当前位置:文档之家› 预调质处理对汽车半轴组织和疲劳性能影响的研究

预调质处理对汽车半轴组织和疲劳性能影响的研究

预调质处理对汽车半轴组织和疲劳性能影响的研究
预调质处理对汽车半轴组织和疲劳性能影响的研究

铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊 接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件 的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性 能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件 在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造 成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是 铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提 出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所 对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过 对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接 件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德 俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接 接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析 焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证 铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其 中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验, 找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为 获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否 存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其 寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且 随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能 2.2疲劳断口特征 按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

纤维增强复合材料疲劳性能研究进展

纤维增强复合材料疲劳性能研究进展 宋磊磊李嘉禄 (天津工业大学复合材料研究所天津市和教育部共建先进纺织复合材料重点实验室天津 300160) 摘要:随着科技的发展,纤维增强复合材料作为一种新型材料越来越多的应用于众多领域。然而,纤维增强复合材料的疲劳性能对应用具有重要影响。本文根据近年来国内有关复合材料疲劳性能的研究和探索,综述了纤维增强复合材料疲劳性能的定义、机理以及影响因素,并提出了当前存在的一些问题。 关键词:纤维增强复合材料疲劳 1 前沿 随着科技的进步,很多工业特别是高新技术工业对材料的要求不断提高。复合材料由于比强度和刚度高、质量轻、耐磨性和耐腐蚀性好等优点,广泛应用于船舶、汽车、基础设施和航空航天等领域,以及文体用品、医疗器械、生物工程、建筑材料、化工机械等方面。 在复合材料构件的使用过程中,由于应力和环境等因素的影响,会逐渐产生构件的损伤以至破坏,其主要破坏形式之一是疲劳损伤。疲劳损伤的产生、扩展与积累会加速材料的老化,造成材料耐环境性能严重下降以及强度与刚度的急剧损失,大大降低其使用寿命,甚至报废。为了使复合材料的应用更加广泛和深入,本文综述了近年来在纤维增强复合材料疲劳性能方面的研究。 2 复合材料疲劳性能及损伤机理 在周期性交变载荷作用下材料发生的破坏行为称为疲劳,它记述了材料经受周期应变或应变时的失效过程。复合材料疲劳主要是指复合材料构件在交变荷载作用下的疲劳损伤机理、疲劳特性(强度、刚度随着时间变化规律及其破坏规律)、寿命预测及疲劳设计。 复合材料是非均质(在大尺度上)和各向异性的,它以整体的方式积累损伤,且失效并不总是由一个宏观裂纹的扩展导致。损伤积累的微观机构机理,包括纤维断裂基体开裂、脱粘、横向层开裂和分层等,这些机理有时独立发生,有时以互相作用的方式发生,而且材料参数和试验条件可能强烈影响其主要优势。多种损伤及其组合,使疲劳损伤扩展往往缺乏规律性,完全不像大多数金属材料那样能观察到明显的单一主裂纹扩展,复合材料不仅初始缺陷/损伤大,而且在疲劳破坏发生之前,疲劳损伤已有了相当大的扩展。 3 影响复合材料疲劳性能的主要因素 3.1 基体材料 Boller研究了基体材料对玻璃纤维增强复合材料疲劳性能的影响,研究证明,不同的基体材料具有完全不同的疲劳性能。一般情况下,疲劳性能最好的是环氧树脂。 很多复合材料的疲劳试验证明,基体和界面是薄弱环节。尽管树脂含量的变化在106次循

GB T 12679-90汽车耐久性行驶试验方法

中华人民共和国国家标准 汽车耐久性行驶试验方法GB/T 12679—90 代替GB 1334—77 Motor vehicles—Durability running—Test method 1 主题内容与适用范围 本标准规定了汽车耐久性行驶试验方法。 本标准适用于大批量生产的汽车(矿用自卸汽车参照执行)。 2 引用标准 GB/T 12534汽车道路试验方法通则 GB/T 12545汽车燃料消耗量试验方法 GB/T 12548汽车速度表、里程表检验校正方法 GB/T 12678汽车可靠性行驶试验方法 JB 3743汽车发动机性能试验方法 3 术语 3.1 汽车耐久性 指汽车在规定的使用和维修条件下,达到某种技术或经济指标极限时,完 成功能的能力。 3.2 汽车耐久度 指汽车在规定的使用和维修条件下,能够达到预定的初次大修里程而又不 发生耐久性损坏的概率。 3.3 汽车耐久性损坏 指汽车构件的疲劳损坏已变得异常频繁;磨损超过限值;材料锈蚀老化;

