当前位置:文档之家› 三角恒等变换常考题(含答案)

三角恒等变换常考题(含答案)

三角恒等变换常考题(含答案)
三角恒等变换常考题(含答案)

三角恒等变换基础题型

一.选择题(共20小题,每小题5分)时间60分钟

4.已知sin2α=,则cos2()=()A.﹣B.C.﹣ D.

5.若,则cos(π﹣2α)=()A.B.C.D.

6.已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()

A.﹣ B.﹣ C.D.

7.若,则=()A. B.C.D.

8.已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.

9.若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.

10.若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()

A.B.C.D.

12.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣

13.已知cosα=﹣,且α∈(,π),则tan(α+)等于()A.﹣B.﹣7 C.D.7

15.已知,则sin2α的值为()A.B.C.D.

16.cos15°?cos105°﹣cos75°?sin105°的值为()A.﹣ B.C.D.﹣

17.若tanα=,则sin2α+cos2α的值是()A.﹣B.C.5 D.﹣5

19.cos43°cos77°+sin43°cos167°的值是()A. B.C.D.

21.已知sinα+cosα=,则sin2α=()A.﹣B.﹣ C.D.

23.若tanα=,则cos2α+2sin2α=()A.B.C.1 D.

24.已知向量,且,则sin2θ+cos2θ的值为()

A.1 B.2 C.D.3

25.已知tan(α﹣)=,则的值为()A.B.2 C.2 D.﹣2

26.已知,则tanα=()A.﹣1 B.0 C.D.1

三角恒等变换基础题型组卷

参考答案与试题解析

一.选择题(共30小题)

4.(2017?泉州模拟)已知sin2α=,则cos2()=()

A.﹣ B.C.﹣ D.

【解答】解:==,

由于:,

所以:=,

故选:D.

5.(2017?焦作二模)若,则cos(π﹣2α)=()

A.B.C.D.

【解答】解:由,可得:sinα=.

∵cos(π﹣2α)=﹣cos2α=﹣(1﹣2sin2α)=2sin2α﹣1=.

故选D

6.(2017?衡水一模)已知sin(α+)+sinα=﹣,﹣<α<0,则cos(α+)等于()A.﹣ B.﹣ C.D.

【解答】解:∵sin(α+)+sinα=﹣,

∴,

∴,

∴cos(α﹣)=,

∴cos(α+)=cos[π+(α﹣)]=﹣cos(α﹣)=.

故选C.

7.(2017?商丘三模)若,则=()

A.B.C.D.

【解答】解:∵=cos(α+),

∴=cos[2(α+)]=2cos2(α+)﹣1=2×﹣1=﹣.

故选:D.

8.(2017?德州二模)已知cosα=,cos(α﹣β)=,且0<β<α<,那么β=()A.B.C.D.

【解答】解:由0<α<β<,得到0<β﹣α<,又cosα=,cos(α﹣β)=cos(β﹣α)=,所以sinα==,sin(β﹣α)=﹣sin(α﹣β)=﹣=﹣,

则cosβ=cos[(β﹣α)+α]

=cos(β﹣α)cosα﹣sin(β﹣α)sinα

=×﹣(﹣)×=,

所以β=.

故选:C.

9.(2017?青海模拟)若α∈(,π),且3cos2α=sin(﹣α),则sin2α的值为()A.B.C.D.

【解答】解:∵α∈(,π),∴sinα>0,cosα<0,

∵3cos2α=sin(﹣α),

∴3(cos2α﹣sin2α)=(cosα﹣sinα),

∴co sα+sinα=,

∴两边平方,可得:1+2sinαcosα=,

∴sin2α=2sinαcosα=﹣.

故选:D.

10.(2017?大武口区校级四模)若α,β为锐角,且满足cosα=,cos(α+β)=,则sinβ的值为()A.B.C.D.

【解答】解:α,β为锐角,且满足cosα=,∴sinα==,sin(α+β)

==,

则sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=﹣×=,

故选:C.

12.(2017?腾冲县校级二模)已知sin(﹣α)﹣cosα=,则cos(2α+)=()

A.B.﹣C.D.﹣

【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣

则cos(2α+)=1﹣2sin2(α+)=,

故选:C.

