当前位置:文档之家› 变电站二次控制回路解析回路

变电站二次控制回路解析回路

变电站二次控制回路解析回路
变电站二次控制回路解析回路

第六章二次回路

第五节电流及电压的二次回路

为了满足不同测量、继电保护及安全自动装置的要求,电流、电压互感器有多种配置与接线方式。

一、电流、电压互感器接用位置的选择

图6-8是220kV变电所电流、电压互感器典型配置方式。所有使用系统电压的地点,都根据需要应该安装单相或三相电压互感器。图6-8中在220kV、110kV正副母线,35kV母线各设置了一组三相电压互感器,在220kV线路上设置了一组单相电压互感器。

图6-8 220kV变电所电流、电压互感器典型配置图

(一)电流互感器接用位置的选择

在选择各类测量、计量及保护装置接入位置时,要考虑以下因素。

(1)选用合适的准确度级。如图6-8中,计量对准确度要求最高,接0.2级,测量回路要求相对较低接0.5级。保护装置对准确度要求不高,但要求能承受很大的短路电流倍数,所以选用5P20的保护级。

(2)保护用电流互感器还要根据保护原理与保护范围合理选择接入位置,确保一次设备的保护范围没有死区。如图6-8中,2套线路保护的保护范围指向线路,应放在第三组次级,这样可以与母差保护形成交叉,如何一点故障都有保护切除。如果母差保护接在最近母线侧的第一组次级,2套线路保护分别接第二、第三

次级,则在第一与第二次级间发生故障时,既不在母差保护范围,线路保护也不会动作,故障只能考远后备保护切除。虽然这种故障的几率很小,却有发生的可能,一旦发生后果是严重的。图中两组接入母差保护的次级,正副母间也要交叉,否则也有死区。

(3)当有旁路开关需要旁代主变等开关时,如有差动等保护则需要进行电流互感器的二次回路切换,这时既要考虑切换的回路要对应一次运行方式的变换,还要考虑切入的电流互感器二次极性必须正确,变比必须相等。

(二)电压互感器原则配置

(1)对于主接线为单母线、单母线分段、双母线等,在母线上安装三相式电压互感器;当其出线上有电源,需要重合闸鉴同期或无压,需要同期并列时,应在线路侧安装单相或两相电压互感器;

(2)对于3/2主接线,常常在线路或变压器侧安装三相电压互感器,而在母线上安装单相互感器以供同期并联和重合闸鉴无压、鉴同期使用;

(3)内桥接线的电压互感器可以安装在线路侧,也可以安装在母线上,一般不同时安装。安装地点的不同对保护功能有所影响;

(4)对220kV及以下的电压等级,电压互感器一般有两个次级,一组接为星形,一组接为开口三角形。在500kV系统中,为了继电保护的完全双重化,一般选用三个次级的电压互感器,其中两组接为星形,一组接为开口三角形。

(5)当计量回路有特殊需要时,可增加专供计量的电压互感器次级或安装计量专用的电压互感器组。

(6)在小接地电流系统,需要检查线路电压或同期时,应在线路侧装设两相式电压互感器或装一台电压互感器接线间电压。在大接地电流系统中,线路有检查线路电压或同期要求时,应首先选用电压抽取装置。通过电流互感器或结合电容器抽取电压,尽量不装设单独的电压互感器。500kV线路一般都装设三只电容式线路电压互感器,作为保护、测量和载波通信公用。

二、常用电流、电压互感器二次回路接线方式

(一)电流互感器二次回路的接线方式

1、接线方式

在变电所中,常用的电流互感器二次回路接线方式有单相接线、两相星形(或不完全星形)接线、三相星形(或全星形)接线、三角形接线、和电流接线等,如图6-9,它们根据需要应用于不同场合。现将各种接线的特点及应用场合介绍如下。

(d)

(e)

图6-9 常用电流互感器二次回路接线方式图

(1)单相式接线,如图6-9(a)所示。这种接线只有一只电流互感器组成,接线简单。它可以用于小电流接地系统零序电流的测量,也可以用于三相对称电流中电流的测量或过负荷保护等。

(2)三相星形接线又叫全星形接线,如图6-9(c)所示。这种接线由三只互感器按星形连接而成,相当于三只互感器公用零线。这种接线中的零线在系统正常运行时没有电流通过(3I0=0),但该零线不能省略,否则在系统发生不对称接地故障产生3I0电流时,该电流没有通路,不但影响保护正确动作,其性质还相当

于电流互感器二次开路,会产生很高的开路电压。三相星形接线一般应用于大接地电流系统的测量和保护回

路接线,它能反应任何一相、任何形式的电流变化。

(3)两相星形接线,如图6-9(b)所示。这种接线有两相电流互感器组成,与三相星形接线相比,它缺少一只电流互感器(一般为B相),所以又叫不完全星形接线。它一般用于小电流接地系统的测量和保护回路,由于该系统没有零序电流,另外一相电流可以通过计算得出,所以该接线可以测量三相电流、有功功率、无功功率、电能等。反应各类相间故障,但不能完全反应接地故障。

对于小电流接地系统,不完全星形接线不但节约了一相电流互感器的投资,在同一母线的不同出线发生异名相接地故障时,还能使跳开两条线路的几率下降了三分之二。只有当AC相接地时才会跳开两条线路,AB、BC相接地时,由于B相没有电流互感器,则B相接地的一条线路将不跳闸。

线路1线路2

图6-10 小接地电流系统不同线路异名相接地故障图

(4)三角形接线,如图6-9(d)所示。这种接线主要用于保护二次回路的转角或滤除短路电流中的零序分量。如图6-11中YN,d11组别的变压器配置差动保护时,在微机形差动保护中,常常将各侧电流互感器的二次回路均接为星形,在保护装置中通过软件计算进行电流转角与电流的零序分量滤除,这样就简化了接线。

a b c

图6-11 主变接成组别为YN,d11的差动二次接线图

(5)和电流接线,如图6-9(e)所示。这种接线是将两组星形接线并接,一般用于3/2断路器接线、角形接线、桥形接线的测量和保护回路,用以反映两只开关的电流之和。除了以上接线外,还有其它一些接线方式,但并不常见。

在电流互感器的接线中,要特别注意其二次线圈的极性,特别是方向保护与差动保护等回路。当电流互感器二次极性错误时,将会造成计量、测量错误,方向继电器指向错误,差动保护中有差流等,造成保护装

置的误动或拒动。

2、接入顺序

当一组电流互感器接入多个负载时,应考虑其接入顺序,其原则是方便设备的调试及调试中的安全,还考虑到串联的顺序应使电缆最短。一般仪表回路的顺序是电流表、功率表、电度表、记录型仪表、变送器或监控系统。在保护用次级中,尽量将不同的设备单独接入一组次级,特别是母差等重要保护,需要串接的,应先主保护再后备保护,先出口跳闸的设备,再不出口跳闸的设备。这样在运行中如果要做录波器试验,可以将其推出而不影响线路保护与失灵起动装置的正常运行,如图6-12所示。

虚线处拆开加试验电流

图6-12 退出录波器电流回路示意图

由于仪表与保护对电流互感器的要求不同,所以原则上两者不能公用一组电流互感器次级,但在35kV及以下系统中对计量准确度要求不高的场合,也有测量仪表与继电保护共用一组电流互感器的方式,这时应确保满足10%误差曲线要求,验算短路电流不会损坏仪表,并按先保护后仪表的次序接入。

3、电流二次回路的接地

电流互感器二次回路必须接地,其目的是为了防止当一、二次之间绝缘时对二次设备与人身造成危害,所以一般宜在配电装置处经端子接地,这样对安全更为有利,如图6-9(a)(b)(c)(e)。当有几组电流互感器的二次回路连接构成一套保护时,宜在保护屏上设一个公用的接地点,如图6-13为主变差动保护的接地方式。

对与三角形接线电流互感器二次回路也应接地,接地点选在经负载后的中心点,如图6-9(d)。

在微机母差或主变差动保护中,各侧二次电流回路不再有电气连接,每个回路应该单独接地,该接地点可以接在配电装置处,也可以接在保护柜上,各接地点间不能串接。如图6-13为母差保护柜端子排原理图,6-13(a)为错误接法,6-13(b)为正确接法,在错误接法中,各接地点串联后接地,一是一旦总接地点脱开,则每一组的接地都没有,第二是当其中一个回路停电需要做试验时可能影响其它运行中的回路。

(a)

(b)

图6-13 母差保护电流回路的接地

在由一组电流互感器或多组电流互感器二次连接成的回路中,运行中接地不能拆除,但也不允许出现一个以上的接地点,当回路中存在两点或多点接地时,如果地电网不同点间存在电位差,将有地电流从两点间通过,这将影响保护装置的正确动作。图6-14为主变差动保护电流互感器回路两点接地时流过地电流的示意图。

差动元件

I

图6-14 主变差动电流回路两点接地

当电流二次回路有方式切换时,要保证在不同的方式下只有一点可靠接地,这一点将在下一节中讨论。

4、电流二次回路的切换

由于电流互感器二次回路不能开路,所以电流二次一般不应设置切换回路,但为了满足运行方式的需要,当确实需要切换时,可以设置大电流切换端子,但应确保在切换时电流互感器二次回路不能开路,切换到各种发生时保证运行中回路的方式与一次方式对应并变比、极性正确,只有一点且只能有一点接地。下面对一些常用的切换回路进行讨论。

