当前位置:文档之家› 流体力学第三章流体运动学与动力学基础

流体力学第三章流体运动学与动力学基础

流体力学第三章流体运动学与动力学基础
流体力学第三章流体运动学与动力学基础

第三章流体运动学与动力学基础

主要内容

●基本概念

●欧拉运动微分方程

●连续性方程——质量守恒*

●伯努利方程——能量守恒** 重点

●动量方程——动量守恒** 难点

●方程的应用

第一节研究流体运动的两种方法

●流体质点:物理点。是构成连续介质的流体的基本单位,宏观上无穷小(体积非常

微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许

多流体分子的统计学特性)。

●空间点:几何点,表示空间位置。

流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。

一、拉格朗日法(跟踪法、质点法)Lagrangian method

1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。

2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。

3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:

x = x(a,b,c,t)

y = y(a,b,c,t)

z = z(a,b,c,t)

4、适用情况:流体的振动和波动问题。

5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。

缺点:不便于研究整个流场的特性。

二、欧拉法(站岗法、流场法)Eulerian method

1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。

2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。

3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。 位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )

同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。

加速度:

z u

u y u u x u u t u a x z x y x x x x ??+??+??+??=

z u u y

u u x

u u t

u a y z

y y

y x

y y ??+??+??+??=

z u u y u u x u u t u a z z z y z x z z ??+??+??+??=

全加速度=当地加速度+迁移加速度

当地加速度:在一定位置上,流体质点速度随时间的变化率。 迁移加速度:流体质点所在的空间位置的变化而引起的速度变化率。

说明:两种方法具有互换性。但由于欧拉法较简单,且本书着重讨论流场的整体运动特性。所以,采用欧拉法研究问题。 四、流场分类

1、 三元流场:凡具有三个坐标自变量的流场称为三元流场(或三维流场)。

一般来说,速度是三个坐标自变量的函数:V =V (x,y,z,t) 2、二元流场:凡具有两个坐标自变量的流场。 3、一元流场:具有一个坐标自变量的流场。

管截面A=A(l ),若人们研究的是各截面上流动的平均物理参数,则它可以简化为一元流场B=B(l , t)。

k

y x j xy i xy u 542

1221+-=——二维流场

第二节 流体运动的基本概念

一、稳定流动和不稳定流动

1、不稳定流动(非定常流场):经过空间点流体质点运动参数的全部或者部分随时间而变化的流动。(物理参数场与时间有关者)

p =p (x,y,z,t ) u =u (x,y,z,t )

2、稳定流动(定常流场):物理参数场与时间无关的流动。

p =p (x,y,z ) u =u (x,y,z )

z u

u y u u x u u a x z x y x x

x ??+??+??=

z u u y

u u x

u u a y z

y y

y x y ??+??+??=

z u u y u u x u u a z z z y z x

z ??+??+??=

二、迹线和流线 1、迹线:(拉格朗日法)

① 定义:流体质点在一段时间内运动所经过的路线。

② 迹线特点:每个质点都有一个运动轨迹,所以迹线是一簇曲线,且只随质点不同而异,与时间无关。

③ 迹线方程:可由“欧拉法”与“拉格朗日法”互换求出。 由欧拉法: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )

dt dx u x =

dt dy u y = dt dz

u z =

——这就是迹线微分方程式。

2、流线:(欧拉法)

① 定义:是某一瞬时流场中的一条曲线,该曲线上所有质点的速度矢量都和该曲线相切。——表示流场在某一瞬时的流动方向 ② 流线的特性:

不稳定流时,流线的空间方位形状随时间变化;

稳定流时,流线的形状不随时间变化,并与迹线重合;

流线是一条光滑曲线,既不能相交,也不能转折。

特例:点源、点汇、驻点、相切点

③ 流线方程:

证明:在M 点沿流线方向取有向微元长dS 设dS =idx +jdy +kdz ,M 点质点速度为u , u =iu x +ju y +ku z

因为 u //dS , 所以 u ×dS =0

则: z y x

u dz u dy u dx == ——证毕。 ④ 例题:

已知:???

??=+-=+=0

z y x u t y u t x u 求:t =0 时,A (-1,1)点流线的方程。

解: t y dy t x dx +-=

+

积分:ln(x+t)=-ln(-y+t)+C → (x+t) (-y+t)=C` 当t =0时,x =-1,y =1,代入上式得: C`=1 所以,过A (-1,1)点流线的方程为:xy =-1 ⑤ 流线的绘制方法:采用微元长切线方法 P 49

三、流管、流束、总流

1① 定义:在流场内画一条曲线,从曲线上每一点做流线,由许多流线围成的管子。 (人为引入的一个虚构空间) ② 特性:

A. 流管内外无流体质点交换

B. 稳定流时,流管形状不随时间而变 2、流束:充满在流管内部的流体

微小流束:断面无穷小的流束——断面上各点运动要素相等。

3、 总流:无数微小流束的总和——所有问题都归于总流问题

四、有效断面、流量和断面平均流速

1、 有效断面(过流断面):流束或总流上,垂直于流线的断面。 有效断面可以是曲面或平面

2、流量:单位时间内流过有效断面的流体量。 它有三种表达方法:

(a )体积流量:单位时间内流过有效断面的流体体积 dQ =udA

?=A

udA

Q 单位 m 3/s

(b )质量流量: Q M ρ= 单位 Kg/s (c )重量流量: Q G γ= 单位 N/s

3、断面平均流速V

假想断面上各点流速相等,以V 表示,且其流量等于实际流速u 流过该断面的流量。则:

Q

udA vA A

==?

A Q A

udA v A

=

=?

第三节 连续性方程

流体的连续性方程是质量守恒定律的一个特殊形式,对于不同的液流情形,连续性方程有不同的表现形式。 质量守恒定律:

对于空间固定的封闭曲面,dt 时间内流出的流体质量与流入的流体质量之差应等于封闭曲面内的流体质量的减少。

dt 时间内: 流出质量-流入质量=减少量

一、一元流动(管流)连续性方程

即设同一截面上的物理量均匀,因此,前面引入了断面平均流速的概念。

1、 微小流束的连续性方程 有效断面1上:dA 1、u 1、ρ1 有效断面2上:dA

2、u 2、ρ2

dt 时间内:(侧面无液体流入或流出) 流出质量:ρ2 u 2 dA 2dt 流入质量:ρ1 u 1 dA 1dt

稳定流动,dM =0,即 流出质量=流入质量 ρ2 u 2 dA 2dt =ρ1 u 1 dA 1dt

即: ρ1u 1 dA 1=ρ2u 2 dA 2

——可压缩流体沿微小流束稳定流的连续性方程。 2、总流的连续性方程

2

221112

1

dA u dA u A A ρρ?

?

