联动装置,当任何一个排烟口开启时,排烟风机应自动起动。(5)排烟风机宜采用离心式风机,并应在烟气温度280℃时能连续工作30min。排烟风机的入口处,应设当烟气温度超过280℃时能自动关闭的防火阀,并与排烟风机联锁。(6)机械排烟和加压送风管道的风速,当采用金属风道时,不应大于

20m/s;当采用内表面光滑的混凝土等非金属风道时,不应大于15m/s。排烟口的风速不宜大于10m/s;送风口的风速不宜大于15m/s。

(7)排烟口、排烟阀门、排烟管道必须采用非燃材料制成,并与可燃物的距离不应小于

15cm。

五、加强地下建筑烟气控制建议及展望

地下建筑火灾中的烟气直接关系到人民的生命安全,从现行的规范来看,我国在地下烟气控制方面还存在着严重的不足,这是一个亟待解决的矛盾。未来的发展必将是性能化方向,但从目前的规范过渡到性能化肯定会有一段很长的路要走,已有的实验结果虽初步揭示了地下建筑火灾烟气流动的基本规律,但是由于试验研究的次数和取得的数据较少,还无法充分满足地下建筑性能化防火设计研究的需要,因此笔者建议今后应从以下几个方面开展更加细致的工作:

1.地下通风空调系统与消防系统联动。当探测到火灾时,房间内的空调系统关闭,走廊内的常闭机械排风机和加压送风机开启,以避免烟气通过室内中央空调蔓延和保证防烟楼梯间的正压状态。

2.构筑地下紧急疏散体系,确保火灾时人员可通过楼梯或滑梯向地下更深处进行疏散,而后通过专用地下通道到达室外,以避免火灾烟气流动方向与人员的疏散方向一致造成的危害。

3.开展地下建筑火灾的试验研究,完善火灾烟气流动模型,优化程序设计,建立丰富的

火灾数据库,不断修订和完善现行规范,满足地下建筑性能化防火设计的需要。

可在此位置输入公司或组织名字

You Can Enter The Name Of The Organization Here

浅析火灾烟气的流动及控制

浅析火灾烟气的流动及控制 2015级,安全工程,*** 摘要:随着我国现代化建设的飞速发展,高层建筑在全国一些大中型城市像雨后春笋般地蓬勃发展起来,随之而来的高层建筑火灾也越来越多,火灾中所产生的烟气会对受灾人群及扑救人员造成伤害,所产生的烟囱效应对高层建筑火灾的危害越来越明显,是导致人员伤亡的重要原因,因此要达到在火灾初期阶段最大程度降低人员和财产损失的目的,就必须深入了解研究火灾烟气的特征、流动规律,并以此为依据对火灾烟气的产生和运动进行控制。 关键词: 火灾烟气;流动状态;烟囱效应,防排烟系统 有燃烧或热解作用所产生的悬浮在气相中的可见的固体和液体微粒称为烟或烟粒子。含有烟粒子的气体称为烟气。在火灾发展过程中产生的烟气称为火灾烟气,火灾烟气是建筑火灾中导致人员伤亡的主要因素之一,因此火灾烟气的控制是建筑防火性能化设计的重要内容,与人员安全疏散设计密切相关,开展火灾烟气控制系统的性能化设计必须了解火灾烟气特征及流动规律。 1 火灾烟气的组成 火灾烟气的组成成分取决于可燃物的化学组成和燃烧条件,大部分可燃物都属于有机化合物,主要由碳、氧、氢、硫、磷、氮等元素组成。其中碳、氢、氧、硫、磷等燃烧时分别生成二氧化碳、一氧化碳、水蒸气、二氧化硫和五氧化二磷等产物。氮在燃烧过程中不起反应而呈游离状态析出,氧在燃烧过程中被消耗掉了。可燃物在不完全燃烧时,会同时生成完全燃烧产物和不完全燃烧产物。含碳多的物质在缺氧条件下燃烧时还将产生大量的碳粒子。 1.1 单质燃烧产物 一般单质在空气中完全燃烧,其产物为构成该单质的元素的氧化物,如碳、氢、硫等。1.2 化合物燃烧产物 在空气中燃烧除生成完全燃烧产物外,还会生成未完全燃烧产物。分子化合物会热裂解,并进一步燃烧,其中一氧化碳为最典型的未完全燃烧产物。