13.(2017?榆林一模)已知cosα=﹣,且α∈(,π),则tan(α+)等于()

A.﹣ B.﹣7 C.D.7

【解答】解析:由cosα=﹣且α∈()得tanα=﹣,

∴tan(α+)==,

故选C.

15.(2017?全国三模)已知,则sin2α的值为()A.B.C.D.

【解答】解:∵已知,则平方可得1﹣sin2α=,∴sin2α=,

故选:C.

16.(2017?山西一模)cos15°?cos105°﹣cos75°?sin105°的值为()

A.﹣ B.C.D.﹣

【解答】解:cos15°?cos105°﹣cos75°?sin105°

=cos15°?cos105°﹣sin15°?sin105°

=cos(15°+105°)

=cos120°

=﹣.

故选:A.

17.(2017春?陆川县校级月考)若tanα=,则sin2α+cos2α的值是()

A.﹣ B.C.5 D.﹣5

【解答】解:原式=.故选B.

19.(2017春?福州期末)cos43°cos77°+sin43°cos167°的值是()

A.B.C.D.

【解答】解:cos43°cos77°+sin43°cos167°

=cos43°cos77°+sin43°cos(90°+77°)

=cos43°cos77°﹣sin43°sin77°

=cos(43°+77°)

=cos120°

=﹣cos60°

=﹣.

故选D.

21.(2017春?荔城区校级期中)已知sinα+cosα=,则sin2α=()

A.﹣ B.﹣ C.D.

【解答】解:∵sina+cosa=,

∴(sina+cosa)2=,

∴1+2sinacosa=,

∴sin2a=﹣.

故选:A.

23.(2016?新课标Ⅲ)若tanα=,则cos2α+2sin2α=()

A.B.C.1 D.

【解答】解:∵tanα=,

∴cos2α+2sin2α====.

故选:A.

24.(2016?肃南裕县校级模拟)已知向量,且,则sin2θ+cos2θ的值为()

A.1 B.2 C.D.3

【解答】解:由题意可得=sinθ﹣2cosθ=0,即tanθ=2.

∴sin2θ+cos2θ===1,

故选A.

25.(2016?河南模拟)已知tan(α﹣)=,则的值为()

A.B.2 C.2 D.﹣2

【解答】解:由tan(α﹣)==,

得tanα=3.

则=.

故选:B.

26.(2016?全国二模)已知,则tanα=()

A.﹣1 B.0 C.D.1

【解答】解:∵,

∴cosα﹣sinα=cosα﹣sinα,

∴cosα=sinα,

∴tanα===﹣1.

故选:A.

29.(2017?玉林一模)若3sinα+cosα=0,则的值为()A.B.C.D.﹣2

【解答】解:∵3sinα+cosα=0,

∴tanα=﹣,

∴===,

故选:A.

30.(2017?成都模拟)已知函数f(x)=cos(x+)sinx,则函数f(x)的图象()A.最小正周期为T=2πB.关于点(,﹣)对称

C.在区间(0,)上为减函数D.关于直线x=对称

【解答】解:∵函数f(x)=cos(x+)sinx=(cosx﹣sinx)?sinx=sin2x﹣?

=(sin2x+cos2x)﹣=sin(2x+)+,

故它的最小正周期为=π,故A不正确;

令x=,求得f(x)=+=,为函数f(x)的最大值,故函数f(x)的图象关于直线x=对称,

且f(x)的图象不关于点(,)对称,故B不正确、D正确;

在区间(0,)上,2x+∈(,),f(x)=sin(2x+)+为增函数,故C不正确,故选:D.