(1)内桥接线差动电流回路的切换

内桥的差动回路可以不设切换回路,但在内桥或进线开关中有一台停电检修时为不影响运行中设备,方便安全措施的实施,常在回路中增加大电流切换连片,如图6-15,其中(a)为进线断路器与内桥断路器均在运行的正常方式,(b)为内桥断路器转检修后其电流互感器二次连接片退出后短接的接线图。在内桥断路器转检修退出其电流回路时,如果差动保护还在运行中,则一定要先取下连片,然后将互感器侧短接接地,否

则连接连片时将差动保护高压侧电流短接会造成差动保护误动。

(a)进线及内桥断路器均正常运行时的接线(b)内桥断路器检修时的连片位置

图6-15 内桥电流回路切换

(2)旁路断路器代主变时差动电流回路的切换

在设有旁路断路器的变电所,旁路断路器代主变断路器时,其差动保护相应的电流回路应该有主变的互感器切至旁路的互感器,并有两台及以上主变时,旁路的这组互感器应能分别切至这些主变的差动保护。图6-16即是切换回路的示意图,其中1号主变由旁路断路器代供,2号主变由本身断路器正常运行。当两台断路器均不旁代时,旁路的电流切换连片要短接退出。

旁路电流互感器来

图6-16 旁代主变差动切换接线

需要指出的是,旁路断路器的带路操作中任何一台断路器都要视作运行设备,无论其处在合闸状态还是分闸状态,所以电流互感器的二次回路不能开路,也不能失去接地点,这点与内桥接线时的电流连接片操作不同,它要先在互感器侧短接接地,再拆开与差动保护回路的连接片。这一操作会造成差动保护回路的不平衡,会有差流产生,所以操作过程中需要停用相应的差动保护。

(3)固定连接式母线差动电流回路的切换

微机型母差差动保护已经得到广泛的应用,但运行中固定连接式母线差动保护仍不少。与微机母差自动判定各单元运行方式、自动将相应电流按方式加到相应母线差动保护中不同,固定连接母差保护需要将各单元的电流手动切到对应母差的回路。如图6-17是固定连接母差保护电流回路切换的示意图。

136529

8

1011131412

15161921

201817A B C

TA -13

图6-17 固定连接母差电流回路切换的示意图

该切换回路与旁路代主变的切换回路有点类似,区别在于各单元的电流是切入正母或副母差动保护,而旁路代主变的电流回路是切入1号主变或2号主变的差动保护,同样不能发生电流回路开路。

在A、B、C、N各相连线的切换中,N线的切换连片不能省,否则可能造成运行设备与检修设备分界不清、电流二次回路开路或运行中电流二次回路发生多点接地等情况。如图6-18中,(a)为当N线经各组连接片的接地端子时会造成多点接地。(c)中N线不经接地端子,但短接退出时仍会发生两点接地,如果接地端子不接地,则会在短接退出时发生电流二次回路开路。(b)中虽然没有多点接地或开路的问题,但短接退出的回路如果有检修工作,由于有零线相连,则对运行中设备将会产生潜在的影响。

(a)各切换片保留接地点时

正常运行时的多点接地

(a)一组检修退出时N相仍然连接

(a)N线不经过接地端子时有一组

短接退出的两点点接地

图6-18 N相不切换的差动回路接线图

(一)电压互感器的二次回路接线

图6-19为典型的双母线或单母线分段主接线时的电压互感器二次回路接线原理图。图中可以看出,这里使用的是两组次级的电压互感器,一组次级三相接为星形,一组接为开口的三角形。

电压小母线

电压互感器

及开关

I,II母电压联络电压测量I 母电压互感器回路

电压测量电压小母线

及开关I I 母电压互感器回路

电压互感器图6-19 典型电压互感器二次回路接线图

星形的一组次级经小空气开关1(2)QA 、电压互感器隔离开关辅助接点的重动继电器1(2)K 接点送至二次电压小母线1(2)WVa 、1(2)WVb 、1(2)WVc 及WVN ,这组小母线供保护装置与测量设备使用。

由于计量装置对精度要求较高,所以从电压互感器星形接线出口处另有一组电压经熔断器3~5(6~8)FU 、 继电器1(2)K 接点送专用的计量小母线1(2)WVaj 、1(2)WVbj 、1(2)WVcj 。为了减小回路压降,这组电

压一般由电压互感器的二次端子箱经6mm 2

或更粗的电缆直接连接到计量柜上。

电压互感器另一组次级接为开口三角形,其一端直接连到小母线WVN 上,另一端经继电器1(2)K 接点连接到小母线1(2)WVL 上,供需要零序电压的保护装置等使用。因为开口三角的零序电压输出正常运行时等于0,平时无法监视其回路是否有断线等情况,所有在该回路不安装空气开关或熔断器。电压互感器的二次接线要特别注意其线圈的极性,特别开口三角回路,由于平时没有电压,在新投运时要认真检查其极性是否符合保

护装置方向保护要求,否则在系统发生故障时,可能造成具有方向性的保护该动的不动,二次不该动的误动。图6-19中的1WVTa 就是为检查开口三角电压的极性及做零序方向保护的相量试验而设,通过测量该母线电压的极性,可以推断出3U0的极性。

图6-19中1KCW 与2KCW 为正副母电压互感器二次回路联络的联络继电器,当正副母电压互感器二次回路需要联络并符合联络条件是,该继电器动作。电压互感器二次回路的联络既可以手动,也可以自动,具体的联络条件在后面中介绍。

1、接线方式

电压互感器的二次接线主要有:单相接线、单线电压接线、V/V 接线、星形接线、三角形接线、中性点接有消谐电压互感器的星形接线。各接线的连接方式如图6-20所示。

A

A

C

A

(b)

B

C

A

(c)(a)B C

A (d)

(e)

C

A C

B B (f)

图6-20 常见电压互感器二次回路接线图

(1)单相接线常用于大接地电流系统判线

路无压或同期,可以接任何一相,但另一判据要用母线电压的对应相,如图6-20(a )。其变比一般为

3/100φU ,需要时也可以选100φU 。

(2)接于两相电压间的一只电压互感器,主要用于小接地电流系统判线路无压或同期,因为小接地电流系统允许单相接地,如果只用一只单相对地的电压互感器,如果电压互感器正好在接地相时,该相测得的对地电压为零,则无法鉴定线路是否确已无压,如果错判则可能造成非同期合闸。具体接线如6-20(b ),该接线也可用两只分别接于两相的单相电压互感器来代替,用两相间的线电压来判断无压或同期。其变比一般为100φφU 。

(3)V/V 接线主要用于小接地电流系统的母线电压测量,它只要两只接于线电压的电压互感器就能完成三相电压的测量,节约了投资。但是该接线在二次回路无法测量系统的零序电压,当需要测量零序电压时,不能使用该接线。具体接线见图6-20(c ),其变比一般为100φφU 。

(4)星形接线与三角形接线应用最多,常用于母线测量三相电压及零序电压。接线见6-20(d )、(e ),星形接线的变比一般为3/100φU ,对三角形接线,在大接地电流系统中一般为100φU ,在小接地电流系统中为3/100φU 。

(5)图6-20(f )为中性点安装有消弧电压互感器的星形接线。在小接地电流系统,当单相接地时允许继续运行2小时,由于非接地相的电压上升到线电压,是正常运行时的3倍,特别间隙性接地还要暂态过电压,这将可能造成电压互感器铁芯饱和,引起铁磁谐振,使系统产生谐振过电压。所以使用在小接地电流系统的电压互感器均要考虑消谐问题。消谐措施有多种,在开口三角线圈输出端子上接电阻性负载或电子型、微机型消谐器是其中之一,图6-20(f )中在星形接线的中性点接一只电压互感器也能,使发生接地故障时各电压互感器上承受的电压不超过其正常运行值,也能起到消谐的作用。所以该电压互感器也称为消谐电压互感器。图6-21为该接线的电压相量图,在10kV 系统电压互感器的变比为3/1.03/10,中性点的消谐电压互感器变比为1.10,就是中性点电压互感器能工作在线电压下。当系统正常时,其相量图如图6-21(a ),

可以看出三相a U 、b U 、c

U 对称,幅值等于相电压,中性点电压等于0,三相电压互感器均承受相电压,消谐电压互感器上的电压等于零,L 上无电压输出。当系统发生单相接地时,如A 相,其相量图如图6-21(b ),U a 变为0,U b 、U 6-21。

Uc

Ua Uc

图6-21 消谐电压互感器接线的电压相量图

可以从图中看出,三个相电压线圈上承受的仍为相电压,零序电压3U 0=U L 的输出幅值也为相电压57.7V ,这一点与三角形接线的输出为100V 不同。

(6)用以鉴定同期或线路无压的线路电压互感器常采用电容型或电压抽取装置。电压收取常见的有利用高频通道中的结合电容器来抽取电压,也有通过电流互感器的末屏来抽取的,利用电压抽取装置可做到不需要增加一次设备就可获得所需的二次电压,有较好的技术经济效益。

2、电压互感器二次回路的保护 电压互感器相当与一个电压源,当二次回路发生短路时将会出现很大的短路电流,如果没有合适的保护装置将故障切除,将会使电压互感器及其二次线烧坏。

电压互感器二次回路的保护设备应满足:

在电压回路最大负荷时,保护设备不应动作;

而电压回路发生单相接地或相间短路时,保护设备应能可靠地切除短路;

在保护设备切除电压回路的短路过程中和切除短路之后,反应电压下降的继电保护装置不应误动作,即保护装置的动作速度要足够快;

