当前位置:文档之家› 酵母双杂交操作手册 by shenao

酵母双杂交操作手册 by shenao

酵母双杂交操作手册 by shenao
酵母双杂交操作手册 by shenao

酵母双杂交操作手册 by shenao Y2H所需材料:

PJ69-4A PJ69-4α or AH109 Y187

pGBKT7 DNA-BD Vector (bait)

pGADT7 AD Vector (prey)

pGBKT7-53 Control Vector

pGBKT7-Lam Control Vector

pGADT7-T Control Vector

pCL1 Control Vector

3' DNA-BD & AD Sequencing Primers

Herring testes carrier DNA

Yeast extract,Dextrose(glucose); SD base; DO Supplement; Peptone,with DMF) TE buffer DMSO PEG/LiAc (10X) TE/LiAc buffer (10X) X-a-

gal(

Yeast Phenotypes

–––Ade, His, Leu, Requires adenine (Ade), histidine (His), leucine (Leu), or tryptophan (Trp) in the

–or Trp medium to grow; is auxotrophic for at least one of these specific nutrients.

Expresses the ADE2 reporter gene; i.e., does not require Ade in the medium to +Ade grow.

+His Expresses the HIS3 reporter gene; i.e., does not require His in the medium to grow.

+LacZ Expresses the lacZ reporter gene; i.e., is positive for b-galactosidase activity.

+Mel1 Expresses the MEL1 reporter gene; i.e., is positive for a-galactosidase activity. Miscellaneous

Ade2p Protein encoded by the yeast ADE2 gene.

3-AT 3-amino-1,2,4-triazole; a competitive inhibitor of the His3 protein.

CHX Cycloheximide

Dropout (supplement or solution); a mixture of specific amino acids and nucleosides

DO used to supplement SD base to make SD medium; DO solutions are missing one or

more of the nutrients required by untransformed yeast to grow on SD medium.

His3p Protein encoded by the yeast HIS3gene.

Minimal Synthetic Dropout medium; comprised of a nitrogen base, a carbon source SD medium (glucose or galactose), and a DO supplement.

YPH Yeast Protocols Handbook

SD/–Ade SD/–Met SD/–His SD/–Ura YPDA YPD/CHX SD/–Leu SD/–Trp Strain

PJ69-4A – + – + + –––

––– + + ––– PJ69-4α

1

SD/–Ade SD/–Met SD/–His SD/–Ura YPDA YPD/CHX SD/–Leu SD/–Trp Strain

AH109 – + – + + –––

––– + + ––– Y187

Yeast selection Bacterial selection Fusion Epitope

Cloning vectors

pGBKT7 DNA/bait c-Myc TRP1 kanamycin

pGADT7 AD/library HA LEU2 ampicillin Control vectors

pCL1 GAL4 LEU2 ampicillin

pGADT7-T AD/T-antigen HA LEU2 ampicillin pGBKT7-53 DNA-BD/p53 c-Myc TRP1 kanamycin pGBKT7-Lam DNA-BD/lamin C c-Myc TRP1 kanamycin .

缩写:

Ade腺嘌呤(adenine) His组氨酸(histidine) Leu亮氨酸(leucine) Trp色氨酸(tryptophan)

培养基成分及配制方法:

YPD & SD Base from CLONTECH already contains a carbon

source(Dextrose(glucose))

YPD: 20g/L Peptone, 10g/L Yeast extract, 2% Dextrose(20g/L), 20 g/L Agar (for plates only) 加入上述药品,加水至1L,调节PH值到6.5。121:C 15分钟。

或者Dextrose溶液单独108:C 15分钟,YP配成溶液121:C 20分钟。用前混合。

YPDA: YPD + adenine

1LYPD培养基中加15mL过滤除菌的0.2% adenine hemisulfate,终浓度

0.003%。(Adenine hemisulfate 其实可以耐高温,可以混在YPD中灭菌;或者先灭YP,再加D和A。)

SD:

6.7 g Yeast nitrogen base without amino acids,2%dextrose (glucose),20 g Agar (for plates

only),850 ml H2O,100 ml of the appropriate sterile 10X Dropout Solution

? Adjust the pH to 5.8 if n ecessary, and autoclave. Allow medium to cool to ~ 55:C before adding 3-AT, cycloheximide, additional adenine, or X-gal.

? If you wish to add excess adenine to SD medium, add 15 ml of 0.2% adenine hemisulfate solution per liter of medium.

(若用clontech公司的粉剂,SD base 加上相应的 DO supplement,121:C 15分钟)

? 10X Dropout (DO) Solution

多数的常用DO可从CLONTECH公司买到。或者可以结合下面营养成分列表中标明的浓度,自己配制10XDO溶液。

10XDO溶液中含有除一种或少数几种之外的其他所有下面列举的营养成分。注意,serine(丝氨

2

酸), aspartic acid(天冬氨酸)和 glutamic acid(谷氨酸)不被包括在下面的列表中。因为它们将使培养基过酸,而且酵母可以内源性合成这几种氨基酸。

10XDO溶液可被高压灭菌,4:C保存一年以上。

Example: To make one liter of 10X –Leu/–Trp DO Solution, combine the following:

? 200 mg adenine hemisulfate 腺嘌呤

? 200 mg arginine HCl 精氨酸

? 200 mg histidine HCl monohydrate 组氨酸

? 300 mg isoleucine 异亮氨酸

? 300 mg ly sine HCl 赖氨酸

? 200 mg methionine 甲硫氨酸

? 500 mg phenylalanine 苯丙氨酸

? 2000 mg threonine 苏氨酸

? 300 mg tyrosine 酪氨酸

? 200 mg uracil 尿嘧啶

? 1500 mg valine 缬氨酸

1 L Dissolve components in 1 L deionized H2O. Autoclave.

X-gal:5-溴-4-氯-3-吲哚-β-D半乳糖苷。(X-β-gal)

X-a-gal:用DMF溶解X-a-gal,浓度为20mg/ml。-20?避光保存。

对于平板,1L缺陷培养基中冷却至55?后加入1ml X-a-gal(20mg/ml)再倒平板。或者每块冷却后的10cm/15cm平板上涂100ul/200ul X-a-gal(2mg/ml)。注意:若想要快速(1,24小时)确定某个酵母株是否含有MEL1,在平板上以上述体积涂20mg/ml的X-a-gal。

酵母菌株的保藏和培养:

酵母菌株可以于含25%甘油的YPD培养基中保藏在-70?,若温度始终保持在-55?以下,至少可以保藏1年以上。

转化后的酵母菌最好保藏在对应的SD培养基内,以始终保持选择压力。

酵母甘油菌种的制备:

a. 无菌操作,从平板上刮下一个酵母单克隆。

b. 1.5ml无菌EP管中,用200–500 ,l YPD培养基或适宜的SD培养基重悬菌落。剧烈震荡,完全分散细胞。加入50%的甘油等体积,使甘油终浓度为25%。

c. 盖紧盖子,再次混匀EP管。-70?包藏。

酵母甘油菌的复苏:

a. 少量冻存的甘油菌在YPD或适宜的SD平板上划线。

b. 30:C培养3,5天,直到菌落直径为2mm以上。将这些作为“工作菌”平板。

c. 将平板用封口膜封好,4:C可保藏2个月以上。每过1,2个月重新从冻存的甘油菌中划平板。

d. 甘油菌可被反复冻融有限的几次而不影响细胞。如果没有活化出来,或许是细胞沉淀在EP管底部。这时候可以将EP管置于冰上解冻后,剧烈震荡,再重新划线。

过夜液体培养酵母菌:

a. 从“工作菌”平板上取新鲜的(<2-months)克隆用于实验。每5ml培养基接种一个较大的克隆(直

3

径2–3-mm) ;若菌落较小或者使用了更多的培养基,可以取多个克隆。注意:充分地剧烈振荡培养基1min以上,以彻底分散酵母细胞。

b. 30:C培养16,18小时,230–270 rpm。对于大多数的菌株,培养物将达到生长的平台期(OD600 > 1.5)。注意: 不同的酵母株系的生长速率不同。同时在一些转化子中,生长速率还会受到融合蛋白的影响。另外,大多数株系在SD培养基中的加倍时间要比在YPD中长两倍左右。

c. 如果需要对数生长期的培养物,转移足够的过夜培养物到新鲜的培养基中,使OD600 = 0.2–0.3。30:C培养3,5小时,230–250 rpm。对于大多数的菌株,OD600将为0.4,0.6 。注意:在这个活化

步骤中通常使用YPD或者YPDA。因为在这种较短的活化时间下,质粒的丢失并不明显。

酵母转化方法:

A(储存液

? 鲱鱼精 carrier DNA (10 mg/ml)

已被超声过的鲱鱼精carrier DNA溶液可以被单独地购买,或者采用下面的标准方法:将溶解后的carrier DNA(10 mg/ml)在沸水浴中煮20min,再迅速放到冰上冷却。必须使用高品质的carrier DNA,不要使用nicked calf thymus DNA。

? PEG/L iAc solution (polyethylene glycol/lithium acetate) Prepare fresh just prior to use.

Final Conc. To prepare 10 ml of solution

PEG 4000 40% 8 ml of 50% PEG3350

TE buffer 1X 1 ml of 10X TE

LiAc 1X 1 ml of 10X LiAc

50% PEG 3350 (avg. mol. wt. = 3,350) 无菌的去离子水溶解;如果必要,可以加热溶液到50?帮助PEG溶解。

10X TE buffer: 0.1 M Tris-HCl, 10 mM EDTA, pH 7.5。高压灭菌。

10X LiAc: 1 M lithium acetate (Sigma),用稀醋酸调节pH值到7.5,高压灭菌。

B. 所需试剂和材料(全部要求无菌~)

? YPD or the appropriate SD liquid medium

? Sterile 1X TE/1X LiAc (Prepare immediately prior to use from 10X stocks)

? Sterile 1.5-ml microcentrifuge tubes for the transformation ? Appropriate SD agar plates (10cm diameter) ? Herring testes carrier DNA ? Sterile PEG/LiAc solution (Prepare only the volume needed, immediately prior to use, from

10X stocks)

? 100% DMSO (Dimethyl sulfoxide; Sigma)

? Sterile 1X TE buffer (Prepare from 10X TE buffer) ? Sterile glass rod, bent Pasteur pipette, or 5-mm glass beads for spreading cells on plates.

C. 成功转化小贴士

? Fresh (one- to three-week-old) colonies will give best results for liquid culture inoculation. A

4

single colony may be used for the inoculum if it is 2–3 mm in diameter. Scrape the entire colony into the medium. If colonies on the stock plate are smaller than 2 mm, scrape several

colonies into the medium.

? Vigorously vortex liquid cultures to disperse the clumps before using them in the next step.

? The health and growth phase of the cells at the time they are harvested for making competent cells is critical for the success of the transformation. The expansion culture (Step

E.6) should be in log-phase growth (i.e., OD600 between 0.4 and 0.6) at the time the cells are harvested.

? When collecting cells by centrifugation, a swinging bucket rotor results in better recovery of

the cell pellet.

? For the highest transformation efficiency (as is necessary for

library screening), use

competent cells within 1 hr of their preparation. If necessary, competent cells can be stored (after Step E.11) at room temperature for several hours with a minor reduction in

competency.

? To obtain an even growth of colonies on the plates, continue to spread the transformation

mixtures over the agar surface until all liquid has been absorbed. Alternatively, use 5-mm

sterile glass beads (5–7 beads per 100-mm plate) to promote even spreading of the cells.

E. LiAc小量酵母转化方法(得到1.5 ml感受态细胞,可做14–15个小量转化)

1. 1ml YPD(或SD)培养基中接种几个克隆,直径2–3 mm。注意:对于那些已

经转化了另一种可

以自主复制的质粒的酵母宿主株,使用对应的SD培养基,以保持这个质粒不

丢失。

2. 剧烈振荡5min,彻底分散细胞。

3.将其转移到含有50ml YPD或(或SD)的小瓶中。

4. 30:C,250 rpm培养16,18小时,使菌液生长到达稳定期 (OD600>1.5)。

5. 转移30ml的过夜培养物到含有300ml YPD的小瓶中。检查该稀释培养物的OD600值,如果必

要,加入更多的过夜培养物,直到OD600为0.2–0.3。

6. 30:C,230 rpm培养3小时,此时OD600应为0.4–0.6。若OD600<0.4,培养物中必定出现了某

种问题。

7. 将培养物倒入50ml离心管中,1, 000 x g ,5 min ,室温 (20–21:C)。

8. 弃去上清,用无菌的TE或者蒸馏水彻底重悬细胞,将细胞倒入一个试管中(最后体积为25–50

ml)。

9. 1,000 x g ,5 min ,室温(20–21:C)。

10. 弃去上清。

11. 用1.5ml新鲜配制的无菌1X TE/1X LiAc彻底重悬细胞。

12. 在一个新的1.5ml EP管中加入0.1 ,g质粒和0.1 mg 鲱鱼精carrier DNA,混合均匀。

注意:同时共转化两种不同质粒时,每种质粒取0.1 ,g (摩尔比大致相同),外加0.1 mg 鲱鱼精carrier DNA。

13. 每个EP管中加入0.1ml 酵母感受态细胞,振荡混匀。(枪头吹打即可)