建筑火灾烟气控制浅谈

建筑火灾烟气控制浅谈 摘要:本文首先对建筑火灾烟气流动过程进行了分析,介绍了着火房间内外的压力分布情况,着火房间门窗开启时的气体流动情况以及烟囱效应,进而分析烟气的质量生成率、温度及分布情况、风和建筑通风系统对烟气流动的影响情况,最后对提出了烟气控制的几种方式,并分析比较。 关键词:建筑火灾,烟气流动,烟气控制 1建筑火灾烟气流动的分析 建筑物内烟气的流动在不同燃烧阶段表现是不同的。在火灾发生初期,烟气由于其温度高且密度小,便会伴随着火焰向上升腾,遇到顶棚后,则转为水平方向的层流流动。试验研究表明,这种层流状态可保持40-50m。烟气沿着顶棚流动时,如遇到梁或者挡烟垂壁就会反向流动,并逐渐在顶棚聚集,直到烟气的厚度超过挡烟物体时,就会绕过挡烟物体流到其他的空间。此阶段,烟气扩撒速度约为0.3m/s。轰然发生前,烟气扩散速度约为0.5-0.8m/s,此时烟气层厚度已充满走廊高度的一半。轰燃发生时,烟气的喷出速度可达每秒数十米。当然,烟气在垂直方向上的流动也是很迅速的。实验证明,烟气在垂直方向上的流动速度要比水平方向流动速度快很多,一般可达3-5m/s。烟气的流动通常遵循由压力高的地方向压力低的地方流动这个基本规律,倘若房间内为负压,那么烟气就会通过通风口进入室内。 1.1着火房间内外压力分布 着火房间内外压力分布如图1所示。阴影区域为着火房间内外的隔墙,阴影区域右侧为着火房间,左侧为室外,相应的气体温度分别为t n,t w,相应的密度分别为ρn,ρw,房间高度,即从地面到顶棚的垂直距离为H0。下面是以地面为基准面,来分析垂直方向上着火房间内外的压力分布情况。 图1 着火房间内外压力分布 令着火房间内外地面上的静压力分别为P1n,P1w,则距地面垂直距离为h处的室内外的静压力分别为 室内 室外 地面上室内外的压力差为 距地面h处的室内外压差为 顶棚上的室内外压差为 研究结果证明,在垂直于地面的某一高度位置上,必然会出现室内外压力相等的情况,即室内外压力差为0,通过该位置的水平面就是该着火房间的中性面(层),令中性面距地面 的高度为h1,则有: 当火灾发生时,室内的温度必然会高于室外的温度,即t n>t w,所以(ρn-ρw)>0。因此,就会得到: 1在中性层以下,即h

地下建筑火灾中的烟气特点及加强控制分析通用范本

内部编号:AN-QP-HT448 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 地下建筑火灾中的烟气特点及加强控 制分析通用范本

地下建筑火灾中的烟气特点及加强控制 分析通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 引言 随着经济的发展以及人口的增长,城市的用地正在逐渐的紧缺,人类在不断的拓展生存空间,一方面向高层空间发展,建起了许多高层或超高层建筑;另一方面又向地下空间发展,建起了各种用途的地下建筑。两类特殊建筑一旦发生火灾,将会给人们的生命和财产带来巨大的伤害和损失。表一给出了2001和20xx年高层建筑与地下建筑火灾伤亡和财产损失数据。 由表可知,地下建筑火灾次数虽然只是高

舰船典型区域火灾烟气流动特性与控制方法研究

舰船典型区域火灾烟气流动特性与控制方法研究火灾是船舶安全的重大威胁之一,火灾中烟气的有效控制对于保障舰船火灾安全乃至生命力安全都具有重要意义。然而由于对机械通风条件下舰船火灾特性认识的不足,相对于探测和灭火技术而言,舰船烟气控制技术发展保守而缓慢。论证烟气控制的必要性和可行性对于促进舰船烟气控制的发展是十分必要的,同时具有针对性和适用性的舰船火灾烟气控制系统设计方法也亟待建立。本论文针对以上问题,提出了舰船火灾中,不同阶段、不同区域内的烟气控制需求和目标。 并通过分析将所提出的烟气控制工程需求转化为“舱室机械通风烟气控制效果”和“复杂走廊区烟气控制方法”两个火灾科学研究问题。设计并搭建了舰船火灾烟气流动与控制全尺寸实验平台,开展了一系列舱室规模和舱段规模的火灾实验,获得了不同机械通风条件下舱室和走廊火灾参数变化规律,提出了舱室和 走廊烟气控制系统中关键参数的设计方法。本文实验条件下得到的主要结论如下:1、研究了机械通风口配置对舱室火燃烧参数和火灾环境参数的影响规律,提出了适用于舰船舱室烟气控制的通风口配置形式。相比于无通风工况,机械通风工况中燃料质量损失速率增大。 机械通风条件下,单风口工况燃料质量损失速率低于双风口工况。燃料质量损失速率随着送风口的升高会出现突然降低的转折,本研究中转折工况对应的送风口高度在单风口条件下为0.43H,双风口条件下为0.76H(H为舱室高度)。在机械通风强化燃烧增大产热与排出烟气冷却舱室的共同作用下,单风口工况中舱室温度低于无通风工况,即舱室热危害性减小:而双风口送风则会形成高于无通风工况的舱室温度,恶化舱室热危险性。双风口工况中舱室温度随送风口呈现先升高后降低的趋势,而各单风口工况中舱室温度差别较小。 通过修正下层温度,改进了舱室三层温度分布模型的热分层高度计算方法。利用舱内氧气实验数据,计算得到烟气层稳定性参数Ψ=(Y∞-Yl)/(Y∞-Yu)。舱室热分层高度和烟气层稳定性参数计算结果表明,减少开启的送风口数目和增大送风口高度均会导致舱内烟气层高度下降,稳定性降低。根据舰船舱室烟气控制目标及消防人员对火灾产物的耐受性,采用温度作为舱室烟控效果的主要评价参数。 根据不同通风口配置工况实验结果的综合分析,适用于舰船舱室烟气控制的