电压回路短路保护动作后出现电压回路断线应有预告信号。

电压互感器二次回路保护设备,一般采用快速熔断器或自动空气开关。

采用熔断器作为保护设备,简单、能满足上述选择性及快速性要求,报警信号需要在继电保护回路中实现。采用自动空气开关作为保护设备时,除能切除短路故障外,还能保证三相同时切除,防止缺相运行,并可利用自动开关的辅助触点,在断开电压回路的同时也切断有关继电保护的正电源,防止保护装置误动作,或由辅助接点发出断线信号。

电压回路采用哪种保护方式,主要取决于电压回路所接的继电保护和自动装置的特性。当电压回路故障不能引起继电保护和自动装置误动作的情况下,应首先采用简单方便的熔断器作为电压回路的保护。在电压回路故障有可能造成继电保护和自动装置不正确动作的场合,应采用自动开关,作为电压回路的保护,以便在切除电压回路故障的同时,也闭锁有关的继电保护和自动装置。在实际工程中,通常在60kV及以下没有接距离保护的电压互感器二次回路和测量仪表专用的电压回路,都采用快速熔断器保护;对于接有距离保护的电压回路,通常采用自动开关作为保护设备。

近年来生产的距离保护装置一般都具有性能良好的电压回路断线闭锁装置,电压回路故障不会引起保护误动。有些运行现场在接有距离保护的电压回路也采用了熔断器作为电压回路的故障保护,运行情况良好。因此,电压回路的保护方式,要根据工程的具体情况确定。

电压互感器二次侧应在各相回路和开口三角绕组的试验芯上配置保护用的熔断器或自动开关。开口三角形绕组回路正常情况下无电压,故可不装设保护设备。熔断器或自动开关应尽可能靠近二次绕组的出口处装设,以减小保护死区。保护设备通常安装在电压互感器端子箱内,端子箱应尽可能靠近电压互感器布置。

3、电压二次回路的接地

电压互感器二次回路的接地,主要是防止一次高压串至二次侧时,可能对人身及二次设备造成威胁。

在110~500kV变电所中各电压等级的电压互感器应统一采用一种接地方式,推荐采用零相接地。并且,全所各电压互感器二次回路共用一个零相电压小母线(YMN),在主控制室一点接地,在接地线上不应安装有可能断开的设备。当电压互感器离主控制室较远时,在变电所一次系统发生单相接地短路时,主控制室与电压互感器安装处的地电位差较大。为电压互感器的安全,应在配电装置处电压互感器二次绕组中性点加放电间隙或氧化锌避雷器。见图6-19。

电压二次回路只能有一点接地。如果有两点接地或多点接地,当系统发生故障,地电网各点间有电压差时,将会有电流从两个接地点间流过,在电压互感器二次回路产生压降,该压降将使电压互感器二次电压的准确性受到影响,严重时将影响保护装置动作的准确性。

线路电压互感器可以在配电装置处一点直接接地,也可以通过小母线(WVN)接地。当在配电装置处一点接地时,线路互感器的二次回路与母线电压互感器的二次回路不能有电的联系,否则会使电压二次回路出现两点接地或多点接地。如果通过小母线(WVN)接地,则应在配电装置处加装放电间隙或氧化锌避雷器,并且注意,在线路保护停用校验时,线路可能仍有旁路代路运行,不能因拆开至小母线的N600连线而使线路电压互感器二次侧失去接地点。

4、电压二次回路的切换与联络

当电气主接线为双母线接线时,为了保证保护装置及测量、计量等设备采集的二次电压与一次对应,必须设置二次电压的切换回路。当双母线接线或单母线分段接线,一台电压互感器检修或因故停运时,一次可以通过改单母线运行来保证电压互感器停运母线的设备继续运行,这时需要将二次回路进行联络,以确保相应的保护、计量设备继续运行。

(1)电压回路的联络

见图6-23。

切换继电器

及位置继电器

II 段隔离开关I 段隔离开关及位置继电器

熔断器

开关及小母线+WC

-WC

流回

路图6-23 电压互感器二次回路联络接线图

(2)正、副母间电压回路切换

二次电压切换可以手动进行,如图6-25所示,由切换开关SA 来选择计量、保护等设备是选用正母电压还是副母电压;

1591062738411

12

A 1

B 1

C 1N

U I

U II

C 2B 2A 2计量或保护回路

图6-25 手动电压切换回路

也可以进行自动切换,如图6-26所示,

U I

U II C 2B 2

A 2C 1

B 1A 1N

1QS 2QS

1KCW 2KCW

1KCW 1KCW 1KCW 2KCW 2KCW 2KCW

计量或保护回路

+WC

-WC

图6-26 自动电压切换回路

I母II母

为提高自动切换的可靠性,1KCW 、2KCW 可选双位置继电器,如图6-27。双位置继电器的有点是即使直流电源消失,或隔离开关辅助接点接触不良,继电器将保持在原有位置。其中6-27(a )是采用隔离开关的单辅助接点,6-27(b )是采用隔离开关的双辅助接点。

2QS

2QS 1QS 2KCW1

2HL

2KCW2

1'

1QS 1KCW1

1HL

1KCW2

2'

(a)双结点控制电压切换回路

(a)单结点控制电压切换回路

2QS

1'

1QS

2'

2HL 2KCW1

1HL 1KCW1

2KCW2

1KCW2

图6-27 使用双位置继电器的电压切换回路图

(3)互为备用电压二次回路间的切换

当二次回路作为多个一次设备的公共备用设备时,常常要根据需要将相应的二次回路切至对应的一次设备控制或保护回路。如同期并列回路电压的切换;如图6-28旁路代主变断路器时的电压切换。

1号主变保护

2号主变保护

1号主变电压切换来

2号主变电压切换来

旁路保护去I母II母

CS

1SC

2SC

1KCH 2KCH

图6-28 旁路代主变断路器的二次电压切换图

第六节 控制及信号的二次回路

一、控制回路

电力系统的控制对象主要包括断路器、隔离开关等,其中断路器是用来连接电网,控制电网设备与线路的通断,送出或断开负荷电流,切除故障的重要设备,其控制回路尤为重要。由于断路器的种类和型号是多种多样,故控制回路的接线方式也很多,但其基本原理与要求是相似的。断路器的控制回路按其操作方式可分为按对象操作和选线操作;按控制地点可分为集中控制和就地控制;按跳合闸回路监视方式可分为灯光监视和音响监视;按操作电源种类可分为直流操作与交流操作等等。现在就一些常用的断路器控制回路进行介绍。

(一)断路器控制回路的基本要求 断路器的控制是通过电气回路来实现的,为此,必须有相应的二次设备,在控制室的控制屏上应有能发出跳合闸命令的控制开关(或按钮),在断路器上应有执行命令的操作机构,并用电缆将它们连接起来。断路器的控制回路应满足下列要求:

(1)能进行手动跳、合闸和由继电保护与自动装置(必要时)实现自动跳、合闸,并在跳、合闸动作完成后,自动切断跳合闸脉冲电流(因为跳、合闸线圈是按短时间带电设计的);

(2)能指示断路器的分、合闸位置状态,自动跳、合闸时应有明显信号;

(3)能监视电源及下次操作时分闸回路的完整性,对重要元件及有重合闸功能、备用电源自动投入的元件,还应监视下次操作时合闸回路的完整性;

(4)有防止断路器多次合闸的“跳跃”闭锁装置;

(5)当具有单相操作机构的断路器按三相操作时,应有三相不一致的信号;

(6)气动操作机构的断路器,除满足上述要求外,尚应有操作用压缩空气的气压闭锁;弹簧操作机构应有弹簧是否完成储能的闭锁;液压操作机构应有操作液压闭锁;

(7)控制回路的的接线力求简单可靠,使用电缆最少。 (二)基本断路器控制回路

图6-29是一个基本的断路器操作回路,它是一个能满足断路器控制回路要求的最为简单的回路,现在我们就通过对该回路动作过程来分析它是如何来满足断路器控制回路的要求的。

+WC

-WC

M7083

M716SA

19图6-29 断路器基本操作回路图

控制开关的各片接点接通位置与把手位置的对应关系较为复杂,具体见表6-6。

2

预合:顺时针转动控制开关SA 至预备合闸位置,这时SA 的10-11接点断开,9-10接点接通,绿灯HG 由正电源改接到闪光小母线(+)WS ,绿灯闪亮。

合闸:SA 的5-8接点接通,正电源通过5-8接点接至合闸线圈LC ,断路器合闸。合闸到位后,合闸回路的断路器辅助常闭接点QF 断开合闸电流,一是防止5-8粘接造成合闸线圈烧坏,因为合闸线圈的热容量是按短时通电来设计的;二是防止由SA 接点来断开合闸电流,由于SA 接点的断弧容量不够,容易使SA 接点烧坏。合闸结束后,断路器常开辅助接点QF 接通分闸回路,同时SA 的13-16接点接通,红灯HR 亮,发平光,指示断路器在合闸位置。

预分:SA 的13-14接点接通,红灯闪光。

分闸: SA 的6-7接点接通,正电源接到跳闸线圈使断路器跳闸。分闸后断路器的常开辅助接点断开跳闸电流,常闭接点接通合闸回路为下一次合闸作好准备,同时绿灯亮,指示断路器在分闸位置。由于分闸回路中接有防跳继电器KCF 的电流线圈,当分闸电流通过该线圈时,该继电器动作,其常开接点对动作自保持,直到断路器分闸后辅助接点断开分闸电流。这时无论KK 的接点何时断开,都不会影响断路器的分闸。 防跳: KCF 是防跳继电器,当正常分、合闸时,对操作影响不大。接入防跳继电器后,当断路器手动分闸或保护装置跳闸时,都有跳闸电流流过KCF 的电流线圈,这时合闸回路KCF 的常闭接点分开,合闸回路不同,如果合闸信号没有复归,将通过KCF 的常开接点使KCF 的电压线圈得电,使其自保持,直到合闸信号返回。这样KCF 就起到了防止断路器反复分、合闸的作用。