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

三角恒等变换(测试题及答案)

三角恒等变换测试题 第I 卷 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. 函数sin cos y x x =+的最小正周期为( ) A. 2 π B. π C. 2π D. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12 π 个单位

(完整word)2018年高考数学总复习三角恒等变换

第三节 三角恒等变换 考纲解读 会用向量的数量积推导出两角差的余弦公式. 能利用两角差的余弦公式导出两角差的正弦,正切公式. 能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度. 考题以考查三角函数式化简,求值和变形为主. 化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲 常用三角恒等变形公式 和角公式 sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=- tan tan tan()1tan tan αβ αβαβ ++= - 差角公式 sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+ tan tan tan()1tan tan αβ αβαβ --= + 倍角公式 sin 22sin cos ααα= 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan α αα =- 降次(幂)公式 2211cos 21cos 2sin cos sin 2;sin ;cos ;222 αα ααααα-+=== 半角公式 sin 2 2α α==

sin 1cos tan .21cos sin a α αα α-= =+ 辅助角公式 sin cos ),tan (0),b a b ab a ααα??+=+=≠角?的终边过点(,)a b ,特殊 地,若sin cos a b αα+=,则tan .b a α= 常用的几个公式 sin cos );4π ααα±=± sin 2sin();3 π ααα=± cos 2sin();6 π ααα±=± 题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示 推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明 (1):cos()cos cos sin sin ;C αβαβαβαβ++=- (2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβ αβαβ +++= - 解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于 12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得 2 221212122()PP OP OP OP OP cos αβ=+-?+ 22[cos cos()][sin sin()]22cos()αβαβαβ?--+--=-+ 22(cos cos sin sin )22cos()αβαβαβ?--=-+ :cos()cos cos sin sin .C αβαβαβαβ+?+=- 证法二:利用两点间的距离公式. 如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++ 3(cos(),sin()),P ββ--由231;OAP OP P ???得,213.AP PP =故

三角恒等变换考点典型例题

江苏省成化高级中学09届一轮复习三角专题(二) 三角恒等变换 一、考点、要点、疑点: 考点:1、掌握两角和与差的正弦、余弦、正切; 2、理解二倍角的正弦、余弦、正切; 3、了解几个三角恒等式; 要点: 1、 两角和与差的正弦、余弦、正切公式及其变形 2、 二倍角的正弦、余弦、正切公式及其变形 3、 )sin(cos sin 22?ωωω++= ?+=x B A y x B x A y 4、 几个三角恒等式的推导、证明思路与方法 疑点: 1、在三角的恒等变形中,注意公式的灵活运用,要特别注意角的各种变换. (如,)(αβαβ-+=,)(αβαβ+-= ?? ? ??--??? ??-=+βαβαβα222 等) 2、三角化简的通性通法:从函数名、角、运算三方面进行差异分析,常用的技巧有: 切割化弦、用三角公式转化出现特殊角、 异角化同角、异名化同名、高次化低次 3、辅助角公式:()θ++=+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符 号确定,θ角的值由a b =θtan 确定)在求最值、化简时起着重要作用。 二、激活思维: 1、下列等式中恒成立的有 ① βαβαβαsin cos cos sin )sin(?-?=- ② βαβαβαsin sin cos cos )cos(?-?=- ③ )]sin()[sin(21 cos sin βαβαβα-++=? ④ )]cos()[cos(2 1 sin sin βαβαβα--+=? 2、化简: ① 0 53sin 122sin 37sin 58cos += ② )sin()sin()cos()cos(βαβαβαβα+-++?-= 3、已知),2 ( ,5 3cos ππ θθ∈-=,则)3 cos( θπ -= ,)23 cos( θπ -= 4、若αtan 、βtan 是方程0652 =-+x x 的两根,则)tan( βα+=