=

均匀管流: 2

221112

1

dA u dA u A A ??=ρρ

2211Q Q ρρ= 或 222111A V A V ρρ=

——可压缩流体稳定流沿总流的连续性方程:沿流程的质量流量保持不变。 对于不可压缩流体:ρ=C

——不可压缩流体稳定流动总流的连续性方程:沿流程的体积流量保持不变。 分流与汇流

2=Q 3

A 2,Q 2 二、空间运动的连续性方程

本节介绍直角坐标中的连续性方程:微元分析法。

在流场中任取一微元六面体,其边长分别为dx ,dy ,dz ;a 点速度u 在三个方向的分量为u x ,u y ,u z 。 讨论分两个部分:

● dt 时间内流出与流入微元体的质量之差Δm ● dt 时间前后,微元体内流体质量变化 m 1-m 2

1、dt 时间内流出与流入微元体的质量之差Δm x 方向:

dt 时间内流入的质量:

dt 时间内流出的质量:

沿 x 轴方向流出和流入之差:1122m m m x

-=?

同理可求:

所以,dt 时间内流出与流入微元体的质量之差Δm为

2、dt时间前后,微元体内流体质量变化

m'

?(由于密度变化引起的)

dt 时间前:

dxdydz mρ

=

1

dt

3、据流体的连续流动和质量守恒:

m m'

?

=

?

整理可得流体运动的连续性微分方程式:

(1)

4、公式说明:

?物理意义:单位时间内,流体流经单位体积的流出与流入之差与其内部质量变化的代数和为零。

?

(2)

三、连续性方程的用途:

1、反过来判断流场是否连续

2、减少未知数,定义流函数、势函数

3、求解复杂问题时,使方程封闭

第四节 理想流体运动微分方程式及伯努利(Bernoulli )方程

一、理想流体运动微分方程式(Euler 方程)

它表达了理想流体受力与运动之间的动力学关系。

公式推导

在流场中取微元体如图。 中心点 a

压力为 p

速度为 u x ,u y ,u z 。

以 x 轴方向为例推导方程。

1、受力分析:

(1)因为理想流体μ=0,质量力为 Xdm ,则 单位质量流体受的质量力为:X

(2)单位质量流体受的表面力

(3所以,

dt du x p X x

=

??-

ρ1

同理:

dt du y p Y y =

??-ρ1 dt du z p Z z

=

??-

ρ1

——Euler 运动微分方程

2、公式说明:

(1)物理意义:作用在单位质量流体上的质量力与表面力之代数和等于加速度。 (2)适用条件:

① 理想流体:无粘性、无能量消耗。 ② 可压缩、不可压缩流体 ③ 稳定流、不稳定流

(3)u x =u y =u z 时,得Euler 平衡微分方程 (4)方程可解性

四个未知数u x ,u y ,u z ,p ,三个方程加一个连续性方程:可解。

二、理想流体流束的伯努利方程(D.Bernoulli 方程)

Euler 方程三式分别乘以流线上两点坐标增量dx 、dy 、dz ,则相加后得:

dz

dt du dy dt du dx dt du dz z p

dy y p dx x p Zdz Ydy Xdx z y x ++=??+??+??-++)(1)(ρ (1)

1、稳定流(条件之一)

00,0=??=??=???

=??=??t u t u t u t

u t

p

z

y x

因为稳定流动时,流线与迹线重合,则此时的dx ,dy ,dz 与时间 dt 的比为速度分量,即

有:

dt dz u dt

dy u dt

dx

u z y x =

=

=

则:

)(212u d du u du u du u dz dt du dy dt du dx dt du z z y y x x z y x =++=++

因此,方程是沿流线才适用的。——条件之二

② dp

dz z p

dy y p dx x p =??+??+??

则(1)式变成

()

221

1

)(u d dp Zdz Ydy Xdx =

-

++ρ

2、设作用在流体上的质量力只有重力(条件之三),则:

g Z Y X -===0

(z 轴向上)

所以

0)(21

1

2=++

u d dp gdz ρ

3、对于不可压缩流体: c =ρ(条件之四)

积分上式得:

c u p gz '

=++22

ρ

对于流线上任意两点 1、2

——理想流体沿流线的伯努利方程。

4、公式说明:

(1). 适用条件:①理想流体 ②稳定流动 ③质量力只受重力 ④不可压流体

⑤沿流线或微小流束。

(2). 各项意义: ① 几何意义:

z ——位置水头

γp

——压力水头

g u 22

——速度水头

物理意义:

z ——比位能

γp

——比压能

g u 22

——比动能:单位重量流体所具有的动能

三种形式的能量和功在流动的过程中是可以相互转化的,三者之和始终保持一常数。 对于实际流体:有粘性存在,消耗能量 ● 本身摩擦变成热能散发 ● 与壁面的摩擦损耗 ● 局部损耗

测压管水头

总比能

2

1

总比能:1 > 2

第五节 实际流体总流的伯努利(Bernoulli )方程

问题的引出:

方程 c g u p

z =++22

γ

只适用于理想流体,且只适用于流线,而不适用于实际流体的总流。 一、

实际流体总流与理想流体流束的比较

1、 能量的表现形式一致:比位能、比压能、比动能

2、 断面上的流速不同:

流束:u 总流 V === 修正 u

3、 断面上z 、γp

不同 4、 实际流体有能量损耗

g u p z g u p z 222

2

22211

1+

+>++γγ

二、

实际流体总流的伯努利方程

1、实际流体沿微小流束(流线)的能量方程

设'

21-w h :是流束上1、2两点间单位重量流体的能量损失,则能量方程式应写成:

'

2

12

222211

122-+++=++w h g u p z g u p z γγ (1)

2、实际流体沿总流的伯努利方程

公式推导:因为通过一个通道的流体总流是由许多流束组成的。每个流束的流动参量都有差别,而对于总流,希望利用平均参量来描述其流动特性。因此,

① 用V 代替公式(1)的 u ,使公式适用于总流。

② 实际流体有粘性,存在能量损耗 '

21-w h →21-w h

(1). 单位重量流体总比能:

g u p

z e 22

+

+=γ (2). 单位时间在微小流束有效断面上通过流体重量 dG =γudA (3). 单位时间在微小流束有效断面上通过流体的总能量

udA

g u p

z dG e dE γγ)2(2

++=?=

(4). 单位时间通过总流有效断面流体总能量

??++==A A udA

g u p

z dE E γγ)2(2

(5). 给定断面平均单位重量流体的能量

?++==A udA g u p z Q Q E e γγγγ)2(12

由(1)式重复以上步骤,整理出1、2两点的平均单位重量流体的能量关系得:

???-'+++=++22

1

1212

22221111)2(1)2(1A A A w

A udA h Q udA g u p z Q udA g u p z Q γγγγγγγγ (*)

积分存在那些问题?——总流有效断面上运动参数不等:压力不等 & 速度不等

此式不宜计算,须先求出各项积分,为此引进两个新的概念: A. 缓变流 B. 动能修正系数

A .缓变流(解决压力不等的问题)?+A udA p z Q γγγ)(1

11

(1)定义:流线间夹角很小,近似平行;流线曲率半径很大,近似直线 的流动。

忽略直线惯性力 忽略离心惯性力 (2)引入目的:忽略由于速度V 的数值或方向变化而产生的惯性力 (3)特性:

① 缓变流断面接近平面

② 质量力只有重力。因为 r 大, u 2/r 不计,进而X=Y=0

③ 水力特性:

证明:在缓变流中取相距极近的两流线 S 1 及 S 2 ,并在有效断面上取一面积为dA ,长为dz 的微小圆体柱,受力情况如图。

据达朗贝尔原理:沿n —n 方向外力与惯性力的代数和应为零。即:

0)(=-+-+n F dG pdA dA dp p

所以

C

p z =+

γ

这样,即可得到:

γγγγγγγp

z udA p z Q udA p z Q A A +=+=+??)(1)(1

急变流:流动参量沿流程急剧变化的总流。 例如:

缓变流断面: 1-1、4-4 急变流断面: 2-2、3-3

B. 动能修正系数(解决流速不均的问题)

(1

V 表达的关系式。

(2)因为总流有效断面上的速度分布是不均匀的,设各点真实速度u 与平均速度V 之差为?u ,则有

u V u ?+= (?u 有正负)

()??????+=?+=?+==A

A

A

A

A

udA

Q udA VdA dA u V udA Q 则:

0=??A

udA

动能修正系数:

α=

A V dA u A

V dA u A

A

33

2

2

3

1??=

?+

则 g V u d A g

u Q A 2212

2αγγ=?

C 、 令

?--'=2

1

212

11A A w

w udA h Q h γγ

则(*)式变成:

2

12

22222111

12g V 2g V -+++=++w h p z p z αγαγ

——实际流体总流的Bernoulli 方程

4. 公式说明:

(1)α物理意义:

它是总流有效断面上的实际动能对按平均流速算出假想动能的比值。 (2)1>α 层流时,2=α 紊流时,1.1~05.1=α 速度越大,雷诺数 1,

Re →↑α (断面上u 的差别越小)

(3)21-w h 的物理意义:实际总流1→2有效断面间,单位重量液流的平均能量损失。 (4). 适用条件:

① 稳定流; ② 不可压; ③ 质量力只受重力;

④ 选取的计算断面为缓变流断面,中间允许有急变流; ⑤ 具有共同流线。

三、伯努利方程式的应用

1、伯努利方程式的应用包括四个方面: ① 一般水力计算 ② 节流式流量计

③ 毕托管、驻压强、总压强(测速管) ④ 流动吸力问题 2、解题步骤: ① 顺液流方向取三面

两个计算断面: 所求未知量所在断面 ; 已知条件比较充分的断面; 基准面0—0 ② 列伯努利方程求解

3、 应用伯努利方程应注意的问题:P63 ① 搞清使用条件

② 方程中位置水头 z 是相对基准面而言

③ 计算时,方程两边选用压力标准一致,单位统一 ④ 动能修正系数

1≈α

⑤ 同一基准面上两点1、2两处含义不同,不可混用;

⑥ 对于水罐、水池等,液面上速度近似为零。据连续性方程

2211A V A V =

A 1>>A 2, V 1<

4、 要求:画清楚图,标明断面,写清方程

5、伯努利方程式的应用实例 (1). 一般水力计算问题 例1

已知:

m h m h m d m d Pa at p C wB B wA C A A 1.0,5.002.0,05.0108.9224====??==--

求:Vc =?Q =?p B =?

解:分析:A 、B 、C 三个断面各有三个参数z 、p 、V

√ √ ? √ ? ? √ √ ?

z A 、 p A 、 V A ; z B 、 p B 、 V B ; z C 、 p C 、 V C

取A —C 两断面列方程有二个未知数V A 、V C ,再联立连续性方程可求解。 把基准面定在A 点,使用表压计算。 由连续性方程:C A A A C A V V =

C 2

C 2

C C A V 16.05020V V V V =???

??=???? ??==A

C A C d d A A

(1)

对A -C 断面列能量方程

C

A w C C A

A h p z p z -+++=++2g V 2g V 2C 2

A

γγ (2)

把(1)代入(2),并代入已知数得:

()6

.09.82V 02.38.92V 16.09800108.9202

C 2

C 4+?++=?+??+

s m /06.18V C =

s m A V Q C C /00568.03==

以B 点做水平基准面,在B -C 两断面上运用能量方程,且V B =V A ,则

C

B w

C C B

B h p z p z -+++=++2g V 2g V 2

C 2

B

γγ

()()1.08.9206.1802.08.9216.0980002

2

+?++=?++C B V p

at Pa p B 65.1161700==

例2 有一喷水装置如图示。已知h 1=0.3m ,h 2=1.0m ,h 3=2.5m ,求喷水出口流速,及水流喷射高度h (不计水头损失)。

流体力学龙天渝课后答案第三章一元流体动力学基础

第三章 一元流体动力学基础 1.直径为150mm 的给水管道,输水量为h kN /7.980,试求断面平均流速。 解:由流量公式vA Q ρ= 注意:()vA Q s kg h kN ρ=?→// A Q v ρ= 得:s m v /57.1= 2.断面为300mm ×400mm 的矩形风道,风量为2700m 3/h,求平均流速.如风道出口处断面收缩为150mm ×400mm,求该断面的平均流速 解:由流量公式vA Q = 得:A Q v = 由连续性方程知2211A v A v = 得:s m v /5.122= 3.水从水箱流经直径d 1=10cm,d 2=5cm,d 3=2.5cm 的管道流入大气中. 当出口流速10m/ 时,求 (1)容积流量及质量流量;(2)1d 及2d 管段的流速 解:(1)由s m A v Q /0049.0333== 质量流量s kg Q /9.4=ρ (2)由连续性方程: 33223311,A v A v A v A v == 得:s m v s m v /5.2,/625.021== 4.设计输水量为h kg /294210的给水管道,流速限制在9.0∽s m /4.1之间。试确定管道直径,根据所选直径求流速。直径应是mm 50的倍数。 解:vA Q ρ= 将9.0=v ∽s m /4.1代入得343.0=d ∽m 275.0 ∵直径是mm 50的倍数,所以取m d 3.0= 代入vA Q ρ= 得m v 18.1= 5.圆形风道,流量是10000m 3/h,,流速不超过20 m/s 。试设计直径,根据所定直径求流速。直径规定为50 mm 的倍数。 解:vA Q = 将s m v /20≤代入得:mm d 5.420≥ 取mm d 450= 代入vA Q = 得:s m v /5.17= 6.在直径为d 圆形风道断面上,用下法选定五个点,以测局部风速。设想用和管轴同心但不同半径的圆周,将全部断面分为中间是圆,其他是圆环的五个面积相等的部分。测点即位于等分此部分面积的圆周上,这样测得的流速代表相应断面的平均流速。(1)试计算各测点到管心的距离,表为直径的倍数。(2)若各点流速为54321u u u u u ,,,,,空气密度为ρ,求质量流量G 。