地下建筑火灾中的烟气特点及加强控制分析(通用版)

地下建筑火灾中的烟气特点及加强控制分析(通用版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0650

地下建筑火灾中的烟气特点及加强控制分 析(通用版) 引言 随着经济的发展以及人口的增长,城市的用地正在逐渐的紧缺,人类在不断的拓展生存空间,一方面向高层空间发展,建起了许多高层或超高层建筑;另一方面又向地下空间发展,建起了各种用途的地下建筑。两类特殊建筑一旦发生火灾,将会给人们的生命和财产带来巨大的伤害和损失。表一给出了2001和2002年高层建筑与地下建筑火灾伤亡和财产损失数据。 由表可知,地下建筑火灾次数虽然只是高层建筑火灾次数的1/8,但是死亡人数却是高层建筑的近1/4,火灾损失达到高层的1/5,可见地下建筑的火灾危险性更大。本文在分析地下建筑火灾烟气特点的基础上,结合当前地下建筑火灾烟气控制的现状和存在的问题,

综述了地下建筑火灾烟气的控制方法并提出了一些建议。 一、地下建筑火灾烟气特点 地下建筑,其概念一般是指建造在岩石和土层中的比附近地面标高低2m以上的建筑。一般可分为附建式、单建式和隧道工程等。附建式是指建在高层或多层建筑的地下(如:地下商场、旅馆、电影院、停车库等),有单层和多层之分,甚至多达四层;单建式地下工程主要是人防工程;地下隧道主要为地下铁道和公路隧道。 一是火灾烟气大,具有阴燃性。地下建筑处于封闭状态,空气流通不畅,出入口少,供气不足,发生火灾后大量的物质在燃烧情况下得不到充足的空气,使燃烧速度与燃烧的充分性受到影响,由于火灾时发烟量与可燃物物理化学特性、燃烧状态和供气程度有关,而地下建筑一般供气不足,因此阴燃时间较长,故发烟量较大。2002年4月智利北部卡拉马城的一座地下建筑发生阴燃,时间长达4个月之久。 二是烟气的窒息性、减光性、恐怖性。地下建筑内各种可燃物燃烧时产生的大量烟气和有毒气体(一氧化碳、二氧化碳和其他有毒

最新2020消防知识点:建筑火灾的烟气蔓延

最新2020消防知识点:建筑火灾的烟气蔓延2020消防知识点:建筑火灾的烟气蔓延 建筑发生火灾时,烟气流动的方向通常是火势蔓延的一个主要方向。一般,500℃以上热烟所到之处,遇到的可燃物都有可能被引燃起火。 烟气的扩散路线 烟气扩散流动速度与烟气温度和流动方向有关。烟气在水平方向的扩散流动速度较小,在火灾初期为0.1~0.3m/s,在火灾中期为0.5~0.8m/s。烟气在垂直方向的扩散流动速度较大,通常为1~5m/s。在楼梯间或管道竖井中,由于烟囱效应产生的抽力,烟气上升流动速度很大,可达6~8m/s,甚至更大。 当高层建筑发生火灾时,烟气在其内的流动扩散一般有三条路线:第一条,也是最主要的一条是着火房间→走廊→楼梯间→上部各楼层→室外;第二条是着火房间→室外;第三条是着火房间→相邻上层房间→室外。 烟气流动的驱动 1.烟囱效应 当建筑物内外的温度不同时,室内外空气的密度随之出现差别,这将引发浮力驱动的流动。竖井是发生这种现象的主要场合,在竖井中,由于浮力作用产生的气体运动十分显著,通常称这种现象为烟囱效应。在火灾过程中,烟囱效应是造成烟气向上蔓延的主要因素。 2.火风压 火风压是指建筑物内发生火灾时,在起火房间内,由于温度上升,气体迅速膨胀,对楼板和四壁形成的压力。火风压的影响主要在起火房间,如果火风压大于进风口的压力,则大量的烟火将通过外墙窗口,由室外向上蔓延;若火风压等于或小于进风口的压力,则烟火便全部从内部蔓延,当它进入楼梯间、电梯井、管道井、电缆井等竖向孔道以后,会大大加强烟囱效应。 烟囱效应和火风压不同,它能影响全楼。 3.外界风的作用 烟气蔓延的途径 1.孔洞开口蔓延

地下建筑火灾中的烟气特点及加强控制分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.地下建筑火灾中的烟气特点及加强控制分析正式版