三角恒等变换中的综合问题

三角恒等变换中的综合问题 新课标的理念就是将学生由单纯的知识接受者转变为学习的主人,注重的是学生能力的培养,高考命题突出以能立意,加强了对知识综合性和应用性的考查,故常常在知识的交汇处命题,对于三角恒等变换中涉及的题型较多,学习时应理清基本题型,特别是具有典型性的题型,掌握这些基本题型解题的通性和通法,关于三角恒等变换的综合问题归纳起来主要有以下几类: 1 三角函数式的化简 解决这类问题常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角名称的变化,尽量减少函数的名称。常用方法有:异名函数化为同名函数,异角化为同角,异次化为同次,切弦互化,特殊角的三角函数与特殊值的互化,或通过函数互化创造条件。 例1、化简其中,α∈(π,2π),分析:题中的角有α和,故必须实行角的统一 解原式= = == ∵α∈(π,2π) ∴<<π, ∴cos<0∴原式=cosα 点评:这类问题着重抓住角的统一或函数名称的统一,通过观察角、函数名,项的次数等,找到突破口,利用切化弦、升幂、降幂、逆用公式等手段将其化简。 练习:已知函数f(x)= ①求f(x)的定义域(答案:f(x)的定义域为x|x≠kπ+,k∈Z;②设α是第四象限的角,且tanα=-,求f(α)的值(答案:) 2 三角函数的求值 求值题常见的类型及解法。 2.1 给角求值:解题时,要认真观察,结合和差化积,积化和差,升降幂公式转化为特殊角并且消去非特殊角的三角函数而求解,主要有下面一些方法:①特殊值代换法:如=sin30°,=cos30°,=sin45°=cos45°;②拼角,拆角法:通过拼(拆)角来寻找特殊角和非特殊角的联系。③常见变化换法,在求值过程中,常见的变换方法有常值代换,切割化弦,收缩变换,降幂与升幂,和差化积,积化和差,以及化异角为同角,化异名为同名,化异次为同次。

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

三角恒等变换 - 最全的总结· 学生版

三角恒等变换---完整版 三角函数------三角恒等变换公式: 考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。“互补两角正弦相等,余弦互为相反数。互余两角的正余弦相等。”(2)二倍角公式的灵活应用,特别是降幂、和升幂公式的应用。(3)结合同角三角函数,化为二次函数求最值 (4)角的整体代换 (5)弦切互化 (6)知一求二 (7)辅助角公式逆向应用 两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β βαβαβαtan tan 1tan tan )tan(?±=± 倍角公式 sin2α=2sin α·cos α cos2α=cos 2α-sin 2α =2cos 2α-1=1-2sin 2α α α α2tan 1tan 22tan -= 半角公式 2 cos 12 sin αα -± =,2 cos 12 cos αα +± = α αα cos 1cos 12tan +-± ==αααα cos 1sin sin cos 1+=- 升幂公式 1+cos α=2 cos 22 α 1-cos α=2 sin 22 α 1±sin α=(2 cos 2 sin α α ±)2 1=sin 2α+ cos 2α sin α=2 cos 2 sin 2α α 降幂公式 sin 2α22cos 1α-= cos 2α22cos 1α+= sin 2α+ cos 2 α=1 sin α·cos α=α2sin 2 1 平方关系 sin 2α+ cos 2α=1, 商数关系 α α cos sin =tan α

(完整版)简单的三角恒等变换(一)

§3.2 简单的三角恒等变换(一) 学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用. ⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形. 教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变 换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力. 教学方法:讲练结合. 教具准备:多媒体投影. 教学过程: (Ⅰ)复习引入: 师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式. 生:(默写公式). 师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台 本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用. (Ⅱ)讲授例题: 例1试以cos α表示2 sin 2α,2cos 2α,2tan 2α. 分析:α是2 α的二倍角,因此在仅含α的正弦、余弦的二倍角公式(2)C α中,以2 α代替α就可以得到2sin 2α、2cos 2α,然后运用同角三角函数的基本关系可得2tan 2 α. 解:略. 师:例1的结果还可以表示为:

sin 2α =cos 2α=tan 2α=, 有些书上称之为半角公式,其符号由角2 α终边的位置确定. 师:由例题1和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先寻找式子所包含的角之间的联系. 师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点. 例2求证: ⑴1sin cos [sin()sin()]2 αβαβαβ=++-; ⑵sin sin 2sin cos 22 θ?θ?θ?+-+=. 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现 sin cos αβ与和(差)的正弦公式之间的联系.记sin cos x αβ=,cos sin y αβ=, 则有sin()x y αβ+=+,sin()x y αβ-=-,由此解出x ,即求出了sin cos αβ. ⑵的证明可以直接利用⑴的结果,令αβθ+=,αβ?-=,解出α、β后代如即可. 证明:略 师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将22θ?θ?θ+-=+,22 θ?θ??+-=-代入左边,然后利用和(差)的正弦公式展开、合并即可得出右式. 师:在例2的证明中,把sin cos αβ看成x ,cos sin αβ看成y 把等式看作x , y 的方程,通过解方程组求得x ,是方程思想的体现;把αβ+看作θ,αβ-看作?,从而把包含α、β的三角函数式变换成θ、?的三角函数式,是换元思想的应用.