14. 每个EP管中加入0.6ml 无菌的PEG/LiAc溶液,高速振荡10秒以混匀。

15. 30:C ,30 min ,200 rpm。

16. 加入70ul DMSO。反复轻柔颠倒混匀。不要振荡。

17. 42:C水浴,热休克15min。

18. 冰上放置1,2min。

19. 14,000 rpm,室温,5秒。弃去上清。

5

20. 0.5ml 无菌1X TE buffer重悬细胞。(振荡或枪头吹打)

21. 每块相应的SD平板上涂100ul 。为了确保获得有效分离生长的克隆,同时还按1:1000、

1:100、和1:10稀释后各涂100ul 到SD平板。这个也可以作为(共)转化效率的对照。(预实验

获得大致转化效率后,就可以知道应该用多少体积重悬后涂100ul 才比较合适了)

注意:如果是共转化,涂对照平板以检验共转化的效率和每种质粒的效率。在10cm平板上,采用每次只选

择一种质粒的培养基,将1ul 转化液稀释到100ul 水中后涂平板。

22. 倒置平板,30:C培养直到克隆出现。通常需要2,4天。

23. 为了确定转化的效率,计算稀释后平板上的克隆数(cfu),选择30,300cfu 的平板进行统

计。

cfu x total suspension vol. (,l) = cfu/,g DNA

Vol. plated (,l) x dilution factor x amt. DNA used (,g)*

* In a cotransformation, this is the amount of one of the plasmid types, not the sum of them. If you have used unequal

amounts of two plasmids, use the amount of the lesser of the two. 统计示例:

? 100 colonies grew on the 1:100 dilution plate (dilution factor = 0.01)

? plating volume: 100 ,l

? resuspension volume = 0.5 ml

? amount of limiting plasmid = 0.1 ,g

35100 cfu x 0.5 ml x 10 ,l/ml = 5 x 10 cfu/,g DNA

100 ,l x 0.01 x 0.1 ,g

24. 选取最大的克隆,在相同的选择培养基平板上重新划线,得到master plates。用封口膜封好,

4:C 可储藏3–4周。

Plating and Screening Transformation Mixtures

You can select AH109 transformants using high-, medium-, or low-stringency media .Less

stringent screens increase the number of false positives, while more stringent screens may

result in false negatives.

? High-stringency: Plate transformations on SD/–Ade/–His/ –Leu/–Trp/X-,-Gal medium to

screen for ADE2, HIS3, and MEL1 expression. This screen virtually eliminates false positive

interactions; however, low-affinity protein interactions may be missed. ? Medium-stringency: Plate library transformations on SD/–

His/–Leu/–Trp medium to screen for expression of HIS3. Plan to screen at least 1.5–3 times the number of independent clones in the library. Subsequently, replica plate His+ colonies onto SD/–Ade/–His/ –Leu/–Trp/X-,-Gal

medium to screen for ADE2 and MEL1 expression.

6

Z buffer: Na2HPO4? 7H2O 16.1 g/L

NaH2PO4? H2O 5.50 g/L

KCl 0.75 g/L

MgSO4 ? 7H2O 0.246 g/L

Adjust to pH 7.0 and autoclave. Can be stored at room temperature

for up to 1 year.

Z buffer/X-gal solution(显色液)

100 ml Z buffer

0.27 ml ,-mercaptoethanol

1.67 ml X-gal stock solution(20 mg/ml)

1. PJ69-4A和PJ69-4α分别涂板SD/-His,如果有白色小菌落长出,则说明有背景。需要加3-AT,并且做梯度浓度,选取最低的抑制浓度。

2. 每个质粒转化进酵母后,先要进行毒性测试&自激活实验。

例如,pGBKT7-Y转化进PJ69-4α后,就涂板SD/–Trp/X-a-gal。如果没有菌落长出,则说明表达的外源蛋白对细胞有毒性。如果有,但是为蓝色,说明可以自激活。同时,再顺序转化pGADT7空载体到PJ69-4α/pGBKT7-Y。涂板SD/–

Leu/–Trp/X-a-gal,如果长出的菌落显蓝色,则也说明外源蛋白可以单独激活GAL4调控的下游报告基因。

pGADT7-X转化进PJ69-4A后,就涂板SD/–Leu,同理检测毒性和自激活。(但是为什么论文“Y2H Tegument Proteins of HSV-1”里面仅仅检测了Bait的,而忽略了Prey的,见System3手册,VIII B和C的说明。)

3. 为了节约,也可不涂X-a-gal。改用液氮破菌后,X-gal显色。

7

酵母双杂交技术

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的 结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113 个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而 转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不 能激活基因转录,单独的转录激活域也不能激活UAS的下游基因,它们之间只 有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细 胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建 成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱 饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立 为研究这一问题提供了有利的手段和方法。 缺点 尽管该系统己被证实为一种非常有效的方法,但它也有自身的缺点和问题。1、它并非对所有蛋白质都适用,这是由其原理所决定的。双杂交系统要求两种杂 交体蛋白都是融合蛋白,都必须能进入细胞核内。因为融合蛋白相互作用激活 报告基因转录是在细胞核内发生的。2、假阳性的发生较为频繁。所谓假阳性,即指未能与诱饵蛋白发生作用而被误认为是阳性反应的蛋白。而且部分假阳性 原因不清,可能与酵母中其他蛋白质的作用有关。3、在酵母菌株中大量表达外源蛋白将产生毒性作用,从而影响菌株生长和报告基因的表达。 使用酵母双杂交技术应注意的问题 真正明了酵母双杂交技术的主要原理及筛选方法是进行酵母双杂交实验的前提,构建成功的诱饵质粒及大量的材料准备是进行酵母双杂交实验的保证。只 有明了双杂交的原理,才有可能设计实验进程、才能有目的的进行材料准备, 并能对实验结果作出预测与分析,尤其要对具体实验中各种选择性压力培养基 的使用目的要十分清楚。大量的材料准备、较长的实验流程是酵母双杂交有别