流体力学课后习题答案

【2012年】《液压与气压传动》继海宋锦春高常识-第1-7章课后答案【最新经典版】 1.1 液体传动有哪两种形式?它们的主要区别是什么? 答:用液体作为工作介质来进行能量传递的传动方式被称之为液体传动。按照其工作 原理的不同,液体传动又可分为液压传动和液力传动,其中液压传动是利用在密封容器 液体的压力能来传递动力的;而液力传动则的利用液体的动能来传递动力的。 1.2 液压传动系统由哪几部分组成?各组成部分的作用是什么? 答:(1)动力装置:动力装置是指能将原动机的机械能转换成为液压能的装置,它是 液压系统的动力源。 (2)控制调节装置:其作用是用来控制和调节工作介质的流动方向、压力和流量,以 保证执行元件和工作机构的工作要求。 (3)执行装置:是将液压能转换为机械能的装置,其作用是在工作介质的推动下输出 力和速度(或转矩和转速),输出一定的功率以驱动工作机构做功。 (4)辅助装置:除以上装置外的其它元器件都被称为辅助装置,如油箱、过滤器、蓄 能器、冷却器、管件、管接头以及各种信号转换器等。它们是一些对完成主运动起辅助作

用的元件,在系统中是必不可少的,对保证系统正常工作有着重要的作用。(5)工作介质:工作介质指传动液体,在液压系统常使用液压油液作为工作介质。 1.3 液压传动的主要优缺点是什么? 答:优点:(1)与电动机相比,在同等体积下,液压装置能产生出更大的动力,也就 是说,在同等功率下,液压装置的体积小、重量轻、结构紧凑,即:它具有大的功率密度 或力密度,力密度在这里指工作压力。 (2)液压传动容易做到对速度的无级调节,而且调速围大,并且对速度的调节还可 以在工作过程中进行。 (3)液压传动工作平稳,换向冲击小,便于实现频繁换向。 (4)液压传动易于实现过载保护,能实现自润滑,使用寿命长。 (5)液压传动易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调 节和控制,并能很容易地和电气、电子控制或气压传动控制结合起来,实现复杂的运动和 操作。 (6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用。答:缺点:(1)由于液压传动中的泄漏和液体的可压缩性使这种传动无法保证严格

三流体动力学基础作业题

第三章流体动力学基础复习题 一、概念部分 1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。 2、流体运动的几何描述有:,,和。 3、流线有什么特点?流线、脉线和迹线有什么区别和联系? 4、流体微团基本运动形式有,和变形运动等, 而变形运动又包括和两种。 5、描述有旋运动几何要素有、和。 6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。 7、表征涡流的强弱的参数有和。 8、在无涡流空间画出的封闭周线上的速度环量为。 9、简述汤姆孙定理的内容 10、速度势函数?存在的条件是什么?流函数存在的条件是什么? 11、简述流函数的物理意义的内容,并证明。 12、流网存在的条件是什么?简述流网的性质所包含的内容? 13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。 14、是驻点。通过驻点的流线一定是零流线,是否正确?为什么?零流线是。轮廓线是。 15、描述流体运动的微分方程有、和。 写出它们的表达式。 16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么? 17、写出总水头和测压管水头的表达式,并说明各项的物理意义。 18、写出总压、全压和势压得表达式,并说明各项的物理意义。 19、简述系统和控制体的定义和特点 二、计算部分 1、已知拉格朗日描述:求速度与加速度的欧拉描述 2、试判断下列流场的描述方式:并转换成另一种描述方式 3、已知用欧拉法表示的流场速度分布规律为: 试求在t=0时刻位于点(a,b)的流体质点的运动轨迹及拉格朗日法表示的速度场 4、粘性流体在半径为R 的直圆管内做定常流动。设圆管截面(指垂直管轴的平面截面)上?????==-t t be y ae x ()()?????+-=+-=-t y t x e b u e a u 1111???+=+=t y u t x u y x

(完整版)工程流体力学课后习题(第二版)答案.doc

第一章绪论1-1. 20℃的水 2.5m 3,当温度升至80℃时,其体积增加多少?[ 解 ] 温度变化前后质量守恒,即1V12V2 又20℃时,水的密度80℃时,水的密度1998.23kg / m3 2971.83kg / m3 V2 1V 1 2.5679m3 2 则增加的体积为V V2 V1 0.0679 m3 1-2.当空气温度从0℃增加至 20℃时,运动粘度增加15%,重度减少 10% ,问此时动力粘度增加多少(百分数)? [ 解 ] (1 0.15) 原 (1 0.1) 原 1.035 原原 1.035 原 原 1.035 原原 0.035 原原 此时动力粘度增加了 3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为u 0.002 g( hy 0.5y2 ) /,式中、分别为水的密度和动力粘度,h 为水深。试求h 0.5m 时渠底(y=0)处的切应力。 [ 解 ] du 0.002 g (h y) / dy du 0.002 g(h y) dy 当h =0.5m,y=0时 0.002 1000 9.807(0.50) 9.807Pa 1-4.一底面积为 45× 50cm2,高为 1cm 的木块,质量为 5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度 u=1m/s,油层厚 1cm,斜坡角 22.620(见图示),求油的粘度。 u

[ 解 ] 木块重量沿斜坡分力 F 与切力 T 平衡时,等速下滑 mg sin T A du dy mg sin 5 9.8 sin 22.62 A u 0. 4 0.45 1 0.001 0.1047 Pa s 1-5.已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律 du ,定性绘出切应力 dy 沿 y 方向的分布图。 y y y u u u u u u [ 解 ] y y y = 0 = 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 0.9mm ,长度 20mm ,涂料 的粘度 =0.02Pa . s 。若导线以速率 50m/s 拉过模具,试求所需牵拉力。 (1.O1N ) [ 解 ] A dl 3.14 0.8 10 3 20 10 3 5.024 10 5 m 2

流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在前面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的观点,求得平均量。但是,很多问题需要求得更加详细的信息,如流速、压强等流动参数在二个或三个坐标轴方向上的分布情况。本章的内容介绍流体运动的基本规律、基本方程、定解条件和解决流体问题的基本方法。 第一节流体微团的运动分析 运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。位移和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则是基于液体的易流动性而特有的运动形式,在刚体是没有的。 在直角坐标系中取微小立方体进行研究。