具体接线,如图6-30是使用CZX-12R 操在有些断路器中已经考虑了防跳回路,它一般是有电压型继电器来完成防跳功能的,但操作箱中的防跳回路与断路器中的防跳回路一般不能同时使用,如果同时使用,断路器中的防跳继电器可能会造成因“寄生”回路而自保持,无法返回。至于是拆除操作箱中的防跳回路,还是拆除断路器器中的防跳回路要视操作箱与断路器中的作箱与阿尔斯通断路器时的防跳回路简图,K01是断路器中的防跳继电器,如果按两套防跳回路均使用的接线,在断路器合闸时,断路器防跳回路的辅助接线-S01在合后接通,但合闸信号一般还未返回,这时防跳继电器-K01就会动作。当合闸信号消失后,由于跳闸位置继电器KCT 的存在,-K01可能不能返回,一直处于自保持状态。所以要在图中打叉处将回路拆开,这样断路器中的防跳就不起作用了。

KCC

KCFI

V

I

V

V

V

I

+WC

-WC

KCT 4D101

4D1001SHJ ZHJ SHJ

1STJ SHJ

1KCFV 2KCFV

1KCFV 2KCFV

2KCFV

1KCFV

KCFI

737

-S11

-S10

-S10-K03-K13-K01-S04-S01-S01

-K01

-Y01-K01

保护跳闸

跳闸回路

跳位监视

合闸

防跳

跳闸

图6-30 断路器中的防跳回路

保护柜操作箱

因为在保护及自动化的跳闸回路中,大多接有电流型的信号继电器,为了在KCF 动作时不致使信号继电器不能动作,所以在KCF 保护回路的接点中串有电阻R ,该电阻一般只有1Ω左右,在实际调试中应校核该电阻阻值是否合适。

从以上动作过程中可以知道,图6-29的断路器基本操作回路能满足第二节中对断路器控制回路的要求。红、绿灯不但指示了断路器的位置,而且对控制电源是否正常,分、合闸回路是否断线及断路器操作的压力均有监视作用,当断路器操作的液压或气体压力不正常时,压力继电器会断开断路器的分、合闸回路,同时发告警信号。

(三)监控系统对断路器的控制 使用监控系统断路器的控制回路的基本要求未变,但实现方法有所不同。图6-31为使用监控系统时的控制回路图,该控制回路在增加了远方控制功能的同时,仍然保留了就地控制的功能。图中2SA 即是控制开关,也是远方与就地控制的切换开关。在现场无运行人员值班时,该开关放在远方操作位置,2SA 的17-18接点、19-20接点接通,通过远方合闸接点可以合闸,通过远方分闸接点可以分闸。当现场检修等情况下不允许远方控制该断路器时,可以将控制开关2SA 置于就地操作位置,这时2SA 的17-18接点、19-20接点不通,即使有远方控制信号来也无法操作断路器,确保了现场工作的安全。

图6-31 使用监控系统时的断路器控制回路图

图中的KDP是一只双位置继电器,它一个线圈得电后即使该动作电压消失,继电器还是保持在原来状态,直到另外一个线圈得到动作电压才能使继电器转换到另外一种状态。在远方操作时,由于没有就地操作时控

制开关2SA的变位来判断是正常分、合闸,还是故障时保护装置的分、合闸,用以正确驱动事故信号及提供给重合闸等自动装置正确的变位信息,所有要加装该双位置继电器。对该位置继电器的动作要求是,当正常的远方或就地分、合闸时,应相应变位,当保护跳闸及自动重合闸时该继电器不变位。从图6-31中可以看出,KDP的两个线圈分别接在手动分闸与手动跳闸回路,由于有二极管V的隔离,在重合闸接点KC-2动作时,KDP 不会动作,同样在保护装置的跳闸接点KC-1动作时,与KDP间无连接,所有KDP也不会动作。

监控系统发出的分、合闸信号都是一个短时接通信号,一般的接通时间在0.2~0.8s间,为保证分、合闸的可靠性,确保分、合闸继电器的接点不切断分、合闸电流,所以不仅有防跳继电器KCF-1,还有合闸保持继电器KCF-2。当有合闸信号来时, KCF-2动作并自保持,直到合闸成功由断路器辅助接点QF切断合闸电流后KCF-2才返回。

(四)分相操作断路器的控制回路

在220kV系统中,常常使用可以按相分、合闸的断路器。图6-32~35是分相操作机构的控制回路图。

变电站二次回路

第一章、微机型二次设备的工作方式 一般来说,我们将变电站内所有的微机型二次设备统称为“微机保护”,实际上这个叫法是很不确切的。从功能上讲,我们可以将变电站自动化系统中的微机型二次设备设备分为微机保护、微机测控、操作箱(目前一般与微机保护整合为一台装臵内,以往多为独立装臵)、自动装臵、远动设备等。按照这种分类方法,可以将二次回路的分析更加详细,易于理解。现简单介绍一下各类设备的主要功能: 微机保护采集电流量、电压量及相关状态量数据,按照不同的算法实现对电力设备的保护功能,根据计算结果做出判断并发出针对断路器的相应操作指令。 微机测控的主要功能是测量及控制,可以采集电流量、电压量及状态量并能发出针对断路器及其它电动机构的操作指令,取代的是常规变电站中的测量仪表(电流表、电压表、功率表)、就地及远传信号系统和控制回路。 操作箱用于执行各种针对断路器的操作指令,这类指令分为合闸、分闸、闭锁三种,可能来自多个方面,例如本间隔微机保护、微机测控、强电手操装臵、外部微机保护、自动装臵、本间隔断路器机构等。 自动装臵与微机保护的区别在于,自动装臵虽然也采集电流、电压,但是只进行简单的数值比较或“有、无”判断,然后按照相对简单的固定逻辑动作发出针对断路器的相应操作指令。这个工作过程相对于微机保护而言是非常简单的。 1.1微机保护与测控的工作方式 微机保护是根据所需功能配臵的,也就是说,不同的电力设备配臵的微机保护是不同的,但各种微机保护的工作方式是类似的。一般可概括为“开入”与“开出”两个过程。事实上,整个变电站自动化系统的所有设备几乎都是以这两种模式工作,只是开入与开出的信息类别不同而已。 微机测控与微机保护的配臵原则完全不同,它是对应于断路器配臵的,所以,几乎所有的微机测控的功能都是一样的,区别仅在于其容量的大小而已。如上所述,微机测控的工作方式也可以概括为“开入”与“开出”两个过程。 1.1.1开入 微机保护和微机测控的开入量都分为两种:模拟量和数字量。 1.1.1.1模拟量的开入 微机保护需要采集电流和电压两种模拟量 进行运算,以判断其保护对象是否发生故障。变 电站配电装臵中的大电流和高电压必须分别经 电流互感器和电压互感器变换成小电流、低电 压,才能供微机型保护装臵使用。 微机测控开入的模拟量除了电流、电压外, 有时还包括温度量(主变压器测温)、直流量(直 流电压测量)等。微机测控开入模拟量的目的主 要是获得其数值,同时也进行简单的计算以获得 功率等电气量数值。 1.1.1.2数字量的开入 数字量也称为开关量,它是由各种设备的辅 助接点通过“开/闭”转换提供,只有两种状态。 对于110kV 及以下电压等级的设备而言,微 机保护对外部数字量的采集一般只有“闭锁条 件”一种,这个回路一般是电压为直流24V的弱 电回路。对于220kV 设备而言,由于配臵双套保 护装臵,两套保护装臵之间的联系较为复杂。 微机测控对数字量的采集主要包括断路器 机构信号、隔离开关及接地开关状态信号等。这 类开关量的触发装臵(即辅助开关)一般在距离 主控室较远的地方,为了减少电信号在传输过程 中的损失,通常采用电压为直流220V的强电回 路进行传输。同时,为了避免强电系统对弱点系 统形成干扰,在进入微机运算单元前,需要使用 光耦单元对强电信号进行隔离、转变成弱电信 号。 1.1.2开出 对微机保护而言,开出是指微机保护根据自 身采集的信息,加以运算后对被保护设备目前状 况作出的判断以及针对此状况作出的反应,主要 包括操作指令、信号输出等反馈行为。反馈行为 是指微机保护的动作永远都是被动的,即受设备 故障状态激发而自动执行的。 对微机测控而言,开出指的是对断路器及各 种电动机构(隔离开关、接地开关)发出的操作 指令。与微机保护不同的是,微机测控不会产生 信号,而且其操作指令也是手动行为的,即人工 发出的。 1.1. 2.1操作指令 一般来讲,微机保护只针对断路器发出操作 指令,对线路保护而言,这类指令只有两种:“跳 闸”或者“重合闸”;对主变保护、母差保护而 言,这类指令只有一种:“跳闸”。 在某些情况下,微机保护会对一些电动设备 发出指令,如“主变温度高启动风机”会对主变 风冷控制箱内的风机控制回路发出启动命令;对 其它微机保护或自动装臵发出指令,如“母线差 动保护动作闭锁线路重合闸”、“母差动作闭锁备 自投”等。微机保护发出的操作指令属于“自动” 范畴。 微机测控发出的操作指令可以针对断路器 和各类电动机构,这类指令也只有两种,对应断 路器的“跳闸”、“合闸”或者对应电动机构的 “分”、“合”。微机测控测控发出的操作指令属 于“手动”范畴,也就是说,微机测控的操作指 令必然是人为作业的结果。 1.1. 2.2信号输出 微机保护输出的信号只有两种:“保护动 作”、“重合闸动作”。线路保护同时具备这两种 信号,主变压器保护值输出保护动作一种信号。 至于“装臵断电”等信号属于装臵自身故障,严 格意义上不属于“保护”范畴。 微机测控不产生信号。严格意义上讲,它会 将自己采集的开关量信号进行模式转换后通过 网络传输给监控系统,起到单纯的转接作用。这 里所说的“不产生信号”,是相对于微机保护的 信号产生原理而言的。 1.2操作箱的工作方式 操作箱内安装的是针对断路器的操作回路, 用于执行微机保护、微机测控对断路器发出的操 作指令。操作箱的配臵原则与微机测控是一致 的,即对应于断路器,一台断路器有且只有一台 操作箱。一般来讲,在同一电压等级中,所有类 型的微机保护配备的操作箱都是一样的。在 110kV 及以下电压等级的二次设备中,由于操作 回路相对简单,目前已不再设臵独立的操作箱, 而是将操作回路与微机保护整合在一台装臵中。 但是需要明确的是,尽管在一台装臵中且有一定 的电气联系,操作回路与保护回路在功能上仍是 完全独立的。 1.3自动装臵的工作方式 变电站内最常见的自动装臵就是备自投装 臵和低周减载装臵。自动装臵的功能主要是为了 维护整个变电站的运行,而不是象微机保护一样 针对某一个间隔。例如备自投主要是为了防止全 站失压而在失去工作电源后自动接入备用电源, 低周减载是为了防止因负荷大于电厂出力造成 频率下降导致电网崩溃,按照事先设定的顺序自 动切除某些负荷。自动装臵的具体工作过程将在 后面的章节中专门详细介绍。 1.4微机保护、测控与操作箱的联系 对一个含断路器的设备间隔,其二次系统需 要三个独立部分来完成:微机保护、微机测控、 操作箱。这个系统的工作方式有三种,如下所述。 ①在后台机上使用监控软件对断路器进行 操作时,操作指令通过 网络触发微机测控里的控制回路,控制回路发出 的对应指令通过控制电缆到达微机保护里的操 作箱,操作箱对这些指令进行处理后通过控制电 缆发送到断路器机构的控制回路,最终完成操 作。动作流程为:微机测控——操作箱——断路 器。 ②在测控屏上使用操作把手对断路器进行 操作时,操作把手的控制接点与微机测控里的控 制回路是并联的关系,操作把手发出的对应指令 通过控制电缆到达微机保护里的操作箱,操作箱 对这些指令进行处理后通过控制电缆发送到断 路器机构的控制回路,最终完成操作。使用操作 把手操作也称为强电手操,它的作用是防止监控 系统发生故障时(如后台机“死机”等)无法操 作断路器。所谓“强电”,是指操作的启动回路 在直流220V电压下完成,而使用后台机操作时, 启动回路在微机测控的弱电回路中。动作流程 为:操作把手——操作箱——断路器。 ③微机保护在保护对象发生故障时,根据相 应电气量计算的结果 做出判断并发出相应的操作指令。操作指令 通过装臵内部接线到达操作箱,操作箱对这些指 令进行处理后通过控制电缆发送到断路器机构 的控制回路,最终完成操作。动作流程为:微机 保护——操作箱——断路器。 微机测控与操作把手的动作都是需要人为 操作的,属于“手动”操作;微机保护的动作是 自动进行的,属于“自动”操作。操作类型的区 别对于某些自动装臵、联锁回路的动作逻辑是重 要的判断条件,将在相关的章节中具体介绍。 1.4.1 110kV电压等级二次设备的分布模式 针对110kV电压等级设备,目前各大商一讲微机 保护与操作箱整合为一台装臵,即操作箱不再以 独立装臵的的形式配臵。以110kV线路为例,各 大厂商配臵如表1-1 所示。 表1-1 10kV线路间隔(主保护为距离保护) 公司微机测控微机保护操作箱 原许继四方CSI200E CSL163B ZSZ-11S 许继FCK-801 WXH-811 南瑞继保RCS-9607 RCS-941A