酵母双杂实验步骤

2.1.1酵母双杂交 2.1.1.1Gateway入门克隆 设计Gateway引物时,在上游引物的5'端加上B1序列:GGGG-ACA-AGT-TT G-TAC -AAA-AAA-GCA-GGC-TNN-,下游引物的5'端加上B2序列:GGGG-ACC-ACT-TT G-T AC-AAG-AAA-GCT-GGG-TN-。其中,5'-GGGG序列是保护碱基,防止引物的重要部分被降解,下划线加粗的部分是在整个的Gateway克隆中可以保存下来的序列,3'端的碱基N是为了保证经过入门载体构建目的载体时阅读框的正确性,一般建议为C。 通过PCR扩增获得带有att B位点的基因片段,扩增体系和条件见3.2.2.2,其中将退火温度改为65℃。获得扩增产物后对其进行回收纯化,测定纯化后DNA 的质量和浓度后进行下一步的BP反应,反应体系如下: att B-PCR产物(≥10 ng/μL)1-7μL pDONR221 (150 ng/μL)1μL TE buffer, pH 8.0 补足8μL 将上述混合物加入离心管中,加入2μL BP反应酶,加入之前需将其在涡旋仪上轻轻振荡两次,所有组分混匀离心后,25℃反应1h,加入1μL蛋白酶K后,混匀离心,37℃反应10min终止BP反应,将BP反应产物参照3.2.2.6进行转化,由于pDONR221载体为Kan抗性,所以选用含有50μg/mL Kan抗生素的LB平板进行阳性克隆筛选,参照3.2.2.7检测阳性克隆,然后根据3.2.2.8中的方法提取重组质粒,测定质量和浓度后送至测序公司进行测序。 进行BP反应时,需注意以下几项: (1)对于BP反应来说,最高效的是采用线性的att B-PCR产物和超螺旋的att P 入门载体; (2)为了提高BP反应的效率,可以将建议的25℃反应1h适当延长至4-6h,可 以将效率提高2-3倍,或者延长至过夜反应,可以将效率提高5-10倍,对 于长片段克隆来讲,适当的延长反应时间是非常必要的; (3)提高体系中PCR产物的量可以增加反应效率,但每10μL体系中PCR产物 最好不要超过250ng。 2.1.1.2诱饵载体构建 重组的入门载体测序正确后,通过LR反应来构建酵母双杂交的诱饵载体,LR反应体系如下: 入门载体(50-150 ng)1-7μL pDEST32 (150 ng/μL)1μL TE buffer, pH 8.0 补足8μL

CLONTECH酵母双杂中文版

目录 (一)介绍 4 (二)试剂盒物品清单 7 (三)额外附加物品列表9 (四)酵母菌株11 (五)酵母载体14 (六)方法简述:单杂交文库的构建和筛选16 方法简述:双杂交文库的构建和筛选17 (七)构建用于酵母单杂交的报告质粒载体18 (八)构建用于酵母双杂交的DNA-BD融合载体19 (九)构建生成cDNA文库21 (十)构建和筛选酵母单杂交和双杂交文库(简述)27 (十一)酵母单杂交文库的构建和筛选28 (十二)酵母双杂交文库的构建和筛选30 方法A:通过酵母配对(Yeast Mating)来筛选目的蛋白30 方法B:通过共转化的方法筛选目的蛋白35 (十三)分析阳性相互作用结果38 (十四)问题解决指南44 (十五)参考文献47 (十六)相关产品50 附录A: 双链 cDNA合成的典型结果51 附录B: 酵母感受态的制备—LiAc 法52 附录C:单杂交对照载体信息53 附录D:双杂对照载体信息54 表格列表 Table I. BD Matchmaker酵母菌株的基因型11 Table II. BD Matchmaker酵母菌株的表型11 Table III.单杂交系统的载体14 Table IV.双杂交系统的载体15 Table V.各BD-Matchmaker DNA-BD 载体的比较19 Table VI. RNA起始浓度和PCR扩增循环数之间的关系24 Table VII.单杂交共转化的对照实验的设置29 Table VIII.单杂共转化对照实验:期望的结果29 Table IX.双杂交转化的对照实验的设置33 Table X.双杂交配对筛选的对照实验的设置 Table XI.双杂交共转化的对照实验的设置 Table XII.双杂交共转化的对照实验:期望的结果 Table XIII.用于PCR筛选菌落的Assembling Master Mixs

!!酵母双杂交操作步骤(中文翻译)

各种SD培养基: 1)SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(? “四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的) ; 葡萄糖20g (即2%) 2)SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3)SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4)SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的) 葡萄糖 20g (即2%) 5)SD/-trp (1000 ml) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.74g ; (购买来就配好的) 葡萄糖 20g (即2%) 注意:YNB有两种,一种含有硫酸胺,另外一种不含硫酸胺。我们这用的是含硫酸铵的。(买来就加进去了的)。如果不含硫酸铵,那么要在终浓度0.17%的YNB中再加入0.5%的硫酸铵,即最终在1000 ml溶液中加入总量为6.7g的YNB与硫酸铵。 实际配制的方法是: 1.配制40%的葡萄糖贮存液(贮存在4℃),过滤除菌,待高压灭菌的溶液温度降至55℃ 以下时,再将50ml葡萄糖贮存液加入。(李博士经验这一步不高压,过滤即可使用)2.酵母氮源6.7g,加DO supplement 在920ml水中溶解,调PH至5.8(李博士的经验大 约加10M NaOH 200ul即可),之后补水至950 ml。 3.高压完后待温度降至55℃以下,加入50 ml40%葡萄糖。

酵母双杂交系统及其应用

酵母双杂交系统及其应用 Y east Two-hybrid System and Its Application 1.酿酒酵母(Saccharomyces cerevisiae)的生物学特性 (1)单细胞真核生物 尽管酵母细胞比较简单,但它们具有所有真核生物细胞的主要特征,如含有一个独立的细胞核、多条线性染色质包装成染色体、细胞质包含了全部的细胞器和细胞骨架结果(如肌动蛋白纤维)。 (2)与其它真核生物相比,它们的基因组较小,基因数目也较少; 1996年已完成酵母全基因组测序( 1.5 x 107 bp),是第一个被测序的真核生物。大约有6000个基因。目前已经建立了一个6000个菌株的文库,每一个菌株中只删除了一个基因。其中5000多株在单倍体状态时能够存活,表明大多数酵母基因时非必需的。 (3)易于培养和操作,可以在实验室快速繁殖 在指数生长期每90分钟繁殖一代,从单个细胞可以繁殖称克隆群体。 (4)单倍体和双倍体的存在使酿酒酵母便于进行遗传分析 酿酒酵母可以以单倍体状态和双倍体状态生长。单倍体和双倍体之间的转换是通过交配和孢子形成来实现的。 有两种单倍体细胞类型,分别为a型和α型。在一起生长时,这些细胞因交配而形成a/α双倍体细胞。在营养匮乏时,a/α双倍体发生减数分裂,产生一个子囊的结构,每个子囊含有4个单倍体孢子(两个a-孢子和两个α-孢子)。但当生长条件改善时,这些孢子可以出芽并以单倍体细胞的形式生长或交配而重新形成双倍体。 一个酵母细胞可同时兼容几种不同质粒 bud,芽, 蓓蕾starvation,饥饿, 饿死 ascus,n.[微生物]子囊meiosis,n.减数分裂, 成熟分裂 haploid,n.[生物]单倍体, 仅有一组染色体的细胞adj.单一的 diploid,adj.双重的, 倍数的, 双倍的n.倍数染色体 ascospore,n.[植]囊孢子 rupture,v.破裂, 裂开, 断绝(关系等), 割裂。n.破裂, 决裂, 敌对, 割裂 spore,n.孢子vi.长孢子germinate,v.发芽, 发育, 使生长

酵母双杂交操作步骤(中文翻译)