地下建筑火灾中的烟气特点及加强控 制分析正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 引言 随着经济的发展以及人口的增长,城市的用地正在逐渐的紧缺,人类在不断的拓展生存空间,一方面向高层空间发展,建起了许多高层或超高层建筑;另一方面又向地下空间发展,建起了各种用途的地下建筑。两类特殊建筑一旦发生火灾,将会给人们的生命和财产带来巨大的伤害和损失。表一给出了2001和20xx年高层建筑与地下建筑火灾伤亡和财产损失数据。 由表可知,地下建筑火灾次数虽然只

是高层建筑火灾次数的1/8,但是死亡人数却是高层建筑的近1/4,火灾损失达到高层的1/5,可见地下建筑的火灾危险性更大。本文在分析地下建筑火灾烟气特点的基础上,结合当前地下建筑火灾烟气控制的现状和存在的问题,综述了地下建筑火灾烟气的控制方法并提出了一些建议。 一、地下建筑火灾烟气特点 地下建筑,其概念一般是指建造在岩石和土层中的比附近地面标高低2m以上的建筑。一般可分为附建式、单建式和隧道工程等。附建式是指建在高层或多层建筑的地下(如:地下商场、旅馆、电影院、

浅析火灾烟气的流动及控制

- 浅析火灾烟气的流动及控制 2015级,安全工程,*** 摘要:随着我国现代化建设的飞速发展,高层建筑在全国一些大中型城市像雨后春笋般地蓬勃发展起来,随之而来的高层建筑火灾也越来越多,火灾中所产生的烟气会对受灾人群及扑救人员造成伤害,所产生的烟囱效应对高层建筑火灾的危害越来越明显,是导致人员伤亡的重要原因,因此要达到在火灾初期阶段最大程度降低人员和财产损失的目的,就必须深入了解研究火灾烟气的特征、流动规律,并以此为依据对火灾烟气的产生和运动进行控制。 关键词: 火灾烟气;流动状态;烟囱效应,防排烟系统 有燃烧或热解作用所产生的悬浮在气相中的可见的固体和液体微粒称为烟或烟粒子。含有烟粒子的气体称为烟气。在火灾发展过程中产生的烟气称为火灾烟气,火灾烟气是建筑火灾中导致人员伤亡的主要因素之一,因此火灾烟气的控制是建筑防火性能化设计的重要容,与人员安全疏散设计密切相关,开展火灾烟气控制系统的性能化设计必须了解火灾烟气特征及流动规律。 1 火灾烟气的组成 火灾烟气的组成成分取决于可燃物的化学组成和燃烧条件,大部分可燃物都属于有机化合物,主要由碳、氧、氢、硫、磷、氮等元素组成。其中碳、氢、氧、硫、磷等燃烧时分别生成二氧化碳、一氧化碳、水蒸气、二氧化硫和五氧化二磷等产物。氮在燃烧过程中不起反应而呈游离状态析出,氧在燃烧过程中被消耗掉了。可燃物在不完全燃烧时,会同时生成完全燃烧产物和不完全燃烧产物。含碳多的物质在缺氧条件下燃烧时还将产生大量的碳粒子。 1.1 单质燃烧产物 一般单质在空气中完全燃烧,其产物为构成该单质的元素的氧化物,如碳、氢、硫等。1.2 化合物燃烧产物 在空气中燃烧除生成完全燃烧产物外,还会生成未完全燃烧产物。分子化合物会热裂解,并进一步燃烧,其中一氧化碳为最典型的未完全燃烧产物。 - -优质专业-