一、平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成了液体基体的单纯位移,其移动速度为z y x u u u 、、。基体在运动中可能沿直线也可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不变)。 二、线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比A 点和D 点大了 dy y u y ??,而 y u y ??就代表1=dy 时液体基体运动时,在单位时间内沿 y 轴方向的伸长率。 x u x ??,y u y ??,z u z ?? 三、角变形(角变形速度) d d d D C A B C D B A

dt y u dy dt dy y u d x x ??=???=α dt x u dx dt dx x u d y y ??=???=β θβθα+=-d d 2 βαθd d -= ∴ 角变形: ???? ????+??=+=-=x u y u d d d y x z 212βαθαθ ?? ? ????+??= x u z u z x y 21θ ???? ????+??=y u z u z y x 21θ 四、旋转(旋转角速度) ??? ? ????-??=-=y u x u x y z 21θω ??? ? ????-??=z u y u y z x 21ω 即, ?? ? ????-??=x u z u z x y 21ω z y x u u u z y x k j i ??????= 21ω 那么,代入欧拉加速度表达式,得: z x x x x x x z y y z z y y y y y y y x z z x x z z z z z z z y x x y y x x y du u u u u u u u dt t x u u u u u u u u dt t y u u u u u u u u dt t z αθθωωαθθωωαθθωω??? = =++++-???? ????==++++-???? ????==++++-? ??? 各项含义: (1) 平移速度 (2)线变形运动所引起的速度增量

第一章流体力学基础

液压复习参考题 注意:以下题目仅供参考,并非考试题目 一、填空题 1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量)。 2.液压传动装置由(动力元件)、(执行元件)、(控制元件)和(辅助元件)四部分组成,其中(动力元件)和(执行元件)为能量转换装置。 3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体的流动状态可用(雷诺数)来判断。 4.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分组成。 5.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 6.变量泵是指(排量)可以改变的液压泵,常见的变量泵有( 单作用叶片泵)、( 径向柱塞泵)、( 轴向柱塞泵)其中(单作用叶片泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。 7.液压泵的实际流量比理论流量(小);而液压马达实际流量比理论流量(大)。 8.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞与缸体)、(缸体与配油盘)、(滑履与斜盘)。 9.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。 10.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变少时与(压油)腔相通,闭死容积由小变大时与(吸油)腔相通。 11.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合)间隙,其中(端面)泄漏占总泄漏量的80%~85%。 12.双作用叶片泵的定子曲线由两段(大半径圆弧)、两段(小半径圆弧)及四段(过渡曲线)组成,吸、压油窗口位于(过渡曲线)段。 13.调节限压式变量叶片泵的压力调节螺钉,可以改变泵的压力流量特性曲线上(拐点压力)的大小,调节最大流量调节螺钉,可以改变(泵的最大流量)。 14.溢流阀为(进口)压力控制,阀口常(闭),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为(出口)压力控制,阀口常(开),先导阀弹簧腔的泄漏油必须(单独引回油箱)。 15.调速阀是由(定差减压阀)和节流阀(串联)而成,旁通型调速阀是由(差压式溢流阀)和节流阀(并联)而成。 16.两个液压马达主轴刚性连接在一起组成双速换接回路,两马达串联时,其转速为(高速);两马达并联时,其转速为(低速),而输出转矩(增加)。串联和并联两种情况下回路的输出功率(相同)。 17.在变量泵—变量马达调速回路中,为了在低速时有较大的输出转矩、在高速时能提供较大功率,往往在低速段,先将(马达排量)调至最大,用(变量泵)调速;在高速段,(泵排量)为最大,用(变量马达)调速。 18.顺序动作回路的功用在于使几个执行元件严格按预定顺序动作,按控制方式不同,分为(压力)控制和(行程)控制。同步回路的功用是使相同尺寸的执行元件在运动上同步,同步运动分为(速度)同步和(位置)同步两大类。 19.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 20.液体流动时,液体中任意点处的压力、流速和密度都不随时间而变化,称为恒定流动。

3第三章_流体运动学

第三章 流体运动学 3-1 已知流体质点的运动,由拉格朗日变数表示为 x =ae kt ,y =be -kt ,z =c ,式中k 是不为零的常数。试求流体质点的迹线、速度和加速度。 解:(1)由题给条件知,流体质点在z=c 的平面上运动,消去时间t 后,得 xy =ab 上式表示流体质点的迹线是一双曲线族:对于某一给定的(a ,b ),则为一确定的双曲线。 (2)0kt kt x y z x y z u kae u kbe u t t t -???= ===-==???,, (3)220y kt kt x z x y z u u u a k ae a k be a t t t -???=== ===???,, 3-2 已知流体运动,由欧拉变数表示为u x =kx ,u y =-ky ,u z =0,式中k 是不为零的常 数。试求流场的加速度。 解:2d d x x x x x x x y z u u u u u a u u u k x t t x y z ????= =+++=???? 2d d y y u a k y t ==,d 0d z z u a t == 3-3 已知u x =yzt ,u y =zxt ,u z =0,试求t =1时流体质点在(1,2,1)处的加速度。 解:2()3m/s x x x x x x y z u u u u a u u u yz zxt zt t x y z ????= +++=+=???? 2()3m/s y y y y y x y z u u u u a u u u zx yzt zt t x y z ????=+++=+=???? 0z z z z z x y z u u u u a u u u t x y z ????=+++=???? 3-4 已知平面不可压缩液体的流速分量为u x =1-y ,u y =t 。试求(1)t =0时,过(0, 0)点的迹线方程;(2)t =1时,过(0,0)点的流线方程。 解:(1)迹线的微分方程式为 d d d d d d d d d d y x y x y x y x y t t t y u t t t u u u u ======,,,, 积分上式得:12 2C t y +=,当t=0时,y=0,C 1=0,所以 2 2t y = (1) 2d d (1)d (1)d 2x t x u t y t t ==-=-,积分上式得:23 6 C t t x +-= 当t =0时,x =0,C 2=0,所以 6 3 t t x - = (2) 消去(1)、(2)两式中的t ,得x =有理化后得 023 49222 3=-+-x y y y

第一章-流体力学基础习题

~ 第一章 流体力学 【1-1】 椰子油流过一内径为20mm 的水平管道,其上装有一收缩管,将管径逐渐收缩至 12mm ,如果从未收缩管段和收缩至最小处之间测得的压力差为800Pa ,试求椰子油的流量。 【1-2】 牛奶以2×10-3m 3/s 的流量流过内径等于27mm 的不锈钢管,牛奶的粘度为×10-, 密度为1030kg/m 3,试确定管内流动是层流还是紊流。 【1-3】 用泵输送大豆油,流量为×10-4m 3/s ,管道内径为10mm ,已知大豆油的粘度为40 ×10-,密度为940kg/m 3。试求从管道一端至相距27m 的另一端之间的压力降。 】 【1-7】某离心泵安装在高于井内水面 5.5m 的地面上,吸水量为40m 3/h 。吸水管尺寸为 4114?φmm ,包括管路入口阻力的吸水管路上的总能量损失为kg 。试求泵入口处的真空度。(当地大气压为×105Pa ) 【1-9】每小时将10m 3常温的水用泵从开口贮槽送至开口高位槽。管路直径为357?φmm , 全系统直管长度为100m ,其上装有一个全开闸阀、一个全开截止阀、三个标准弯头、两个阻力可以不计的活接头。两槽液面恒定,其间垂直距离为20m 。取管壁粗糙度为0.25mm 、水的密度为1000kg/m 3、粘度为1×10-。试求泵的效率为70%时的轴功率。 【1-10】用泵将开口贮槽内密度为1060kg/m 3、粘度为×10-的溶液在稳定流动状态下送到蒸 发器内,蒸发空间真空表读数为40kPa 。溶液输送量为18m 3/h 。进蒸发器水平管中心线高于贮槽液面20m ,管路直径357?φmm ,不包括管路进、出口的能量损失,直管和管件当量长度之和为50m 。取管壁粗糙度为0.02mm 。试求泵的轴功率(泵的效率为65%)。 【1-13】拟用一台3B57型离心泵以60m 3/h 的流量输送常温的清水,已查得在此流量下的允 许吸上真空H s =5.6m ,已知吸入管内径为75mm ,吸入管段的压头损失估计为0.5m 。试求: 1) ; 2) 若泵的安装高度为5.0m ,该泵能否正常工作该地区大气压为×104Pa ; 3) 若该泵在海拔高度1000m 的地区输送40℃的清水,允许的几何安装高度为若干米当地大气压为×104Pa 。