电气二次回路_符号元件大全

1. 二次回路符号名称 M 电动机 YH 电压互感器 LH 电流互感器 DL 断路器 ZKK ME型断路器 V 电压表 A 电流表 W 有功表 F 频率表 DHJ 电动机综合保护装置 LJ 电流继电器 LDJ 零序电流继电器 G 隔离开关 KK 控制开关 TA 跳闸按钮 HA 合闸按钮 SA 事故按钮 DC 直流电源 AC 交流电源 C 接触器 RJ 热继电器(热偶) RD 熔断器 HD 红灯 LD 绿灯 HD 黄灯 BD 白灯 ±HM 合闸电源小母线 ±KM 控制电源小母线 (+)SM 闪光电源小母线 SYM 事故报警小母线 YBM 预告信号小母线 FM 信号电源小母线 DBM 低电压保护小母线 PM 掉牌未复归 YMa、b、c 电压小母线(YMb为公用小母线) ±I 直流主母线 XM 信号小母线 THM 同期装置合闸脉冲小母线 TBM 同期闭锁小母线 TQMa 待并系统同期小母线 TQMa/ 运行系统同期小母线

DBM 低电压保护小母线 HJD 6KV母线PT小车滑动接点 ZDK ME型开关终端 NK 钮子开关 RZ 热线轴 1STK 手动准同期开关 2STK 自动准同期开关 TK 同期开关 BK 、LK 联锁开关 TJJ 同期检查继电器 ZJ中间继电器 R电阻 HQ、HC合闸线圈 TQ 跳闸线圈 HJ、SHJ 合闸继电器 TJ、STJ 跳闸继电器 FT 分励脱扣器 QHA、QHB、QHC 220KV断路器A、B、C相合闸线圈 QTA、QTB、QTC 220KV断路器A、B、C相跳闸线圈(脚标1为第一跳闸线圈,脚标2为第二跳闸线圈) FA、FB、FC 220KV断路器辅助接点 MDJ 氮气压力继电器 YLJ 液压油压力继电器 TWJ 跳闸位置继电器 HWJ 合闸位置继电器 TBJ 跳闸闭锁继电器(防跳继电器) WZJ 位置中间继电器 WSJ 瓦斯继电器 WJ 温度继电器 XJ 信号继电器 XJJ 接地信号继电器 YSF 压力释放继电器 BCJ 保护出口继电器 QP 保护切片 LP 保护连片(压板) SJ 时间继电器 YJ 电压继电器 YZJ 低电压继电器 SWJ 双位继电器 LJ电流继电器 LJ0 、LDJ零序电流继电器 FLJ 负序电流继电器 CJ 差动继电器 BSJ 闭锁继电器

变电站二次回路原理及调试

二次回路原理及调试题纲 二次设备:对一次电气设备进行监视、测量、操纵、控制和起保护作用的辅助设备。由二次设备连接成的回路称为二次回路或二次系统. 二次系统的任务: 反映一次系统的工作状态,控制一次系统,并在一次系统发生故障时,能使故障的设备退出运行。 二次设备按用途可分为: 继电保护二次回路、测量仪表二次回路、信号装置二次回路、直流操作电源二次回路等. 一.电流互感器( CT )及电压互感器(PT) 1。原理: CoCT:使高压电流按一定比例变为低压电流并实现绝缘隔离;

有外装CT 、套管CT (开关、主变);还分为充油及干式等;二次绕组分为多组及抽 头可调 变比式等。 ② PT :使高电压按一定比例变为低电压并实现绝缘隔离; 一般都外装;有充油及干式等;还有 三相式、三相五柱式及单相 PT (线路用)等;二次 绕组分为主绕组及副绕组(开口三角:为保护提供零序电压) . ②CT :低阻抗运行,不得开路;二次回路阻抗越高误差越大; CT 二次开路将产生高低压 危及人身安全;(备用CT 必须可靠短接;带有可调变比抽头的 CT ,待用抽头不得短接。) 2. 用途: ②CT:为保护装置、计量表计、故障录波、 化 所需的二次电流(包括相电流及零序电流。 ②PT :为保护装置、计量表计、故障录波、 变 化所需的二次电压; 3. 二次负载: 四遥”装置等提供随一次电流按一定比例变 ); “四遥”装置等提供随一次电压按一定比例

②PT:高阻抗运行,二次回路阻抗越低误差越大;不得短路 4.极性: CD CT :一次电流流入端与二次电流流出端为同极性;②PT:-次电压首端与二次电压首端为同极性。 5.二次线: ②CT:由二次端子电缆引入CT端子箱一控制室一按图纸设计依次串入各装置所需电流回路; ②2PT:由二次端子电缆引入PT 端子箱—控制室—按图纸设计依次并接各装置所需电压回路; 6.新装及更换改造注意事项: ②1CT: 所有端子、端子排的压接必须正确可靠;一、二次极性试验正确、变比试验正确、伏 安特性符合各装置运行要求;更换CT 前首先进行极性试验并正确详细记录,CT 更换后