建筑火灾烟气流动规律与控制技术

建筑火灾烟气流动规律与控制技术 消防0901 黄锦林 1208081009 一、火灾与火灾烟气 1、火灾 (1)火灾是指在时间和空间上失去控制的燃烧所造成的灾害。在各种灾害中,火灾是最经常、最普遍地威胁公众安全和社会发展的主要灾害之一。人类能够对火进行利用和控制,是文明进步的一个重要标志。所以说人类使用火的历史与同火灾作斗争的历史是相伴相生的,人们在用火的同时,不断总结火灾发生的规律,尽可能地减少火灾及其对人类造成的危害。(2)火灾根据可燃物的类型和燃烧特性,分为A、B、C、D、E、F六类。 A类火灾:指固体物质火灾。这种物质通常具有有机物质性质,一般在燃烧时能产生灼热的余烬。如木材、煤、棉、毛、麻、纸张等火灾。 B类火灾:指液体或可熔化的固体物质火灾。如煤油、柴油、原油,甲醇、乙醇、沥青、石蜡等火灾。 C类火灾:指气体火灾。如煤气、天然气、甲烷、乙烷、丙烷、氢气等火灾。 D类火灾:指金属火灾。如钾、钠、镁、铝镁合金等火灾。 E类火灾:带电火灾。物体带电燃烧的火灾。 F类火灾:烹饪器具内的烹饪物(如动植物油脂)火灾。 (3)扑救措施 扑救A类火灾可选择水型灭火器、泡沫灭火器、磷酸铵盐干粉灭火器,卤代烷灭火器。 扑救B类火灾可选择泡沫灭火器(化学泡沫灭火器只限于扑灭非极性溶剂)、干粉灭火器、卤代烷灭火器、二氧化碳灭火器。 扑救C类火灾可选择干粉灭火器、卤代烷灭火器、二氧化碳灭火器等。 扑救D类火灾可选择粉状石墨灭火器、专用干粉灭火器,也可用干砂或铸铁屑末代替。扑救E类带电火灾可选择干粉灭火器、卤代烷灭火器、二氧化碳灭火器等。带电火灾包括家用电器、电子元件、电气设备(计算机、复印机、打印机、传真机、发电机、电动机、变压器等)以及电线电缆等燃烧时仍带电的火灾,而顶挂、壁挂的日常照明灯具及起火后可自行切断电源的设备所发生的火灾则不应列入带电火灾范围。 扑救F类火灾可选择干粉灭火器。 2、火灾烟气 (1)定义 美国试验与材料学会(ASTM)给烟下的定义:某种物质在燃烧或分解时散发出的固态或液态悬浮微粒和高温气体。 NFPA92B对烟气的定义:是在上述定义之外,加上“以及混合进去的任何空气”,这种定义可能对烟气控制更有用。 概括起来,烟气由三类物质组成:燃烧物质释放出的高温蒸气和有毒气体;被分解和凝聚的未燃物质;被火焰加热而带入上升气流中的大量空气。 (2)火灾烟气的危害性 主要表现在毒害性、减光性和恐怖性三个方面。 a)火灾烟气的毒害性。火灾烟气的毒害性首先是使受灾人员或扑救人员直接中毒死亡,其 次是受灾人员或扑救人员因缺氧或一氧化碳中毒晕倒后而被火烧死。具体表现在以下四个方面。

精讲:建筑火灾的烟气蔓延

建筑发生火灾时,烟气流动的方向通常是火势蔓延的一个主要方向。一般,500℃以上热烟所到之处,遇到的可燃物都有可能被引燃起火。 一、烟气的扩散路线 烟气扩散流动速度与烟气温度和流动方向有关。烟气在水平方向的扩散流动速度较小,在火灾初期为0.1~0.3m/s,在火灾中期为0.5~0.8m/s。烟气在垂直方向的扩散流动速度较大,通常为1~5m/s。在楼梯间或管道竖井中,由于烟囱效应产生的抽力,烟气上升流动速度很大,可达6~8m/s,甚至更大。 当高层建筑发生火灾时,烟气在其内的流动扩散一般有三条路线:第一条,也是最主要的一条是着火房间→走廊→楼梯间→上部各楼层→室外;第二条是着火房间→室外;第三条是着火房间→相邻上层房间→室外。 二、烟气流动的驱动力 1.烟囱效应 当建筑物内外的温度不同时,室内外空气的密度随之出现差别,这将引发浮力驱动的流动。竖井是发生这种现象的主要场合,在竖井中,由于浮力作用产生的气体运动十分显著,通常称这种现象为烟囱效应。在火灾过程中,烟囱效应是造成烟气向上蔓延的主要因素。 2.火风压 火风压是指建筑物内发生火灾时,在起火房间内,由于温度上升,气体迅速膨胀,对楼板和四壁形成的压力。火风压的影响主要

在起火房间,如果火风压大于进风口的压力,则大量的烟火将通过外墙窗口,由室外向上蔓延;若火风压等于或小于进风口的压力,则烟火便全部从内部蔓延,当它进入楼梯间、电梯井、管道井、电缆井等竖向孔道以后,会大大加强烟囱效应。 烟囱效应和火风压不同,它能影响全楼。 3.外界风的作用 三、烟气蔓延的途径 1.孔洞开口蔓延 2.穿越墙壁的管线和缝隙蔓延 3.闷顶内蔓延 由于烟火是向上升腾的,因此顶棚上的入孔、通风口等都是烟火进入的通道。闷顶内往往没有防火分隔墙,空间大,很容易造成火灾水平蔓延,并通过内部孔洞再向四周的房间蔓延。 4.外墙面蔓延 在外墙面,高温热烟气流会促使火焰蹿出窗口向上层蔓延。一方面,由于火焰与外墙面之间的空气受热逃逸形成负压,周围冷空气的压力致使烟火贴墙面而上,使火蔓延到上一层;另一方面,由于火焰贴附外墙面向上蔓延,致使热量透过墙体引燃起火层上面一层房间内的可燃物。建筑物外墙窗口的形状、大小对火势蔓延有很大影响。

高层建筑火灾烟气控制和人员疏散营救(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 高层建筑火灾烟气控制和人员疏 散营救(新版)