流体力学第一章答案

第一章习题简答 1-3 为防止水温升高时,体积膨胀将水管胀裂,通常在水暖系统顶部设有膨胀水箱,若系统内水的总体积为10m 3,加温前后温差为50°С,在其温度范围内水的体积膨胀系数αv =0.0005/℃。求膨胀水箱的最小容积V min 。 锅炉 散热器 题1-3图 解:由液体的热胀系数公式dT dV V 1V = α , 据题意, αv =0.0005/℃,V=10m 3,dT=50°С 故膨胀水箱的最小容积 325.050100005.0m VdT dV V =??==α 1-4 压缩机压缩空气,绝对压强从4 108067.9?Pa 升高到5 108840.5?Pa ,温度从20℃升高到78℃,问空气体积减少了多少? 解:将空气近似作为理想气体来研究,则由 RT P =ρ 得出 RT P = ρ 故 () 34 111/166.120273287108067.9m kg RT P =+??==ρ () % 80841 .5166.1841.5/841.578273287108840.52121 211213 5 222=-=-=-=-=?=+??==ρρρρρρρm m m V V V V m kg RT P 1-5 如图,在相距δ=40mm 的两平行平板间充满动力粘度μ=0.7Pa·s 的液体,液体中 有一长为a =60mm 的薄平板以u =15m/s 的速度水平向右移动。假定平板运动引起液体流

动的速度分布是线性分布。当h=10mm时,求薄平板单位宽度上受到的阻力。 解:平板受到上下两侧黏滞切力T1和T2作用,由 dy du A Tμ =可得 12 U1515 T T T A A0.70.0684 0.040.010.01 U N h h μμ δ ?? =+=+=??+= ? -- ?? (方向与u相 反) 1-6 两平行平板相距0.5mm,其间充满流体,下板固定,上板在2 N/m2的力作用下以0.25m/s匀速移动,求该流体的动力黏度μ。 解:由于两平板间相距很小,且上平板移动速度不大,则可认为平板间每层流体的速 度分布是直线分布,则 σ μ μ u A dy du A T= =,得流体的动力黏度为 s Pa u A T u A T ? ? = ? ? = ? = =- - 4 3 10 4 25 .0 10 5.0 2 σ σ μ 1-7 温度为20°С的空气,在直径为2.5cm的管中流动,距管壁上1mm处的空气速度为3cm/s。求作用于单位长度管壁上的黏滞切力为多少? 解:温度为20°С的空气的黏度为18.3×10-6 Pa·s 如图建立坐标系,且设u=ay2+c 由题意可得方程组 ?? ? ? ? + - = + = c a c a 2 2 ) 001 .0 0125 .0( 03 .0 0125 .0 解得a= -1250,c=0.195 则u=-1250y2+0.195

(完整版)工程流体力学课后习题(第二版)答案

第一章绪论 3 1-1. 20C的水2.5m,当温度升至80C时,其体积增加多少? [解]温度变化前后质量守恒,即V 2V 3 又20C时,水的密度i 998.23kg /m 3 80C 时,水的密度 2 971.83kg/m3 V2— 2.5679m3 2 3 则增加的体积为V V V i 0.0679m 1-2.当空气温度从0C增加至20C时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解](1 0.15)原(1 0.1)原 1.035原原1.035原 原 1.035原原 0.035 原原 此时动力粘度增加了 3.5% 1-3?有一矩形断面的宽渠道,其水流速度分布为u 0.002 g(hy 0.5y2)/ ,式中、分别为水的密度和动力粘度,h为水深。试求h 0.5m时渠底(y=0)处的切应力。 [解]——0.002 g(h y)/ dy 0.002 g(h y) dy 当h =0.5m , y=0 时 0.002 1000 9.807(0.5 0) 9.807Pa 1-4.一底面积为45 x 50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度。

[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑 mg sin du T A dy mg sin A U 5 9.8 sin 22.62 1 0.4 0.45 - 0.001 0.1047 Pa s 1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律 沿y方向的分布图。 3 3 5 2 [解] A dl 3.14 0.8 10 20 10 5.024 10 m 石,定性绘出切应力 1-6 ?为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 的粘度=0.02Pa. s。若导线以速率50m/s拉过模具,试求所需牵拉力。 0.9mm,长度20mm,涂料 (1.O1N) y

流体力学第二版课后习题答案

第一章习题答案 选择题(单选题) 1.1 按连续介质的概念,流体质点是指:(d ) (a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 1.2 作用于流体的质量力包括:(c ) (a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。 1.3 单位质量力的国际单位是:(d ) (a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。 1.4 与牛顿内摩擦定律直接有关的因素是:(b ) (a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。 1.5 水的动力黏度μ随温度的升高:(b ) (a )增大;(b )减小;(c )不变;(d )不定。 1.6 流体运动黏度ν的国际单位是:(a ) (a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。 1.7 无黏性流体的特征是:(c ) (a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合 RT p =ρ 。 1.8 当水的压强增加1个大气压时,水的密度增大约为:(a ) (a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。 1.9 水的密度为10003 kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==?=(kg ) 29.80719.614G mg ==?=(N ) 答:2L 水的质量是2kg ,重量是19.614N 。 1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807 899.3580.5 m G g V V ρ= ===(kg/m 3) 答:该油料的密度是899.358kg/m 3 。 1.11 某液体的动力黏度为0.005Pa s ?,其密度为8503 /kg m ,试求其运动黏度。