(完整版)变电所二次回路图及其全部讲解

直流母线电压监视装置原理图-------------------------------------------1 直流绝缘监视装置----------------------------------------------------------1 不同点接地危害图----------------------------------------------------------2 带有灯光监视的断路器控制回路(电磁操动机构)--------------------3 带有灯光监视的断路器控制回路(弹簧操动机构)--------------------5 带有灯光监视的断路器控制回路(液压操动机构)-------- -----------6 闪光装置接线图(由两个中间继电器构成)-----------------------------8 闪光装置接线图(由闪光继电器构成)-----------------------------------9 中央复归能重复动作的事故信号装置原理图-------------------------9 预告信号装置原理图------------------------------------------------------11 线路定时限过电流保护原理图------------------------------------------12 线路方向过电流保护原理图---------------------------------------------13 线路三段式电流保护原理图---------------------------------------------14 线路三段式零序电流保护原理图---------------------------------------15 双回线的横联差动保护原理图------------------------------------------16 双回线电流平衡保护原理图---------------------------------------------18 变压器瓦斯保护原理图---------------------------------------------------19 双绕组变压器纵差保护原理图------------------------------------------20 三绕组变压器差动保护原理图------------------------------------------21 变压器复合电压启动的过电流保护原理图---------------------------22 单电源三绕组变压器过电流保护原理图------------------------------23 变压器过零序电流保护原理图------------------------------------------24 变压器中性点直接接地零序电流保护和中性点间隙接地保------24

二次回路之控制回路3.18

第一部分:10KV开关操作回路 1、要求背画10kv开关操作回路展开图: 2、重点讲解: 1)手分、手合接点直接作用于开关跳合闸线圈回路【第一张幻灯片】 2)由于开关线圈阻值为110伏左右,不能长期带电(加入220伏工作电源,有400瓦功率),必须在跳闸回路串联进去开关的合位时接通,跳位时断开的辅助接点; 必须在合闸回路串联进去开关的合位时断开,跳位时接通的辅助接点【第二张幻灯片】 【第三张幻灯片为开关辅助接点的结构图】 3)【第四张幻灯片,加入开关的保护跳闸(出口接点加连片)及重合闸(重合闸出口接点加连片)回路】 4)【第五张幻灯片,加入保护过流、速断交流回路直接作用于开关线圈的结构示意图】

5)【第六张幻灯片,加入红绿灯监视回路】讲解时强调红绿灯必须监视跳合闸回路的完好性,红、绿灯灭表示控制回路断线,【控制回路就是跳闸线圈回路或合闸线圈回路,以及整个开关操作(或控制)回路的+101 、-102电源 早期有人值班变电站靠红绿灯监视控制回路的完好性,后期的综合自动化变电站靠TWJ及HWJ继电器常闭接点的串联送出控制回路电线信号给远方监控系统。 红灯监视跳闸回路,在开关处于合闸位置时接通 绿灯监视合闸回路,在开关处于跳闸位置时接通强调红绿灯监视跳合闸回路的绝对必要性 事故案例: 2010年8月16日一次由于防跳继电器接点接触不好引起的开关不能重合事故 2010年8月16日11时滑翔变10kV滑艳甲线线路故障,速断保护动作开关跳闸,保护重合闸动作,开关没有重合。之后运行人员到现场送电,开关不能合闸。 1、二次回路检查经过 12时继电保护所人员到达现场对10kV滑艳甲线二次回路进行检查(回路原理图见附图)。逐点对合闸回路电位进行测量,在无合闸

继电器及二次回路知识

继电器及二次回路知识 一、继电器常识 继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。 最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。 时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。 在控制中常用的中间继电器通常用作继电控制、信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。 除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。而其真正的原理还是继电器技术。 继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点;以往继电器控制的电梯有几百个触点控制电梯的运行。有一个触点接触不良,就会引起故障,维修也相当麻烦,而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停

110kV变电站二次回路图解

110kV变电站二次回路图解 2007-07-14 | 第三章断路器的控制--110kV六氟化硫(SF6)断路器 标签:断路器六氟化硫 2.110kV六氟化硫(SF6)断路器 SF6断路器是110kV电压等级最常用的开断电器,关于它的控制,本章选用的模型是西高电气公司生产的LW25-126型SF6断路器。LW25-126型SF6断路器广泛应用于110kV电压等级,运行经验丰富,具有一定的代表性。 2.1操作机构 LW25-126型SF6断路器采用弹簧机构,其机构电气回路如图3-1-1、图3-1-2所示。 图 3-1-1 (点击看大图)

图3-1-2 (点击看大图) 图3-1-1所示的是断路器机构的控制回路图,红色部分为合闸回路,绿色部分为跳闸回路,黄色部分为储能电机启动回路。图3-1-2所示为弹簧储能电机的电源回路。主要部件的符号与名称对应关系如表3-1所示。 表3-1 LW25-126型六氟化硫断路器控制回路主要部件 符号名称备注 11-52C 合闸操作按钮手动合闸 11-52T 分闸操作按钮手动跳闸 43LR “远方/就地”切换开关 52Y “防跳”继电器 8M 空气开关储能电机电源投入开关 88M 储能电机接触器动作后接通电机电源 48T 电动机超时继电器 49M 电动机过流继电器 49MX 辅助继电器反映电机过流、过热故障 33hb 合闸弹簧限位开关 33HBX 辅助继电器反映合闸弹簧储能状态 52a、52b 断路器辅助接点52a为常开接点、52b为常闭接点 63GLX SF6低气压闭锁继电器 LW25-126型SF6断路器的操作回路中,有一个“远方/就地”切换开关43LR。“就地”是指在断路器本体机构箱使用合闸按钮11-52C或分闸按钮11-52T操作,“远方”是指一切通过微机操作箱向断路器发出的跳、合闸指令。正常运行情况下,43LR处于“远方”状态,由操作人员在控制室对断路器进行操作;对断路器进行检修时,将43LR置于“就地”状态,在断路器本体进行跳、合闸试验。 2.2合闸回路 2.2.1就地合闸 43LR在“就地”状态时,合闸回路由11-52C、52Y常闭接点、88M常闭接点、49MX常闭接点、33HBX常闭接点、52b常闭接点、52C和63GLX常闭接点组成。

典型电气二次回路识图 (2)

断路器控制回路图 控制回路是二次回路的重要组成部分,电气设备的种类和型号多种多样,控制回路的接线方式也很多,但其基本原理是相似的。这里以某变电站控制回路图为例,简要说明看图的基本方法。 完整的二次回路原理图一般由四张图构成:原理图—端子图—端子图—原理图。完整的控制回路图一般包括操作箱接点联系图—保护屏端子图—汇控柜端子图—断路器控制回路图。按照上述顺序联接。下面逐一进行说明: 1、操作箱接点联系图 我们以A相合闸回路为例来简要说明一下识图方法(图1)。 图1 A相合闸回路 先来看图上的两种端子: 是箱端子,位于保护装置后侧, 是屏端子,一般位于保护屏后两侧,固定在保护屏上。 图的左边为装置的逻辑回路,右侧相对于逻辑回路标有继电装置的种类及回路名称。如图中根据回路名称,我们可以快速找到A相合闸回路,其中包括跳位监视回路、合闸回路、防跳回路。

跳位监视回路从正电源101通过4D62屏端子接至4n76箱端子,通过跳闸位置继电器TWJa接至4n44,并引至屏端子4D168,从屏端子通过电缆连接至断路器操作机构箱。图中的7A为回路编号(功能相同的回路在不同型号的设备中都有统一编号,比如合闸回路的编号一般为7,跳闸回路编号一般为37)。 合闸回路的启动靠手动合闸继电器SHJ或重合闸继电器ZHJ,手合命令发出后启动SHJ,重合闸命令发出后启动ZHJ,然而合闸命令只是一个脉冲,保证合闸回路导通直至断路器合上的是合闸保持继电器HBJa。SHJ或ZHJ发出合闸脉冲后,HBJa线圈励磁,启动合闸回路的HBJa长开接点,这时合闸回路靠HBJa接点继续导通,直至A相合闸成功,机构箱内的合闸回路断开,HBJa线圈失磁,HBJa长开触点才断开,切断合闸回路。 图中1TBJa为跳跃闭锁继电器,它有两个线圈,一个是电流启动线圈,串联在跳闸回路中,以便当继电保护装置动作于跳闸时,使1TBJa可靠的启动。一个是防跳回路中的电压保持线圈,其主要作用是在继电器动作后能可靠地自保持。直到SHJ或ZHJ返回,1TBJa的电压线圈失电为止,1TBJa继电器复归。使用1TBJa与2TBJa这两组接点是为了增加回路的可靠性。 2、保护屏端子图 端子图是表示屏与屏之间电缆的连接和屏上设备连接情况的图纸(图2)。