高层建筑火灾烟气控制和人员疏散营救(新 版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 现代化的高层民用建筑使用了大量可燃材料装饰,配有大量家电和家具,这些可燃物在燃烧过程中会产生大量的有毒烟气和热量。这些烟气是阻碍人们逃生和进行灭火行动,导致人员死亡的主要原因之一。据统计表明,由于一氧化碳中毒窒息死亡或被其他有毒烟气熏死者一般占火灾总死亡人数的40%~50%,而被烧死的人当中,多数是先中毒窒息晕倒后被烧死的。因此,了解和掌握高层建筑火灾中的烟气流动规律,控制烟气扩散,有效的组织营救和人员疏散是高层建筑火灾扑救中的首要问题。 一、烟气流动规律 建筑物内烟气流动的形成,是由于风和各种通风系统造成的压力差,以及由于温度差造成气体密度差而形成的烟囱效应,其中温差和温度变化是烟气流动最为重要的因素。 1、建筑物内通风、空调系统对建筑物内压力的影响,取决于送风

浅谈大型地下商场火灾烟气特性及排烟(标准版)

浅谈大型地下商场火灾烟气特性及排烟(标准版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0389

浅谈大型地下商场火灾烟气特性及排烟 (标准版) 地下建筑包括的范围很广,主要有地下商场(商业街)、地下娱乐场所、地下旅馆等人员密集场所,以及地下仓库、地下设备机房、地下停车场等易燃易炸场所,和海底隧道、公(铁)路隧道等交通设施。大型地下商场火灾的危险性主要表现在发生火灾时起火点隐蔽,烟雾浓,久聚不散。由于位于地下,这些建筑一旦发生火灾,疏散十分困难,容易造成重大人员伤亡。据火灾统计资料表明,烟气是建筑火灾中致人员死亡的罪魁祸首,被烟熏死的占比例较大,最高达80%,在被火烧死的人数中,多数也是先中毒窒息晕倒后被火烧死的。在火灾丧生的人数中,大多数是浓烟熏呛产生窒息反应而导致死亡。显而易见,在大型地下商场发生火灾时,如何有效地进行火场排烟,是阻止火势蔓延和抢救被困人员及灭火的重要环节。

因而,大型地下商场火场排烟成了现代消防领域里亟待研究解决的新课题。一、大型地下商场火灾烟气的特性及其危险因素 (一)烟雾密度大,中性平面低。大型地下商场火灾烟雾密度大的原因主要有两个方面:一是烟雾扩散渠道有限,生成的烟雾多数积存在有限的空间内,因此,大型地下商场火灾在单位立体空间内,烟的密度大于其它建筑物火灾的密度。二是由于在大型地下商场内空气补充缓慢,物质受热气化后得不到充分燃烧,致使大量不完全燃烧物生成,从而又增加了烟在空气中的含量。由于大型地下商场火灾形成了大量烟雾,出现的另一个特点是,烟雾向外流动时,在其流动通道横截面上烟雾占有面积大,造成烟雾同空气接触的水平面低,烟雾流动通道几乎变成了一个大烟囱,使战斗人员深入内部进行火情侦察和灭火战斗十分困难。 (二)烟雾温度高,易引发新的燃烧。火灾中烟雾温度取决于易燃烧物质燃烧所放出的热量。目前,大部分大型地下商场可燃物质数量大,单位火灾荷载大大高于地面建筑,一旦发生火灾,火源点附近的温度往往接近于1000°C左右,由此造成烟雾的温度很高。

第十一讲 民用建筑火灾烟气的控制

第十一讲民用建筑火灾烟气的控制 本讲主要学习内容:建筑火灾烟气特性;烟气流动规律;烟气的控制原则;排烟方式。 11.1 建筑火灾烟气的特性及控制的必要性 建筑火灾烟气的特性:危害性大;烟气的毒害性;烟气高温危害;烟气遮光作用 建筑火灾烟气控制的必要性 建筑火灾烟气的成分:发生火灾时物质在燃烧和热分解作用下生成产物与剩余空气的混合物;烟气的化学成分主要有:CO2、CO、水蒸气、其他气体:氰化氢(HCN)、氨(NH3)。 案例:韩国汉城一饭店:火焰沿风道从2层烧到21层顶层,死伤224人; 美国亚特兰大一饭店:3楼走道着火,全部烧毁,死伤220人; 杭州一宾馆:电焊烧着风道保温材料,从一层烧到顶层; 1996年4月11日下午,德国杜塞尔多夫机场:电焊作业引起大火,半小时内火焰沿空调管道扩散到2/3面积,乘客与员工16人丧生,60多人受伤; 1998年3月,伦敦Heathrow机场:厨房排烟风道沉积的油渍着火,火焰沿风管蔓延到200米以外 火灾伤亡原因:烟气是造成火灾死亡事故的主要原因;烟气中的CO2、HCN、NH3等是有毒性气体;大量的CO2气体及燃烧后消耗了空气中大量氧气,引起人体缺氧而窒息;当光线通过烟气时,致使光强度减弱,能见度降低,不利于疏散与扑救.;空调风道是火灾蔓延和烟气传播的主要途径比例高达80%。 建筑防火排烟的目的是为了安全 怎样防止火灾:人人思想上要高度重视;建筑物、家具、空调设备所用材料的非燃化;对可燃物加以妥善处置; 建筑物起火应采取的措施;立即使用各种消防设施, 隔绝新鲜空气的供给, 切断燃烧的部位; 为确保有效的疏散通路, 必须设置防烟排烟设施,保证人员的安全疏散转移。 高层民用建筑设计防火规范(GB50045-95)。 11.2 火灾烟气的流动规律与控制原则 1)火灾烟气流动的规律: 扩散引起的烟气流动:浓度差产生的质量交换,着火区的烟粒子或其他有害气体的浓度大,必然会向浓度低的地区扩散,与其他因素相比迁移的能力较弱 烟囱效应引起的烟气流动;浮力引起的烟气流动;热膨胀引起的烟气流动; 风力引起的烟气流动:着火房间在正压侧,引导烟气向负压侧的房间流动;着火房间在负压侧,风压引导烟气向室外流动; 通风空调系统引起的烟气流动:系统运行时,空气流动方向即为烟气流动方向,从回风口、新风口进入;系统不运行时,在烟囱效应、浮力、热膨胀和风压的作用下,各房间压力不同,烟气通过房间的风口、风道传播。 火灾烟气的控制原则: 隔断与阻挡:防火分区、防烟分区 排烟:利用自然和机械作用力,将烟气排出室外;排烟部位:着火区、疏散通道 加压防烟:门开启时,门洞有一定的向外风速;门关闭时,室内有一定正压值 空调设计与防火防烟 ◇防火分区的目的:防止火灾的扩大及蔓延 ◇分区方法:根据房间用途和性质不同对建筑物进行防火分区;在分区内应设置防火墙、防火门,防火卷帘等