(酵母菌储存在-70℃中,引物和质粒DNA储存在-20℃中) 概念: 1. 次序转化:指的是先将一种质粒转化进酵母中(常是DNA-BD/bait plasmid),在选择培养基中选择出阳性克隆,之后再将另外一个质粒(AD fusion library)转化进去。优点:就是比共转化使用更少的质粒DNA,也就是节约质粒DNA。 2. 共同转化:将两种质粒一起转化进酵母中。优点:比次序转化更容易操作。 pGBKT7----的选择物是:kanamycin(卡那霉素)? pGADT7----的选择物是:ampicillin (氨苄西林) ? 各种SD培养基: 1) SD/-ade(腺嘌呤)/-leu(亮氨酸)/-trp(色氨酸)/-his (组氨酸)(1000 ml)(?“四缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.60g (购买来就配好的); 葡萄糖 20g (即2%) 2) SD/-leu/-trp/-his (1000 ml) 酵母氮源(YNB):6.7g ; -leu/-trp/-his DO supplement 0.62g ; (购买来就配好的) 葡萄糖 20g. (即2%) 3) SD/-leu/-trp (1000 ml) (?“二缺”) 酵母氮源(YNB):6.7g ; -ade/-leu/-trp/-his DO supplement 0.64g (购买来就配好的); 葡萄糖 20g (即2%) 4) SD/-leu (1000 ml) 酵母氮源(YNB):6.7g ; -leu DO supplement 0.69g ; (购买来就配好的)

酵母单杂交-实验步骤总结

1 pBait-AbAi载体的构建(酵母报道子的构建) 注:酵母报道子(pBait-AbAi)包含目的顺式作用元件的一个或多个拷贝,且插入到pAbAi载体AbAi r报告基因的上游。大量研究表明最有效的构建应包含目的DNA三个以上的首尾连接的拷贝。首尾连接的拷贝产生方式很多,但对于长度小于20 bp的调控元件,人工合成寡核苷酸是最方便可靠的途径。 (1)设计并合成包含目的序列的两条反向平行的寡核苷酸序列,且两端加上与pAbAi载体酶切产物一致的粘性末端(建议合成一个目的序列的突变序列作为对照,以排除可能的假阳性)。 (2)用TE buffer溶解寡核苷酸至终浓度100 μmol/L。 (3)将正向链和反向链按照1:1的比例混合(退火后的双链寡核苷酸最大浓度为50 μmol/L)。 (4)95 ?C保温30 s,去除二级结构。 (5)72 ?C保温2 min,37 ?C保温2 min,25 ?C保温2min。 注:缓慢退火,有助于双链寡核苷酸的形成。 (6)冰上放置。退火后的产物可贮存在-20 ?C冰箱备用。 (7)酶切1 μL pAbAi载体,用凝胶回收纯化或柱纯化的方式纯化酶切产物。 注:回收前,可用琼脂糖凝胶检测是否酶切完全。 (8)将退火后的寡核苷酸稀释100倍至终浓度为0.5 μmol/L。 (9)在连接反应管中加入如下成分: pAbAi载体(50 ng/μL) 1.0 μL annealed oligonucleotide (0.5 μmol/L) 1.0 μL 10×T4 DNA ligase buffer 1.5 μL BSA(10 mg/mL)0.5 μL Nuclease-free H2O 10.5 μL T4 DNA ligase (400 U/μL)0.5 μL 总体积15 μL 注:如果有必要,可用1 μL nuclease-free H2O代替寡核苷酸作为阴性对照。 (10)将反应体系室温放置连接3 h,转化E coli,采用常规方法检测阳性克隆。

酵母双杂交系统

酵母双杂交技术的研究与应用 摘要:酵母双杂交系统是在20世纪90年代初发展起来的利用遗传学方法在酵母真核细胞体内研究蛋白质之间相互作用的一种高度灵敏的分子生物学技术,它可以有效分离新基因或新的能与一种已知蛋白相互作用的蛋白质及其编码基因,被广泛应用于蛋白质组学、细胞信号转导和功能基因组学等领域,已成为分子生物学研究领域的重要实验手段之一,获得了许多有价值的重要发现。 关键词:酵母双杂交系统;蛋白质组学;功能基因组学Abstract:Yeast two-hybrid system is a highly sensitive molecular biology technique,which uses genetic methods to study protein-protein interaction in eukaryotic yeast cells,developed in the early 1990s.It can effectively separate new genes or new protein which has interaction with a known protein and protein-coding genes, is widely used in the field of proteomics, cellular signal transduction and functional genomics, has become one of the important experimental methods in the molecular biology areas, gained a lot of valuable important discovery. Key words:Yeast two-hybrid system;Proteomics;Functional Genomics.

酵母双杂交试验流程

4月4日划线配培养基TE/LIAC PEG/LIAC 配置培养基(YPD YPDA)取酵母细胞划线30°生长3天。 需要用品:三角瓶灭菌封口膜酵母提取物蛋白胨 注:以下所有涉及菌的操作均需在超净台中完成。 4月6号星期三 (1)选择2-3mm的单克隆(枪头吸取)放入3-5ml的YPDA液体培养基,30°摇菌200rpm,8h 7号下午开始,过夜培养,次日若菌液浓度达到标准,可先置于4度冰箱保存。 需要用品:200ul灭菌枪头、50ml三角瓶、YPDA液体培养基、摇床。 4月7号星期四 (2)吸取2.5-10ul酵母培养液,加入25mlYPDA液体培养基,摇菌16-20h直到OD值0.15-0.3。 下午4点开始8号8点结束 Tips:由于第一次活化的菌夜浓度不一,此处建议设置梯度,分别取2.5、5、10 ul酵母培养液,加入25ml YPDA液体培养基(转化5个以下质粒的话,25ml菌量就够后续使用)。 4月8号星期五 (3)将菌液转移至灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。 (4)弃掉上清,加入50ml新鲜的YPDA液体重悬菌体(由于离心转速较低,沉淀易悬起来,故倒掉上清液时要小心操作)。 (5)30°震荡培养,直到OD值达到0.4-0.5 (3-5h)。8号8点开始下午一点结束进行以下操作之前,配置好TE/LiAc溶液,并准备好冰浴。 (6)将上述菌液转移至一个灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。(7)弃掉上清,用30ml无菌水重悬菌体(小心操作)。 (8)再次用天平配平后,室温下700g离心5分钟,弃去上清,加入1.5ml 1.1xTE/LIAC重悬菌体。(9)将上述溶液转移到灭菌的1.5mlEP管中,高速离心15s。 (10)弃去上清,加入600ul 1.1x TE/LIAC,感受态细胞制备完成,置于冰上待用。 需要物品:50ml灭菌离心管、50ml 三角瓶、1.5ml EP管、5ml灭菌枪头、1ml灭菌枪头、灭菌ddH2O、YPDA液体培养基、1.1x TE/LIAC。 1.1x TE/LIAC10ML 10xTE 1.1ml 10xliac 1.1ml Dh2O8.8ml