110kV变电站备自投原理及其二次回路探讨 张建

110kV变电站备自投原理及其二次回路探讨张建 摘要:随着国家经济的蓬勃发展,和用电负荷的不断增长,人们对电网的供电 能力、供电可靠性有了更高的要求。因此,备自投装置应在电网构架已确定的基 础上,不断提高自身的供电可靠性。当前中国的110kV变电站常配备备自投装置,备自投装置是否正确动作直接影响着电网的正常运行。探讨了备自投动作的基本 原理和二次回路,为备自投的运行提供参考。 关键词:110kV变电站备;自投原理;二次回路 引言 电源运用先进的材料及技术,在变电站中应用可节省输变电投资,提高供电 可靠性,但也会影响备自投的正常运行,不利于变电站运行的安全稳定。为此, 有必要对电源备自投二次回路实施改造。 1备自投动作基本原理 常见的备自投装置主要有变压器备自投、分段(桥)备自投、进线备自投, 本文以进线备自投为例。一般情况下,110kV变电站在实际运行中,通常会设置 两条线路互为主备供电源,一旦主供电源线路出现故障,线路保护跳闸,母线在 定值时间内不能恢复正常电压,备自投装置可以通过接入装置的电流电压量和相 关开关量自行检测,动作出口正确,恢复母线电压,保证变电站安全稳定运行。 备自投动作遵循以下主要原则:①主供线路断开后,主供线路重合不成功,母线失压,备自投才能动作接入备供电源线路;②备自投装置动作只能进行一次,动作后需要手动复归。 2备自投的模拟量采样 基于备自投动作原理,备自投装置判断母线失压后才能动作,因此备自投需 要采样母线电压,实际回路为从PT并列屏引入母线电压后经备自投保护屏的母 线电压空开后进入装置,达到实时监测母线电压的目的。同时,为了防止因进入 装置前的母线电压空开异常跳闸或母线电压采样电缆线芯松动导致备自投装置采 不到母线电压,此种情况下备自投z装置不应该动作,因此设置TV断线闭锁备 自投动作逻辑,其逻辑为当正序电压小于30V时,主供电源线路有流,负序电压 大于8V,满足以上任一条件延长一定时间后报母线TV断线,断线消失后延时返回。另外,除了判断母线失压外,在采样回路中接入主备供线路电流回路,通过 判断主供线路无流更好地确认断路器已经跳开,防止备自投误动作,若母线失压 但主供电源线路电流采样正常且大于装置有流定值,则备自投装置不应动作。另外,为使备自投动作后备投成功恢复母线电压,确保电网的安全稳定运行,备供 电源线路侧必须正常带电,否则即使备自投装置正确动作,母线也不能够恢复电压。因此,装置也需要采样主备供电源线路侧电压,以达到实时监测主备供电源 线路侧电压的目的。 3备自投装置的开关量输入 由备自投的动作原理可知,备自投装置开关量输入必须包括主备供线路的断 路器位置、合后位置(KKJ)以及相关闭锁备自投动作的开入量。一般来说,主备供线路断路器的位置都直接采自其断路器机构箱的辅助开关,而不是采自主备供 线路保护的TWJ或者HWJ,其好处为,即使主备供线路保护的操作插件损坏,TWJ或者HWJ失磁,备自投装置仍然能够识别到断路器的位置开入量,保证备自

110kV变电站二次回路图解

搜狐博客> 左路传中> 日志> 110kV变电站二次回路图解 2007-07-14 | 第三章断路器的控制--110kV六氟化硫(SF6)断路器 标签:断路器六氟化硫 2.110kV六氟化硫(SF6)断路器 SF6断路器是110kV电压等级最常用的开断电器,关于它的控制,本章选用的模型是西高电气公司生产的LW25-126型SF6断路器。LW25-126型SF6断路器广泛应用于110kV电压等级,运行经验丰富,具有一定的代表性。 2.1操作机构 LW25-126型SF6断路器采用弹簧机构,其机构电气回路如图3-1-1、图3-1-2所示。 图 3-1-1 (点击看大图)

图3-1-2 (点击看大图) 图3-1-1所示的是断路器机构的控制回路图,红色部分为合闸回路,绿色部分为跳闸回路,黄色部分为储能电机启动回路。图3-1-2所示为弹簧储能电机的电源回路。主要部件的符号与名称对应关系如表3-1所示。 表3-1 LW25-126型六氟化硫断路器控制回路主要部件 符号名称备注 11-52C 合闸操作按钮手动合闸 11-52T 分闸操作按钮手动跳闸 43LR “远方/就地”切换开关 52Y “防跳”继电器 8M 空气开关储能电机电源投入开关 88M 储能电机接触器动作后接通电机电源 48T 电动机超时继电器 49M 电动机过流继电器 49MX 辅助继电器反映电机过流、过热故障 33hb 合闸弹簧限位开关 33HBX 辅助继电器反映合闸弹簧储能状态 52a、52b 断路器辅助接点52a为常开接点、52b为常闭接点 63GLX SF6低气压闭锁继电器 LW25-126型SF6断路器的操作回路中,有一个“远方/就地”切换开关43LR。“就地”是指在断路器本体机构箱使用合闸按钮11-52C或分闸按钮11-52T操作,“远方”是指一切通过微机操作箱向断路器发出的跳、合闸指令。正常运行情况下,43LR处于“远方”状态,由操作人员在控制室对断路器进行操作;对断路器进行检修时,将43LR置于“就地”状态,在断路器本体进行跳、合闸试验。 2.2合闸回路 2.2.1就地合闸 43LR在“就地”状态时,合闸回路由11-52C、52Y常闭接点、88M常闭接点、49MX常闭接点、33HBX常闭接点、52b常闭接点、52C和63GLX常闭接点组成。

典型二次回路 控制回路

控制回路断线回路: 断路器控制回路应满足如下要求: 1应能进行手动跳合闸和由保护与自动装置实现自动跳合闸。当跳合闸操作完成后,应能自动切断跳合闸脉冲电流; 2应有防止断路器多次合闸的“跳跃”闭锁装置; 3应能指示断路器合闸与跳闸位置状态; 4自动合闸与跳闸应有明显的信号; 5应能监视熔断器的工作状态及跳合闸回路完整性; 6控制回路应力求简单可靠,使用电缆最少。 控制回路断线应满足第五条能监视熔断器的工作状态。在实际接线中采用跳闸位置继电器和合闸位置继电器常闭接点串联回路发光字牌信号的办法来监视控制保险(熔断器) 的工作状态。 当控制回路发生断线时,由于跳闸位置中间继电器和合闸位置中间继电器都失去电压,均返回继电器常闭接点接通发控制回路断线光字牌信号。值班员根据信号及时处理。 控制回路发生断线直接影响断路器跳闸,因此需要值班人员及时掌握运行情况。 事故音响回路 事故音响分启动回路和中央事故信号装置 1. 事故音响起动回路 主要由控制开关(操作把)的接点和跳位(或开关辅助触点)组成.综自站和普通站事故音响起动回路略有区别。 2. 中央事故信号装置

中央事故音响信号装置主要由冲击继电器组成。冲击继电器都是由一个脉冲变流器和相应的执行元件组成。 3.中央信号复归能重复动作 中央信号复归能重复动作的事故信号装置在我局变电站广泛应用。信号装置的重复动作是利用冲击继电器(亦称信号脉冲继电器)来实现。旧冲击继电器都是由一个脉冲变流器和相应的执行元件组成。当接于事故小母线SYM 和负信号电源小母线-XM(我们局变电站信号电源小母线一般采用辅助母线FM)之间的任一路不对应起动回路接通时(跳位1TWJ和1KK控制开关的1、3和17、19回路接通),起动冲击继电器接通事故音响回路。音响信号靠本身自保持回路继续发送信号,直到发出音响解除命令为止。当前一次发出的音响信号已被解除(现在的常规变电站中均采用1SJ时间继电器来自动复归),而1TWJ与1KK的不对应起动回路尚未复归之前,断路器2DL也自动跳闸,则2TWJ和2KK不对应起动回路接通,在小母线SYM和负信号电源小母线-FM又并联上一个起动回路,由于在每一个并联支路中都有串联电阻R,每多并联一个支路,都会引起流过冲击继电器中的电流产生变化,使事故信号装置重复动作。 红绿指示灯回路 红绿信号指示灯回路与断路器跳合闸回路结合在一起构成断路器控制回路的监视回路,满足第三应能指示断路器合闸与跳闸位置状态;第四自动合闸与跳闸应有明显的信号。 跳合闸回路完整性的监视是利用在跳合闸线圈回路中串联红绿信号指示灯或跳合位置继电器的办法来实现的。信号指示灯或跳合位置继电器仍由断路器的辅助触点DL进行切换,在其回路中增加了跳闸线圈或合闸接触器

二次回路基本知识

二次回路基本知识 讲课内容: 一、了解一次设备和二次设备的基本概念。 二、了解二次回路的工作任务和主要内容。 三、了解二次回路原理接线图、展开接线图、安装接线图的作用与特点。 四、掌握二次设备的图形符号、文字符号和回路标号及元器件的常用表示方法。 五、掌握阅读二次回路图的基本方法 六、简述二次回路的重要性 变配电所的操作电源及测量控制信号回路 讲课内容: 一、了解一下变配电所的操作电源 二、掌握断路器的控制回路、电气测量、信号回路的基本知识。 一、二次回路内容 变配电所的二次部分对于实现变配电所安全、优质和经济的电能分配具有极为重要的作用。 变配电所的电气设备按其作用的不同可分为一次设备和二次设备,其控制保护接线回路又可分为一次回路和二次回路。 一次设备是指直接输送和分配电能的高电压、大电流设备,包括电力母线、电力线路、高压断路器、高压隔离开关、电流互感器、电压互感器等。 由变配电所一次设备组成的整体称为变配电所一次部分。 二次设备是指对一次设备进行监察、控制、测量、调节和保护的低电压、小电流设备,包括继电保护及安全自动装置、操作电源、熔断器等。 由变配电所二次设备组成的整体称为变配电所二次部分。 一次回路又称为一次接线是将一次设备相互连接而形成的电路。 二次回路又称为二次接线是将二次设备相互连接而形成的电路。包括电气设备的测量回路、控制操作回路、信号回路、保护回路等。