完整版简单三角恒等变换典型例题

简单三角恒等变换复习、公式体系

(1) sin( ) sin cos cos sin sin cos cos sin sin( ) (2) cos( )cos cos sin sin cos cos sin sin cos( ) (3) tan( tan tan 去分母得 tan tan i tan( )(1 tan tan ) 1 tan tan tan tan tan( )(1 tan tan 、倍角公式的推导及其变形: (1) sin 2 sin( ) sin cos cos sin 2 sin cos sin 1 . cos — sin 2 2 2 1 sin 2 (sin cos (2) cos 2 cos( ) cos cos sin sin cos 2 sin 2 cos 2 cos 2 sin 2 (cos sin )(cos sin ) cos 2 2 ? 2 cos 厶 sin 2 2 COS (1 cos ) 把1移项得 1 cos2 2 cos 2 或 -4- GQS -2- c 2 cos 2 1 2 【因为 是-的两倍,所以公式也可以写成 2 cos 2 cos 2 一 1 或 1 cos 2 cos 2 或 - 1 cos — cos 2 2 2 2 2 因为4 是2的两倍,所以公式也可以写成 cos 4 2 cos 2 2 1 或 1 2 Once 厶 或 nee? O 1 2 cos 2 2 2 cos sin (1 sin 2 ) sin 2 把1移项得1 cos 2 2s in 2 或 -4- 1 2sin 2 2 【因为 是—的两倍,所以公式也可以写成 2 cos 1 2 sin 2— 或 1 cos 2 sin 2 或 4 ---- eos- sin 2 2 2 2 2 因为4 是2 的两倍,所以公式也可以写成 2 1、和差公式及其变形: 2 ) ) 2 sin 2

三角恒等变换的常用技

三角恒等变换的常用技巧 在不改变结果的前提下,运用基本公式及结论,从角、名、次方面入手,把一个三角函数式转化成结构比较简单、便于研究的形式,这种变形叫做三角恒等变换. 三角恒等变换的常见变换技巧归纳如下: 题型一:常值代换(特别是“1”的代换) 【知识链接】 22 丄 2 丄2 2 丄2 1 sin cos tan sec tan esc cot 4 【巩固与应用】 Q S ________ 1.若x (-,-),则.1 sinx 可化为( ) D 2 2 A.亦(:4) B. ■ 2cos(2 ;) C . 2cos(-) 2 4 D .宓 (:-) 2 .已知tan 题型二:公式变形【知识链接】—2,求值:2si n2sin cos 2 cos . tan tan 【巩固与应用】 (1 mta n tan )ta n( ). 1.化简:tan 10o tan20o tan20o tan60o tan 10o tan60o. 2 . (1)已知 A B 4,求证:(1 tanA)(1 tanB) 2 ; (2)化简:(1 tan 1o)(1 tan 2°)L(1 tan44o)(1 tan4-0). 题型三:升次降次 【知识链接】 2 2 2 2 2sin 1 cos2 , 2cos 1 cos2 , cos sin cos2 , 2sin cos sin2 4sin-3sin sin3 , 4cos-cos- -cos . 上面公式正用降次,反用升次. 【巩固与应用】

6 .求函数y sinx sinx cosx 的单调区间。增 8.已知函数 f (x) 2cosxsin x — 3sin 2x sin xcosx 3 (1) 求:函数f (x)的最大值及最小值; (2) 求:函数f(x)的最小正同期、单调递增区间; 3)该函数图像可由 y si n2x 图像作怎样变化而得到。 题型四:公式活用 【知识链接】 公式正用、公式逆用、公式变形后使用 【巩固与应用】 1 .求值:tan 10o ta n20° ta n20°ta n60° 2.已知 为第三象限角,且sin 4 0 cos 4 0 cosAcosB + sin AcosB cosAsinB 则厶ABC 为 2 2 4?函数y sin x cos x 2的最小正周期是( 1 .若 2 孑,则1 cos()的值是 A . sin 2 B . cos — 2 sin — 2 D . cos — 2 2 .求值: 3 .求值: 4 n cos 一 8 sin 2 20 4 n sin — 8 cos 2 50o sin 20o cos50°. (08宁夏、海南理7) o 3 sin 70 2 cos 210o 12 B . C . (07陕西理 4)已知 sin a 5 5,则 ?4 sin a 4 cos a 的值为 15 B . C . 15 . . 2 7.已知 cos( n 4 x) 3 5 , 17n 12 x 7n 4,求 sin2x 2sin x 的 值。 1 tanx 结果n A . 2、 2 3 B . 2.2 3 C . 2 3 D . 23 ,减 tan60 tan 10 1 ,那么sin2 B 等于(A ) .在△ ABC 中,若 sinAsinB 等腰直角三角形