(完整版)酵母双杂交原理

酵母双杂交系统原理 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进行选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进行,而如免疫共沉淀等物理方法为达到此条件需进行多次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活结构域和结合结构域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,X-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明, 转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding domain, 简称为DB,?BD)和转录激活结构域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB结构域融合, 另外一个与Gal4的AD结构域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵”(bait)和“猎物”或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 那么分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转

蛋白的酵母双杂交操作手册大全

蛋白的酵母双杂交实验 ——以钓饵蛋白筛选cDNA 文库研究蛋白相互作用 第一部分 系统简介 1. 实验原理 蛋白的酵母双杂交实验是以酵母的遗传分析为基础,研究反式作用因子之间的相互作用 对真核基因转录调控影响的实验。很早就已知道,转录活化蛋白可以和DNA 上特异的序列结合而启动相应基因的转录反应。这种DNA 结合与转录激活的功能是由转录活化蛋白上两个相互独立的结构域即DNA 结合结构域(Binding Domain, BD)和转录活化结构域(Activation Domain, AD)分别来完成的,并且这两个结构域对于基因的转录活化都是必须的。目前酵母双杂交实验采用的系统有LexA 系统和Gal4系统两种。在LexA 系统中,DNA 结合结构域由一个完整的原核蛋白LexA 构成,转录活化结构域则由一个88个氨基酸的酸性的大肠杆菌多肽B42构成,它在酵母中可以活化基因的转录; 在 Gal4系统中,BD 和AD 分别由Gal4蛋白上不同的两个结构域(1-147aa 与768-881aa)构成。在利用GAL4系统筛选cDNA 文库或研究蛋白间的相互作用时,DNA 结合结构域与靶蛋白即“诱饵”相结合,转录活化结构域与文库蛋白或要验证的蛋白相结合。一般情况下,单独的BD 可以与GAL4上游活化序列(GAL UAS )结合但不能引起转录,单独的AD 则不能与GAL UAS 结合,只有当BD 与AD 分别表达的融合蛋白由于相互作用而导致两者在空间上相互靠近时,BD 与AD 才能与GAL UAS 结合并且引起报道基因的转录。在BD 与AD 要导入的酵母菌AH109中,通过基因工程的方法在GAL4 UASs 和启动子的下游构建了3个报道基因——ADE2,HIS3,MEL1(或LacZ ),因此可以通过营养缺陷筛选和酵母菌表型的改变来筛选或验证两个蛋白之间是否存在相互作用。GAL4系统的原理如图所示: 图一:酵母双杂交系统工作原理 Kan r Amp r pGBKT7-bait pACT2-cDNA

酵母双杂交实验流程(精).doc

模块七蛋白质之间的相互作用 1.实验目的 本实验以重组质粒和酵母细胞为材料, 学习检测蛋白质相互作用的基本原理和 技术方法。主要介绍酵母双杂交的基本原理与操作技术 ; 让学生了解和掌握酵母双 杂交系统的应用 ; 掌握酵母感受态的制备的基本原理和主要的操作步骤。 2.实验原理 1989 年Fields 和Song 等人根据当时人们对真核生物转录起始过程调控的认 识(即细胞内基因转录的起始需要转录激活因子的参与,提出并建立了酵母双杂交系 统。该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平 台 ,近几年得到了广泛的运用和发展。 相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1 检测在真核活细 胞内进行 ,在一定程度上代表细胞内的真实情况。(2 作用信号是在融合基因表达后, 在细胞内重建转录因子的作用而给出的 ,省去了纯化蛋白质的繁琐步骤。(3 检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互 作用。(4 酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA 文库 ,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。(5 通过mRNA 产生多种稳定的酶使信号放大。同时,酵母表型、X-Gal 及 HIS3 蛋白表达等检测方法均很敏感。 酵母双杂交系统也具有一定的局限性。首先 , 经典的双杂交系统分析蛋白间的 相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白 的研究。酵母双杂交系统的另一个局限性是“假阳性”。在酵母双杂交系统建立的 初期阶段 ,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表 达往往不能十分严谨地被控制,因此容易产生假阳性。由于某些蛋白本身具有激活 转录的功能或在酵母中表达时发挥转录激活作用, 使DNA 结合结构域融合蛋白在 无特异激活结构域的情况下也可被激活转录。另外某些蛋白表面含有对多种蛋白

酵母双杂交系统及其应用

酵母双杂交系统及其应用 Yeast Two-hybrid System and Its Application 1. 酿酒酵母(Saccharomyces cerevisiae)的生物学特性 (1)单细胞真核生物 尽管酵母细胞比较简单,但它们具有所有真核生物细胞的主要特征,如含有一个独立的细胞核、多条线性染色质包装成染色体、细胞质包含了全部的细胞器和细胞骨架结果(如肌动蛋白纤维)。 (2)与其它真核生物相比,它们的基因组较小,基因数目也较少; 1996 年已完成酵母全基因组测序(1.5 x 10 7 bp ),是第一个被测序的真核生物。大约有6000个基因。目前已经建立了一个6000 个菌株的文库,每一个菌株中只删除了一个基因。其中5000 多株在单倍体状态时能够存活,表明大多数酵母基因时非必需的。 (3)易于培养和操作,可以在实验室快速繁殖 在指数生长期每90 分钟繁殖一代,从单个细胞可以繁殖称克隆群体。 (4)单倍体和双倍体的存在使酿酒酵母便于进行遗传分析 酿酒酵母可以以单倍体状态和双倍体状态生长。单倍体和双倍体之间的转换是通过交配和孢子形成来实现的。 有两种单倍体细胞类型,分别为a 型和α型。在一起生长时,这些细胞因交配而形成a/ α双倍体细胞。在营养匮乏时,a/ α双倍体发生减数分裂,产生一个子囊的结构,每个子囊含有4 个单倍体孢子(两个a-孢子和两个α-孢子)。但当生长条件改善时,这些孢子可以出芽并以单倍体细胞的形式生长或交配而重新形成双倍体。一个酵母细胞可同时兼容几种不同质粒bud,芽, 蓓蕾starvation ,饥饿, 饿死ascus,n.[微生物]子囊meiosis,n.减数分裂, 成熟分裂 haploid,n.[生物]单倍体, 仅有一组染色体的细胞adj.单一的diploid ,adj.双重的, 倍数的, 双倍的n.倍数染色体ascospore,n.[植]囊孢子rupture,v.破裂, 裂开, 断绝(关系等), 割裂。n.破裂, 决裂, 敌对, 割裂 germinate,v.发芽, 发育, 使生长 spore,n.孢子vi. 长孢子