二次回路的工作任务是反映一次设备的工作状态及控制一次设备,即在一次设备发生故障时,能迅速反应故障,并使故障设备退出工作,保证变配电所处于安全的运行状态。 二次回路的主要内容是高压电气设备和电力线路的控制、信号、测量及监察、继电保护及自动装置、操作电源等系统。 a、控制系统 控制系统是由控制器具、控制对象及控制网络构成 控制系统的作用是对变电站的开关设备进行就地或远方跳、合闸操作,以满足改变主系统运行方式及处理故障的要求。 b、信号系统 信号系统是由信号发送机构、信号接受显示元件及其网络构成。 信号系统的作用是准确及时的显示出相应一次设备的运行工作状态,为运行人员提供操作、调节和处理故障的可靠依据。 c、测量及监察系统 测量及监察系统是由各种电气测量仪表、监测装置、切换开关及其网络构成。 测量及监察系统的作用是指示或记录电气设备和输电线路的运行参数,作为运行人员掌握主系统运行情况、故障处理及经济核算的依据。 d、调节系统 调节系统是由测量机构、传送设备、自控装置、执行元件及其网络构成。 调节系统的作用是调节某些主设备的工作参数,以保证主设备的电力系统的安全、经济、稳定运行。 e、继电保护及自动装置系统 继电保护及自动装置系统是由电压、电流互感器的二次绕组,继电器,继电保护及自动装置,断路器及其网络构成。 自动装置:备用电源自动投入装置、自动重合闸装置 继电保护及自动装置系统的作用是当电力系统发生故障时,能自动、迅速、有选择地切除故障设备,减小设备的损坏程度,保证电力系统的稳定,增加供电的可靠性,及时反映主设备的不正常工作状态,提示运行人员关注和处理,保证主设备的完好及系统的安全。 f、操作电源系统 操作电源系统是由直流电源或交流电源供电。 操作电源系统的作用是供给上述各二次系统的工作电源,断路器的跳、合闸电源,及其

发电厂与变电站二次回路论文

发 电 厂 及 变 电 站 二 次 回 路 专业:电力系统自动化技术学号:Z09045808 姓名:陈恒江

发电厂及变电站二次回路 1.发电厂的基本设备发电厂的基本设备 在发电厂和变电所中,根据电能生产,转换和分配等各环的需要,我们配置 了各种电气设备.根据它们在运行中所起的作用不同, 通常将它们分为电气一次设备和电气二次设备. 1.2.电气一次设备及其作用电气一次设备及其作用电气 直接参与生产,变换,传输,分配和消耗电能的设备称为电气一次设备,主要有: (1) 进行电能生产和变换的设备,如发电机,电动机,变压器等. (2) 接通, 断开电路的开关电器,如断路器,隔离开关,自动空气开关,接触器,熔断器等. (3) 限制过电流或过电压的设备,如限流电抗器,避雷针等. (4) 将电路中的电 压和电流降低,供测量仪表和继电保护装置使用的变换设备,如电压互感器,电 流互感器. (5) 载流导体及其绝缘设备,如母线,电力电缆,绝缘子,穿墙套管等. (6) 为电气设备正常运行及人员,设备安全面采取的相应措施,如接地装置等. 2.1发电厂电气一次设计的内容 火力发电厂是一座发、变电设施。它通过磨煤机、锅炉、汽轮机等设备将化学能转变为机械能,再通过发电机将机械能转变为电能,并由升压变压器将发电机出口电压升高后,经输电线路将电能输送到用户或电网中。 火力发电厂的电气设备可分为电气一次设备和电气二次设备。通常把生产和输送、分配电能的设备称为一次设备。包括: (1)生产和转换电能的设备:如发电机将机械能转变成电能,电动机将电能转变成机械能 变压器使电压升高或降低,以满足输配电需要。这些都是发电厂中最主要的设备;

二次回路的基本知识

二次回路的基本知识 一:基本概念 为满足电力生产和电力系统安全经济的需要,发电厂和变电所中配置了各种电气设备,其主要任务是生产和输送分配电能、启停机组、调整负荷、切换设备和线路、监视主要设备的工作、迅速消除故障等。根据所起作用的不同,可将电气设备分为一次设备和二次设备。 1、一次设备:直接生产、转换和输配电能的设备,称为一次设备。主要有以下几种:(1)、进行电能生产和转换的设备,如发电机将机械能转换为电能,变压器将电压升高或降低来满足输配电的需要,电动机将电能转换为机械能。 (2)、用于正常或事故时,接通和断开电路的开关设备,如断路器、隔离开关、熔断器、接触器等。 (3)、限制电流和防御过电压的设备,如限制故障电流的限流电抗器,限制过电压的避雷器,保护输电线路免受雷击的避雷线等。 (4)、载流导体及其绝缘设备,如裸导体母线、架空线、电缆、绝缘子、穿墙套管等。(5)、仪用互感器,如电流互感器和电压互感器,分别将电路中的大电流变成小电流、高电压变成低电压,供给测量仪表和保护装置使用。 (6)、接地装置。接地装置用来保证电力系统正常工作或保护人身安全,前者为工作接地,后者为保护接地。 2、二次设备:对一次设备和系统运行状态进行测量、控制、监视和保护的设备,称为二次设备,主要有以下几种: (1)、测量表计,如电压表、电流表、功率表和电能表等,用来监视、测量电路的电压、电流、功率、电能等。 (2)、继电保护及自动装置。继电保护的作用是当发生故障时,作用于断路器跳闸,将故障切除。自动装置用于实现发电厂的自动并列、发电机自动调节励磁、电力系统频率自动调节、输电线路自动重合闸、备用电源自动投入等。 (3)、直流电源设备,如直流发电机组、整流装置、蓄电磁组,用作直流操作、保护、监测设备的直流电源,以及事故照明用电等。 (4)、控制装置和信号装置,如实现配电装置中断路器合闸、跳闸的按钮等操作电器,断路器的位置信号灯、主控制室中用于反映电气设备状态的中央信号装置等。 3、一次回路:又称为一次接线,或称为电气主接线。 电气主接线图:就是用规定的图形与文字符号将发电机、变压器、母线、开关电器、输电线路等有关电气设备,按电能流程顺序连接而成的电路图。

高压电气二次回路原理图及讲解

高压电气二次回路原理图及讲解 直流母线电压监视装置主要是反映直流电源电压的高低。KV1是低电压监视继电器,正常电压KV1励磁,其常闭触点断开,当电压降低到整定值时,KV1失磁,其常闭触点闭合,HP1光字牌亮,发出音响信号。KV2是过电压继电器,正常电压时KV2失磁,其常开触点在断开位置,当电压过高超过整定值时KV2励磁,其常开触点闭合,HP2光字牌亮,发出音响信号。 图2是常用的绝缘监察装置接线图,正常时,电压表1PV开路,而使ST1的触点5-7、9-11与ST2的触点9-11接通,投入接地继电器KA。当正极或负极绝缘下降到一定值时,电桥不平衡使KA动作,经KM而发出信号。此时,可用2PV进行检查,确定是哪一极的绝缘下降,若正极对地绝缘下降,则投ST1 I档,其触点1-3、13-14接通,调节R3至电桥平衡电压表1PV指示为零伏;再将ST1投至II档,此时其触点2-4、14-15接通,即可从1PV上读出直流系统的对地总绝缘电阻值。若为负极对地绝缘下降,则先将ST1放在II档,调节3R至电桥平衡,再将ST1投至I档,读出直流系统的对地总绝缘电阻值。假如正极发生接地,则正极对地电压等于零。而负极对地指示为220V,反之当负极发生接地时,情况与之相反。电压表1PV用作测量直流系统的总绝缘电阻,盘面上画有电阻刻度。由于在这种绝缘监察装置中有一个人工接地点,为防其它继电器误动,要求电流继电器KA有足够大的电阻值,一般选30kΩ,而其启动电流为,当任一极绝缘电阻下降到20 kΩ时,即能发出信号。对地绝缘下降和发生接地是两种情况。 直流系统在变电站中具有重要的位置。要保证一个变电站长期安全运行,其因素是多方面的,其中直流系统的绝缘问题是不容忽视的。变电站的直流系统比较复杂,通过电缆沟与室外配电装置的端子排、端子箱、操作机构箱等相连接,因电缆破损、绝缘老化、受潮等原因发生接地的可能性较多,发生一极接地时,由于没有短路电流,熔断器不会熔断,仍可继续运行,但也必须及时发现、及时消除。通常,要求直流系统的各种小母线、端子回路、二次电缆对地的绝缘电阻值,用500V摇表测量其值不得小于Ω。直流回路绝缘的好坏必须经常地进行监视。否则,会给运行带来许多不安全因素。现以图3为例说明直流接地的危害。当图中A点与C点同时有接地出现时,等于+WC、-WC通过大地形成短路回路,可能会使熔断器FU1和FU2熔断而失去保护电源;当B点与C点同时有接地出现时,等于将跳闸线圈短路,即使保护正常动作,YT跳闸线圈短路,即使保护正常动作,YT跳闸线圈也不会起动,断路器就不会跳闸,因此在有故障的情况下就要越级跳闸;当A点与B点或A点与D点,同时接地时,就会使保护误动作而造成断路器跳闸。直流接地的危害不仅仅是以上所谈的几点,还有许多,在此不一一作介绍了。 因为发生直流接地将产生许多害处,所以对直流系统专门设计一套监视其绝缘状况的装置,让它及时地将直流系统的故障提示给值班人员,以便迅速检查处理。

相关主题
文本预览
相关文档 最新文档