2019消防知识点:建筑火灾的烟气蔓延

2019消防知识点:建筑火灾的烟气蔓延 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 建筑发生火灾时,烟气流动的方向通常是火势蔓延的一个主要方向。一般,500℃以上热烟所到之处,遇到的可燃物都有可能被引燃起火。 烟气的扩散路线 烟气扩散流动速度与烟气温度和流动方向有关。烟气在水平方向的扩散流动速度较小,在火灾初期为~/s,在火灾中期为~/s。烟气在垂直方向的扩散流动速度较大,通常为1~5m/s。在楼梯间或管道竖井中,由于烟囱效应产生的抽力,烟气上升流动速度很大,可达6~8m/s,甚至更大。 当高层建筑发生火灾时,烟气在其内的流动扩散一般有三条路线:第一条,也是最主要的一条是着火房间→走廊→楼梯间→上部各楼层→室外;第二条是着

火房间→室外;第三条是着火房间→相邻上层房间→室外。 烟气流动的驱动 1.烟囱效应 当建筑物内外的温度不同时,室内外空气的密度随之出现差别,这将引发浮力驱动的流动。竖井是发生这种现象的主要场合,在竖井中,由于浮力作用产生的气体运动十分显著,通常称这种现象为烟囱效应。在火灾过程中,烟囱效应是造成烟气向上蔓延的主要因素。 2.火风压 火风压是指建筑物内发生火灾时,在起火房间内,由于温度上升,气体迅速膨胀,对楼板和四壁形成的压力。火风压的影响主要在起火房间,如果火风压大于进风口的压力,则大量的烟火将通过外墙窗口,由室外向上蔓延;若火风压等于或小于进风口的压力,则烟火便全部从内部蔓延,当它进入楼梯间、电梯井、管道井、电缆井等竖向孔道以后,会大大加强烟囱效应。

烟囱效应和火风压不同,它能影响全楼。 3.外界风的作用 烟气蔓延的途径 1.孔洞开口蔓延 2.穿越墙壁的管线和缝隙蔓延 3.闷顶内蔓延 由于烟火是向上升腾的,因此顶棚上的入孔、通风口等都是烟火进入的通道。闷顶内往往没有防火分隔墙,空间大,很容易造成火灾水平蔓延,并通过内部孔洞再向四周的房间蔓延。 4.外墙面蔓延 在外墙面,高温热烟气流会促使火焰蹿出窗口向上层蔓延。一方面,由于火焰与外墙面之间的空气受热逃逸形成负压,周围冷空气的压力致使烟火贴墙面而上,使火蔓延到上一层;另一方面,由于火焰贴附外墙面向上蔓延,致使热量透过墙体引燃起火层上面一层房间内的可燃物。建筑物外墙窗口的形状、大小对火势蔓延有很大影响。

高分子材料火灾烟气毒性分析及其防烟措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 高分子材料火灾烟气毒性分析及其防烟措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5529-54 高分子材料火灾烟气毒性分析及其 防烟措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 随着科学技术和建筑业的飞速发展,高分子材料正以前所未有的速度改变和提高着人们的生活水平,被广泛使用在建筑装修、装修材料和家具制造中。但是,由于大多数高分子材料均属于易燃(B3级)或可燃(B2级)材料,在使用中遇到高温会分解燃烧且热释放速率高,极易引发火灾并产生大量有毒烟气,阻碍了人员安全疏散和消防部队的灭火救援行动,由此造成巨大的人员伤亡和经济损失。以20xx年底为例,在不到3个月的时间里,全国就连续发生3起死亡10人以上的重、特大火灾:20xx年10月21日,福建莆田一鞋面加工厂发生火灾,造成37人死亡;20xx年12月12日,浙江温州温富大厦和广东东莞樟木头咖啡厅均发生火灾,分别造成21人和10人死亡。