酵母双杂交试验流程

4月4日划线配培养基 TE/LIAC PEG/LIAC 配置培养基(YPD YPDA)取酵母细胞划线 30°生长3天。 需要用品:三角瓶灭菌封口膜酵母提取物蛋白胨 注:以下所有涉及菌的操作均需在超净台中完成。 4月6号星期三 (1)选择2-3mm的单克隆(枪头吸取)放入3-5ml的YPDA液体培养基,30°摇菌200rpm,8h 7号下午开始,过夜培养,次日若菌液浓度达到标准,可先置于4度冰箱保存。 需要用品:200ul灭菌枪头、50ml三角瓶、YPDA液体培养基、摇床。 4月7号星期四 (2)吸取2.5-10ul酵母培养液,加入25ml YPDA液体培养基,摇菌16-20h直到OD值0.15-0.3。 下午4点开始 8号 8点结束 Tips:由于第一次活化的菌夜浓度不一,此处建议设置梯度,分别取2.5、5、10 ul酵母培养液,加入25ml YPDA液体培养基(转化5个以下质粒的话,25ml菌量就够后续使用)。 4月8号星期五 (3)将菌液转移至灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。 (4)弃掉上清,加入50ml新鲜的YPDA液体重悬菌体(由于离心转速较低,沉淀易悬起来,故倒掉上清液时要小心操作)。 (5)30°震荡培养,直到OD值达到0.4-0.5 (3-5h)。8号 8点开始下午一点结束进行以下操作之前,配置好TE/LiAc溶液,并准备好冰浴。 (6)将上述菌液转移至一个灭菌的50ml离心管中,用天平配平后,室温下700g离心5分钟。(7)弃掉上清,用30ml无菌水重悬菌体(小心操作)。 (8)再次用天平配平后,室温下700g离心5分钟,弃去上清,加入1.5ml 1.1xTE/LIAC重悬菌体。(9)将上述溶液转移到灭菌的1.5ml EP管中,高速离心15s。 (10)弃去上清,加入600ul 1.1x TE/LIAC,感受态细胞制备完成,置于冰上待用。 需要物品:50ml 灭菌离心管、50ml 三角瓶、1.5ml EP管、5ml灭菌枪头、1ml灭菌枪头、灭菌ddH2O、YPDA液体培养基、1.1x TE/LIAC。 1.1x TE/LIAC 10ML 10xTE 1.1ml 10xliac 1.1ml Dh2O 8.8ml

酵母双杂交实验流程

模块七蛋白质之间的相互作用 1. 实验目的 本实验以重组质粒和酵母细胞为材料,学习检测蛋白质相互作用的基本原理和技术方法。主要介绍酵母双杂交的基本原理与操作技术;让学生了解和掌握酵母双杂交系统的应用;掌握酵母感受态的制备的基本原理和主要的操作步骤。 2. 实验原理 1989年Fields和Song等人根据当时人们对真核生物转录起始过程调控的认识(即细胞内基因转录的起始需要转录激活因子的参与),提出并建立了酵母双杂交系统。该系统作为发现和研究活细胞体内的蛋白质与蛋白质之间的相互作用的技术平台,近几年得到了广泛的运用和发展。 相比于其它蛋白质筛选系统,酵母双杂交系统具有以下优点:(1)检测在真核活细胞内进行,在一定程度上代表细胞内的真实情况。(2)作用信号是在融合基因表达后,在细胞内重建转录因子的作用而给出的,省去了纯化蛋白质的繁琐步骤。(3)检测结果是基因表达产物的积累效应,因而可检测存在于蛋白质之间的微弱或暂时的相互作用。(4)酵母双杂交系统可采用不同组织、器官、细胞类型和分化时期材料构建cDNA文库,能分析细胞质、细胞核及膜结合蛋白等多种不同亚细胞部位及功能蛋白。(5)通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型、X-Gal 及HIS3 蛋白表达等检测方法均很敏感。 酵母双杂交系统也具有一定的局限性。首先,经典的双杂交系统分析蛋白间的相互作用定位于细胞核内,因而限制了该系统对某些细胞外蛋白和细胞膜受体蛋白的研究。酵母双杂交系统的另一个局限性是“假阳性”。在酵母双杂交系统建立的初期阶段,由于仅仅采用β-半乳糖苷酶这一单一的报告基因体系,这种报告基因的表达往往不能十分严谨地被控制,因此容易产生假阳性。由于某些蛋白本身具有激活转录的功能或在酵母中表达时发挥转录激活作用,使DNA结合结构域融合蛋白在无特异激活结构域的情况下也可被激活转录。另外某些蛋白表面含有对多种蛋白质的低亲和力区域,能与其他蛋白形成稳定的复合物,从而引起报告基因的表达,产生“假阳性”结果。产生“假阴性”结果的原因可能有许多蛋白质间的相互作用依赖于翻译后加工如糖基化、磷酸化和二硫键形成,还有些蛋白的正确折叠和功能有赖于某些非酵母蛋白的辅助等。 现在的酵母双杂交系统大都采用多种报告基因,如AH109酵母株含有三类报告基因—ADE2、HIS3、MEL1/lacZ,这三类报告基因受控于三种完全不同、异源性的GAL4-反应元件和三类启动子元件-GAL1、GAL2以及MEL1(如图6-1-1)。通过这种方法就消除了两类最主要的假阳性,一类是融合蛋白可以直接与GAL4结合位点结合或者是在结合位点附近结合所带来的假阳性;另一类是融合蛋白和某种转录因子结合后再结合到特定的TA TA盒上所带来的假阳性。ADE2一种报告基因就已经能够提供较强的营养选择压力,这时选择性地使用HIS3报告基因,一来可以降低假阳性率;二来可以控制筛选的严格性(如果需要筛选与诱饵蛋白具有较强结合的蛋白,就可以同时使用ADE2、HIS3两种报告基因;如果只需要筛选与诱饵蛋白具有中等强度或较弱结合的蛋白,就可以使用ADE2或HIS3两者中的一种)。MEL1和lacZ分别编码α-半乳糖苷酶和β-半乳糖苷酶,可以作用于相应的底物