三角恒等变换经典练习题

专题五《三角恒等变换》综合检测 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. sin105cos105的值为 ( ) A. 14 B.- 14 2. 函数2 1()cos 2 f x x =- 的周期为 ( ) A. 4π B.2 π C.2π D.π 3. 已知2tan()5αβ+= ,1 tan()44 πβ-=,则tan()4πα+等于 ( ) A. 16 B.1322 C.322 D.13 18 4. 化简1cos 2tan cot 22 α α α +-,其结果是 ( ) A.1 sin 2 α- B.1sin 22 α C.2sin α- D.2sin 2α 5. ( ) A.2sin 44cos 4 B.2sin 44cos 4 C.2sin 4 D.4cos 42sin 4----- 6. sin 12 12 π π 的值为 ( ) .0 ..2A B C 7. 已知α为第三象限角,24 sin 25α=- ,则tan 2 α= ( ) 4A. 3 4B.3 - 3C.4 3D.4 - 8. 若()()11 sin ,sin 23αβαβ+= -=,则 tan tan αβ 为 ( ) A.5 B.1- C.6 1 D.6 9. 已知锐角αβ、满足sin αβ== αβ+等于 ( ) 3A.4 π 3B.44ππ或 C.4π ()3D.24 k k ππ+∈Z 10. 下列函数f (x )与g (x )中,不能表示同一函数的是 ( ) A.()sin 2f x x = ()2s i n c g x x x = B.()cos 2f x x = 22()cos sin g x x x =- C.2()2cos 1f x x =- 2()12s i n g x x =- D.()tan 2f x x = 22tan ()1tan x g x x =-

三角函数的图象和性质及三角恒等变换知识点归纳

三角函数的图象和性质及三角恒等变换知识点归纳 及常见题型讲解 教学大纲: 知识要点 (一)三角函数的图象与性质 1、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最 值 当22 x k π π=+ () k ∈Z 时,max 1y =;当 22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时, max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周 期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单 调性 在2,222k k ππππ? ?-+??? ? 在[]()2,2k k k πππ-∈Z 上是 增 函 数;在 在,22k k ππππ? ?-+ ?? ?

()k ∈Z 上是增函数;在 32,222k k ππππ??++??? ? ()k ∈Z 上是减函数. []2,2k k πππ+ ()k ∈Z 上是减函数. ()k ∈Z 上是增函数. 对 称 性 对称中心()(),0k k π∈Z 对称轴 ()2x k k π π=+∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π=∈Z 对称中心 (),02k k π?? ∈Z ??? 无对称轴 2、三角函数图像变换 函数sin y x =的图象上所有点向左(右)平移?个单位长度,得到函数 ()sin y x ?=+的图象;再将函数()sin y x ?=+的图象上所有点的横坐标伸长(缩短)到原来的 1 ω 倍(纵坐标不变),得到函数()sin y x ω?=+的图象;再将函数()sin y x ω?=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ω?=A +的图象. 函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1 ω 倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移 ? ω 个单位长度,得到函数()sin y x ω?=+的图象;再将函数()sin y x ω?=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ω?=A +的图象. 3、函数()()sin 0,0y x ω?ω=A +A >>的性质: ①振幅:A ; ②周期:2π ω T =; ③频率:12f ω π = =T ; ④相位:x ω?+; ⑤初相:?.

相关主题
文本预览
相关文档 最新文档