流体力学习题及参考答案

09流体力学习题1及参考答案 一、单项选择题(共15分,每小题1分) 1、下列各力中,属于质量力的是( )。 A .离心力 B .摩擦力 C .压力 D .表面张力 2、下列关于流体粘性的说法中,不准确的说法是( )。 A .粘性是实际流体的固有属性 B .构成流体粘性的因素是流体分子间的吸引力 C .流体粘性具有传递运动和阻碍运动的双重性 D .动力粘度与密度之比称为运动粘度 3、在流体研究的欧拉法中,流体质点的加速度由当地加速度和迁移加速度组成,当地加速度反映()。 A .流体的压缩性 B .由于流体质点运动改变了空间位置而引起的速度变化率 C .流体速度场的不稳定性 D .流体速度场的不均匀性 4、重力场中流体的平衡微分方程为( )。 A .gdz dp -= B .gdz dp ρ= C .dz dp ρ-= D .gdz dp ρ-= 5、无旋流动是指( )的流动。 A .速度环量为零 B .迹线是直线 C .流线是直线 D .速度环量不为零 6、压强的量纲 []p 是( )。 A.[]2-MLt B.[]21--t ML C.[]11--t ML D.[]1 -MLt 7、已知不可压缩流体的流速场为 则流动不属于( )。 A .非均匀流 B .非稳定流动 C .稳定流动 D .三维流动 0 ),,() ,(?? ???===w t z x f z y f u υ

8、动量方程的适用条件是( ) 。 A .仅适用于理想流体作定常流动 B .仅适用于粘性流体作定常流动 C .适用于理想流体与粘性流体作定常或非定常流动 D .适用于理想流体与粘性流体作定常流动 9、在重力场中作稳定流动的系统,沿流动方向总水头线维持水平的条件是 ( ) 。 A .管道是水平放置的 B .流体为不可压缩流体 C .管道是等径管 D .流体为不可压缩理想流体 10、并联管道系统中,其各支管内单位质量流体的能量损失( )。 A .不相等 B .之和为总能量损失 C .相等 D .不确定 11、边界层的基本特征之一是( )。 A .边界层内流体的流动为层流 B .与物体的特征长度相比,边界层的厚度很小 C .边界层厚度沿流动方向逐渐减薄 D .边界层内流体的流动为湍流 12、指出下列论点中的错误论点:() A .平行流的等势线与流线相互平行 B .涡流的径向速度为零 C .无旋流动也称为有势流动 D .点源的圆周速度为零 13、关于涡流有以下的论点,指出其中的错误论点:( )。 A .以涡束诱导出的平面流动,称为涡流 B .点涡是涡流 C .涡流的流线是许多同心圆 D .在涡流区域速度与半径成正比 14、超音速气体在收缩管中流动时,气流速度()。 A .逐渐增大 B .不变 C .不确定 D .逐渐减小 15、为提高离心泵的允许安装高度,以下哪种措施是不当的?( ) A .提高流体的温度 B .增大离心泵吸入管的管径 C .缩短离心泵吸入管的管径 D .减少离心泵吸入管路上的管件 参考答案:1.A 2.B 3.C 4.D 5.A 6.B 7.C 8.D 9.D 10.C 11.B 12.A 13.D 14.D in out QV QV F )()(ρρ∑-∑=∑

第三章流体动力学基础

第三章 流体动力学基础 习 题 一、单选题 1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是 ( ) A .加速运动 B .减速运动 C .匀速运动 D .不能确定 2、血管中血液流动的流量受血管内径影响很大。如果血管内径减少一半,其血液的流量将变为原来的( )倍。 A .21 B .41 C .81 D .161 3、人在静息状态时,整个心动周期内主动脉血流平均速度为0.2 m/s ,其内径d =2×10-2m ,已知血液的粘度η =×10-3 Pa·S ,密度ρ=×103 kg/m 3,则此时主动脉中血液的流动形态处于( )状态。 A .层流 B .湍流 C .层流或湍流 D .无法确定 4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。 A .30 B .40 C .45 D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。 A .1m/s B .2m/s C .3 m/s D .4 m/s 6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。 A .1×10-3 m 3/s B .2×10-3 m 3/s C .1×10-4 m 3/s D .2×10-4 m 3/s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。 A .4 B .3 C .2 D .1 8、正常情况下,人的血液密度为×103kg/m 3 ,血液在内径为6mm 的小动脉中流动的平均速度为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,此处内径为4mm ,则小动脉宽处与窄处压强之差( )Pa 。 二、判断题 1、有水在同一水平管道中作稳定流动,管道横截面积越大,流速越小,压强就越小。( ) 2、由直径为15cm 的水平光滑的管子,把20℃的水抽运到空气中去。如果抽水保持水的流速为30cm/s ,已知20℃水的粘度η=×10-3 Pa/S ,则水在管子中的流动形态属于湍流。( ) 3、烟囱越高,通风效能越好,即把烟从炉中排出来的本领就越大。( ) 4、在深海中下落的一个铝球,整个过程始终是加速运动的。( ) 5、飞机机翼的升力来自机翼上下表面压强之差,这个压强之差主要由于机翼上表面流速大于下表面流速所致。( ) 6、流体的内摩擦力与固体间接触表面的摩擦力共同的特点都是阻碍相对运动,但流体的内摩擦力不存在最大的静摩擦力。( ) 三、填空题 1、流管的作用相当于管道,流体只能从流管一端____,从另一端______。 2、液体的粘度与液体的______、温度、_______因素有关,且随着温度的升高而_______。 3、理想流体是指 的流体,是一理想的模型,它是实际流体的近似。 4、稳定流动是实际流体流动的一种特殊情况, ,称为稳定流动。 5、为形象地描绘流速场的分布情况,可在其中描绘一些曲线,使

第一章 流体力学基础

第一章流体力学基础 流体包括液体和气体。 流体力学是力学的一个分支,研究流体处于平衡、运动状态时的力学规律及其在工程中的应用。 按研究介质不同流体力学分为液体力学(水力学)和气体力学。水力学研究的对象是液体,但是,当气体的流速和压力不大,密度变化不大,压缩性可以忽略不计时,液体的各种平衡和运动规律对于气体也是适用的。 流体力学在建筑设备工程中有着广泛的应用。给水、排水、供热、供燃气、通风和空气调节等工程设计、计算和分析都是以流体力学作为理论基础的。因此,必须了解和掌握流体力学的基本知识。 第一节流体的主要物理性质 流体的连续性假说 流体毫无空隙地连续地充满它所占据的空间。因此,描述流体平衡和运动的参数都是空间坐标的连续函数,从而就可以应用数学分析中的连续函数这一工具,分析流体在外力作用下的机械运动。 流体的力学特性 (1)流体不能承受拉力; (2)静止流体不能承受切力,受微小切力作用流体就会流动,这就是流体易流动性的原因,运动的实际流体能承受切力; (3)静止或运动的流体能承受较大的压力。 一、惯性及万有引力特性 惯性——物体保持原有运动状态的性质。惯性的大小用质量表示。 万有引力——地球上的物体均受地球引力的作用,表现为重力。质量为物体的重力为 (N)(1-1)