体育馆大空间火灾烟气分析

体育馆大空间火灾烟气分析 摘要:本文对体育馆大空间发生火灾后的烟气流动情况进行计算机模拟分析,分析了火灾发生点在不同区域的情况下烟气的扩散情况及安全影响,并对大空间是否需设置挡烟垂壁进行了计算验证,为类似的体育馆大空间消防设计提供参考。 关键词:体育馆大空间;数值模拟;火灾烟气分布 SMOKE ANALYSIS OF LARGE SPACE FIRE IN GYMNASIUM Liu Jian TONGJI ARCHITECTURAL DESIGN (GROUP) CO., LTD. Abstract: The author simulute The gas flow of fire in large space gymnasium,analysis of the point spread and influence the safety of flue gas in different regions under the condition of fire, and the large space whether the need to set the hanging wall is calculated and verified, the paper provide reference for fire protection design of similar large space gymnasium. Key words:Large space in Gymnasium,Numerical simulation,Fire smoke distribution 1.背景 随着近年经济的发展和人民生活水平的不断提高,市场对文化体育的需求逐渐增大,很多大型体育馆建筑在各地兴建,由于体育馆建筑规模越来越大,且造型越来越多样化,经常出现规范要求与建筑效果相冲突的问题。 本文就对某室内体育馆防烟设施与建筑效果相冲突的问题进行分析,该体育馆屋面采用空间网架结构,观众席座位数有5600个,按照上海市防排烟规范要求,需要在网架内设置约5m高的固定挡烟垂壁加约5m高的活动挡烟垂壁,这样不仅破坏了网架的整体性,其对声、光均有不受控制的遮挡和反射作用,其卷帘盒对整个场馆的美观影响也非常大。而不做防烟设施,又可能对生命财产安全造成重大影响,因此本文将对该室内体育馆设施烟气的运动采用数值模拟的方法,以分析大型体育馆空间烟气对人员活动区的影响,为类似大空间消防设计提供参考。 2.物理模型及参数设置 2.1软件介绍 本项目采用数值模拟软件FDS,该软件由美国国家标准与技术研究院开发。FDS专门从数值技术方面解决一系列适合于热驱动、低速流动的Navier-Stokes方程,重点适用于火灾导致的热烟传播和蔓延的数值模拟。利用FDS软件能够将实际消防安全工程中的一系列物理参

《火灾烟气控制》复习提纲

《火灾烟气控制》复习提纲 第一章 火灾烟气组成 火灾烟气由热解和燃烧所生成的气(汽)体、悬浮颗粒及剩余空气三部分组成。 有机化合物在一般温度条件下,燃烧产物主要有:CO 2、CO 、H 2O 、SO 2、P 2O 5等,此外还有少量的碳氢化合物。 烟气中飘流的热解和燃烧所生成的悬浮颗粒,一般称为烟粒子,通常有游离碳(碳黑)、焦油类粒子和高沸点物质的凝缩液滴等。 在燃烧过程中没有参与燃烧反应的空气成为剩余空气。 火灾烟气的毒害性 缺氧、毒害、尘害、高温。 火灾烟气的基本状态参数(温度、密度) 压力、温度、比容或密度。 火灾烟气的绝对压力为:P y =B+P ys ≈B 。 不计围护结构的冷却作用,烟气与周围冷空气混合后的温度为:000y y k k y y k V t V t t V V +=+ ℃。 经验公式计算混合后的烟温:t y =α1·t y0,α1烟气冷却系数,经过走道取0.7,经过走道和排烟竖井取0.5。t y0为着火房间窜出的烟气温度,一般取500 ℃。 烟气的密度可利用理想气体的状态方程导出:y 0y y y b P 273=T P ρρ,对于火灾烟气,Py ≈B ,0y y y b y b y 273B 353B 353=T P T P T ρρ≈≈ kg/m 3。 烟粒子浓度的表示方法及关系 烟粒子浓度通常有质量浓度、颗粒浓度和光学浓度三种表示方法。 质量浓度:单位容积的烟气中所含烟粒子的质量,s s y m V μ= mg/m 3。 颗粒浓度:单位容积的烟气中所含烟粒子的颗粒数,s s y N n V = 1/m 3。 光学浓度用减光系数Cs 表示,采用光学法,根据Lamber Beer 定律测定,0s C l I I e -= Cd 。 三种烟粒子浓度的相互关系: 质量浓度与颗粒浓度呈线性关系:36s s n d πμρ= 减光系数与质量浓度呈线性关系:32s s C d μρ= 减光系数与颗粒浓度呈线性关系:24s s C d n π= ? 以上线性关系只是近似的线性关系。

相关主题
文本预览
相关文档 最新文档