酵母双杂交实验步骤

LexA酵母双杂交系统简介 一、LexA酵母双杂交系统的设计原理 报告质粒p8op-LacZ的GAL4 UAS编码序列被完全去除,因此在缺乏LexA融合激活剂的情况下,报告基因LacZ的转录活性为零,该基因的筛选标志为URA3,可以作为有自主复制能力的质粒存在于酵母EGY48菌株中,也可以被整合到EGY48基因组DNA上。 质粒pLexA的筛选标志为HIS3,在双杂交系统中用于表达DNA-BD(202个氨基酸残基组成的LexA蛋白)与目标蛋白(钓饵,Bait)的融合蛋白,该融合体的表达受酵母强启动子ADH1的调控,选择与报告基因的操纵子LexA×8结合。 质粒pB42AD的筛选标志为TRP1,在其供外源基因插入的多克隆位点(EcoR I与Xho I)上游,含有SV40核定位(SV40 nuclear localization)、HA(血凝素)及AD(来自于E.coli的88个氨基酸残基组成的B42蛋白)等几种编码序列,共同组成可以启动报告基因转录表达的激活成份。在酵母EGY48的基因组中还整合有另一个报告基因Leu,它与LacZ报告基因具有相同的操纵子-LexA,但两者启动子不同。 根据双杂交系统的原理,如果某一复合物同时具有DNA-BD和AD的活性,即可激活报告基因的转录和表达。分别将待测蛋白X、Y的编码序列插入pLexA质粒载体和pB42AD质粒载体的多克隆位点中,然后共同转入含有报告基因的酵母菌株,如果蛋白X与Y能相互作用,则启动报告基因的转录和表达,通过检测报告基因的表达情况,就可以间接反映蛋白X、Y是否具有相互作用以及作用的强弱。 如果将蛋白Y换为取自组织或血液的cDNA文库,则可用X从该文库中筛选出能与其相互作用的蛋白,并且可以获得编码这些蛋白的cDNA。 二、商品化酵母双杂交系统的组成 1. 载体质粒:pLexA、pB42AD、p8op-LacZ、pB42AD-DNA文库 2. 酵母菌株:EGY48、EGY48(p8op-LacZ)、YM4271(EGY48的伴侣菌株) 3. 大肠杆菌菌株:E.coli KC8株 4. 对照质粒: 质粒用途 pLexA-53,pB42AD-T 阳性对照 pLexA-Pos(LexA/GAL4 AD融合蛋白〕阳性对照 pLexA-Lam(LaminC蛋白少与其它蛋白相互作用) 假阳性检测质粒 5. 引物: pLexA测序引物及pB42AD测序引物。 三、酵母双杂交实验的基本流程 1. 将报告基因p8op-LacZ转化酵母EGY48菌株,用培养基SD/-Ura筛选。 2. 同时构建或扩增DNA文库,并纯化足够的质粒以转化酵母细胞。 3. 构建DNA-BD/靶蛋白质粒pLexA-X,作为钓饵(bait)。 4. 将上述钓饵质粒pLexA-X转化EGY48(p8op-LacZ)细胞株,用SD/-His/-Ura筛选;并用固体诱导培养基SD/Gal/Raf/-His/-Ura检测此DNA-BD/靶蛋白是否具有直接激活报告基因的活性,以及对酵母细胞是否具有杀伤毒性。 转化质粒选择培养基克隆生长情况说明

酵母双杂交操作手册 by shenao

酵母双杂交操作手册 by shenao Y2H所需材料: PJ69-4A PJ69-4α or AH109 Y187 pGBKT7 DNA-BD Vector (bait) pGADT7 AD Vector (prey) pGBKT7-53 Control Vector pGBKT7-Lam Control Vector pGADT7-T Control Vector pCL1 Control Vector 3' DNA-BD & AD Sequencing Primers Herring testes carrier DNA Yeast extract,Dextrose(glucose); SD base; DO Supplement; Peptone,with DMF) TE buffer DMSO PEG/LiAc (10X) TE/LiAc buffer (10X) X-a- gal( Yeast Phenotypes –––Ade, His, Leu, Requires adenine (Ade), histidine (His), leucine (Leu), or tryptophan (Trp) in the –or Trp medium to grow; is auxotrophic for at least one of these specific nutrients. Expresses the ADE2 reporter gene; i.e., does not require Ade in the medium to +Ade grow. +His Expresses the HIS3 reporter gene; i.e., does not require His in the medium to grow.

酵母单杂交实验方法.

酵母单杂分析 酵母单杂交技术是体外分析DNA与细胞内蛋白质相互作用的一种方法,通过对酵母细胞内报告基因表达状况的分析来鉴别DNA结合位点并发现潜在的结合蛋白基因,或对结合位点进行分析。运用此技术能筛选到与DNA结合的蛋白质,并可直接从基因文库中得到编码该蛋白质的核苷酸序列而无需复杂的蛋白质分离纯化操作,故在蛋白质研究中具有一定的优势;而且酵母属真核细胞,通过酵母系统得到的结果比其它体外技术获得的结果更能体现真核细胞内基因表达调控的情况。 【实验目的】 了解酵母单杂交的基本原理和应用,掌握酵母单杂交的主要步骤及注意事项,学会酵母感受态的制作与转化,基因文库的构建及筛选。 【实验原理】 酵母单杂交方法是根据DNA结合蛋白(即转录因子)与DNA顺式作用元件结合调控报告基因表达的原理来克隆编码目的转录因子的基因(cDNA)。该方法也是细胞内分析鉴定转录因子与顺式作用元件结合的有效方法。如图所示,将已知的特定顺式作用元件构建到最基本启动子(minimal promoter,Pmin)上游,Pmin启动子下游连接报告基因。进行cDNA融合表达文库时,编码目的转录因子的cDNA融合表达载体被转化进入酵母细胞后,其编码产物(转录因子)与顺式作用元件结合,就可以激活Pmin启动子,并促使报告基因表达。根据报告基因的表达,筛选出与已知顺式元件结合的转录因子。

“Matchmaker Gold Yeast One-Hybrid Library Screening System”提供了一个简单高效的构建cDNA文库并进行酵母单杂交筛选的方法,它使用aureobasidin A 抗性基因作为报告基因,筛选效率高,背景低。单杂交筛选是从酵母双杂交筛选发展而来,利用单杂交筛选可以对cDNA文库进行筛选直接获得与目的顺式作用元件相结合的蛋白质。 图2 用Matchmaker Gold One-Hybrid System筛选protein-DNA相互作用的原理 The Matchmaker Gold One-Hybrid Library Screening process主要包括以下步骤: 1 将已知序列(bait)克隆到pAbAi载体。 2 pBait-AbAi质粒转化Y1HGold酵母菌株,使其与酵母基因组发生重组,生成bait/reporter酵母菌株。 3 检测Y1HGold bait菌株AbAi r基因的本底表达水平。 4 合成cDNA并通过cDNA和pGADT7-Rec载体共转化酵母进行细胞内同源重组筛选cDNA文库。 5 筛选结果的验证和分析。 【实验准备】 1 仪器设备 微量取液器(2.5 μL;20 μL;50 μL;100 μL;200 μL;1000 μL)、PCR仪、低温离心机、台式离心机、CHROMA SPIN TM+TE-400纯化柱、琼脂糖凝胶电泳系统、凝胶成像系统、恒温摇床、恒温孵箱、通风橱、制冰机、振荡器、恒温金属浴、酒精浴、无菌接种环、10 cm培养皿、15 cm培养皿等。

相关主题
文本预览
相关文档 最新文档