式中——重力加速度,取m/s2。 1.密度 对于均质流体,单位体积流体具有的质量,记为。对于质量为,体积为的流体有 (kg/m3)(1-2) 2.容重(重度) 对于均质流体,单位体积流体具有的重量,记为。对于重量为,体积为的流体有 (N/m3)(1-3) 干空气在标准大气压mmHg和20℃时,kg/m3,N/m3。 水在标准大气压和4℃时,kg/m3,N/m3。 水银在标准大气压和20℃时,kg/m3,N/m3。 二、粘滞性 如图1-1所示,为管中断面流速分布。由于流体各流层流速不同,当相邻层间有相对运动时,在接触面上就会产生相互作用的内摩擦力(切力),摩擦生热,耗散在流体中,流体的机械能就会损失一部分。 流体运动时产生内摩擦力或抵抗剪切变形的能力称为流体的粘滞性。

流体力学课后答案第七章

1. 已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。求在点(1,-1)处流体 微团的线变形速度,角变形速度和旋转角速度。 解:(1)线变形速度:y x x u x x +=??=2θ 54+=??=xy y u y y θ 角变形速度:()x y y u x u x y z +=??? ? ????+??=222121ε 旋转角速度:()x y x u x u x y z -=???? ????-??=222 121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω 2.已知有旋流动的速度场为z y u x 32+=,x z u y 32+=,y x u z 32+=。试求旋转角速度,角变形速度和涡线方程。 解:旋转角速度:2 121=???? ????-??=z u y u y z x ω 2 121=??? ????-??=x u z u z x y ω 2121=???? ????-??=y u x u x y z ω 角变形速度:2521=??? ? ????+??=z u y u y z x ε 2 521=??? ????+??=x u z u z x y ε 2 521=???? ????+??=y u x u x y z ε 由z y x dz dy dx ωωω==积分得涡线的方程为: 1c x y +=,2c x z += 3.已知有旋流动的速度场为22z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流 场的涡量及涡线方程。

解:流场的涡量为: 0=??-??=z u y u y z x Ω 22z y cz x u z u z x y +=??-??= Ω 22z y cy y u x u x y z +-=??-??=Ω 旋转角速度分别为:0=x ω 222z y cz y +=ω 222z y cy z +-=ω 则涡线的方程为:c dz dy z y +=??ωω 即c y dz z dy +-=?? 可得涡线的方程为:c z y =+22 4.求沿封闭曲线2 22b y x =+,0=z 的速度环量。(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。其中A 为常数。 解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。 在z =0的平面上速度分布为: Ax u x =,0=y u 涡量分布为:0=z Ω 根据斯托克斯定理得:0==?z A z s dA ΩΓ (2)涡量分布为:A z -=Ω 根据斯托克斯定理得:2b A dA z A z s πΩΓ-==? (3)由于0=r u ,r A u =θ 则转化为直角坐标为:22b Ay y r A u x -=-=,2b Ax u y =

流体力学的简单认识

流体力学的简单认识 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是连续介质力学的一门分支,是研究流体(包含气体及液体)现象以及相关力学行为的科学。可以按照研究对象的运动方式分为流体静力学和流体动力学,还可按应用范围分为水力学,空气动力学等等。 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。在流体力学中为简化计算,对流体模型做出了假设:质量守恒;动量守恒;能量守恒。在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。 石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。 沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。 风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。 因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应

第一章 流体力学基础知识

第一章流体力学基础知识 本章先介绍流体力学的基本任务,研究方向和流体力学及空气动力学的发展概述。然后介绍流体介质,气动力系数,矢量积分知识。最后引入控制体,流体微团及物质导数的概念。为流体力学及飞行器空气动力学具体知识的学习做准备。 1.1流体力学的基本任务和研究方法 1.1.1流体力学的基本任务 流体力学是研究流体和物体之间相对运动(物体在流体中运动或者物体不动而流体流过物体)时流体运动的基本规律以及流体与物体之间的作用力。而空气动力学则是一门研究运动空气的科学。 众所周知,空气动力学是和飞机的发生,发展联系在一起的。在这个意义上,这门科学还要涉及到飞机的飞行性能,稳定性和操纵性能问题。事实上,空气动力学研究的对象还不限于飞机。 空气相对物体的运动,可以在物体的外部进行,像空气流过飞机表面,导弹表面和螺旋浆等;也可以在物体的内部进行,像空气在风洞内部和进气道内部的流动。在这些外部或内部流动中,尽管空气的具体运动和研究运动的目的有所不同,但它们都发生一些共同的流动现象和遵循一些共同的流动规律,例如质量守恒,牛顿第二定律,能量守恒和热力学第一定律,第二定律等。 研究空气动力学的基本任务,不仅是认识这些流动所发生现象的基本实质,要找出这些共同性的基本规律在空气动力学中的表达,并且研究如何应用这些规律能动地解决飞行器的空气动力学问题和与之相关的工程技术问题,并对流动的新情况、新进展加以预测。 1.1.2空气动力学的研究方法 空气动力学研究是航空科学技术研究的重要组成部分,是飞行器研究的“先行官”。其研究方法,如同物理学各个分支的研究方法一样,有实验研究、理论分析和数值计算三种方法。这些不同的方法不是相互排斥,而是相互补充的。通过这些方法以寻求最好的飞行器气动布局形式,确定整个飞行范围作用在飞行器的力和力矩,以得到其最终性能,并保证飞行器操纵的稳定性。 实验研究方法在空气动力学中有广泛的应用,其主要手段是依靠风洞、水洞、激波管以及测试设备进行模拟实验或飞行实验。其优点在于,它能在所研究的问题完全相同或大致相同的条件下,进行模拟与观测,因此所得到的结果较为真实、可靠。但是,实验研究的方法往往也受到一定的限制,例如受到模拟尺寸的限制和实验边界的影响。此外实验测量的本身也会影响所得到结果的精度,并且实验往往要耗费大量的人力和物力。因此这种方法亦常常遇到困难。 理论分析的方法一般包括以下步骤;(1)通过实验或观察,对问题进行分析研究,找出其影响的主要因素,忽略因素的次要方面,从而抽象出近似的合理的理论模型;(2)运用基本定律,原理和数学分析,建立描写问题的数学方程,以及相应的边界条件和初始条件;(3)利用各种数学方法准确地或近似地解出方程;(4)对所得解答进行分析、判断,并通过必要的实验与之修正。 理论分析方法的特点,在于它的科学抽象,能够用数学方法求得理论结果,以及揭示问题的内在规律。然而,往往由于数学发展水平的限制,又由于理论模型抽象的简化,因而无法满足研究复杂的实际问题的需要。 上个世纪七十年代以来,随着大型高速计算机的出现,以及一系列有效的近似计算方法(例如有限差分方法、有限元素法和有限体积法等)的发展,使得计算流体力学(CFD)数值方法在空气动力学研究方法中的作用和地位不断提高。与实验方法相比,其研究所需要费用比较少。对有些无法进

相关主题
文本预览
相关文档 最新文档