汽车主要技术性能下降,超过规定限值;维修费用不断增长,已达到继续使用时经济上不合理或安全不能保证的程度。其结果是更换主要总成或大修汽车。 4 试验条件 按GB/T 12678的规定。 5 试验车辆 5.1 用于汽车耐久性行驶试验的汽车数量按表2确定。 5.2 本试验可用汽车使用试验、常规可靠性试验的同一组汽车。 5.3 整车、各总成及零部件的制造装配调整质量应符合该车技术条件的规定。 6 试验项目及方法 6.1 试验程序 试验程序按表1进行。

6.2 验收试验汽车 6.2.1 应按GB/T 12534中第4章之规定,调整内容须纳入故障统计。 6.3 磨合行驶 6.3.1 汽车磨合行驶里程及规范应按该车使用说明书的规定。出现故障须 纳入故障统计。 6.3.2 在汽车磨合行驶最后1000 km时测量机油消耗量。 6.4 发动机性能初试 按JB 3743中8.4之规定仅测量总功率。 注:在汽车耐久性行驶试验中,如果发动机大修,则在发动机大修前、后,均要按上述的规定各测量一次总功率。

材料的疲劳性能

材料的疲劳性能一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随 1 /2; min) 2 应力; ②不对称循环:σm≠0,-1σm>0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力;

④波动循环:σm>σa,0

②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要; ③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。二者综合更加速疲劳破坏 出现两个疲劳源。 (2)疲劳裂纹扩展区(亚临界扩展区)? 疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。近疲劳源区贝纹线较细密(裂纹扩展较慢),远

材料的疲劳性能

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax; ②最小循环应力:σmin; ③平均应力:σm=(σmax+σmin)/2; ④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2; ⑤应力比(或称循环应力特征系数):r=σmin/σmax。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm≠0,-1σm>0,-1

③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。σm=σa<0,r=∞,轴承承受脉动循环压应力; ④波动循环:σm>σa,0

材料的疲劳性能

材料的疲劳性能 一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

镁合金疲劳性能的研究现状_高洪涛

镁合金疲劳性能的研究现状 高洪涛,吴国华,丁文江 (上海交通大学材料科学与工程学院,上海200030) 摘要:针对近几年镁合金疲劳性能的研究进行总结,从冶金因素、形状因素、加载制度、介质和温度等方面考察对镁合金疲劳性能的影响。归纳提高镁合金抗疲劳性能的途径:热处理、滚压强化和喷丸处理等。提出对镁合金疲劳性能研究的展望。 关键词:镁合金;疲劳性能;影响因素;强化途径 中图分类号:TG146.2 文献标识码:A 文章编号:1000-8365(2003)04-0266-03 Review on the Fatigue Behavior of Magnesiu m Alloys GAO Hong-tao,W U Guo-hua,DI NG W en-jiang (Schoo l of M aterials Science and Engineering,Shang hai Jiaotong U niversity,Shang hai200030,China) A bstract:This report provides some of the results of magnesium alloy s studying,especially about its fatigue behavior, in recent years.The facto rs that influence the fatigue behavior of magnesium alloy s can be given from several aspects of metallurgy,form factor,loading system,medium and tem perature.The strengthening methods can be concluded in three aspects.One is heat treatment;the o ther tw o are roller burnishing and shot blasting.In addition,the prospect of fatigue behavio r observation on mag nesium alloy s is discussed. Key words:M ag nesium alloy;Fatigue behavior;Influencing factors;Strengthening approach 综合性能优良的镁合金已大量应用于航空航天、汽车、电子等领域[1]。据预测,从2001~2007年,镁合金铸件在汽车上的用量将以25%~30%速度递增[2]。 随着镁合金需求的急剧增加,对其性能要求也越来越高。本文总结近几年镁合金疲劳性能方面的研究,以及提高其性能的建议。 1 镁合金的疲劳与断裂 M g属于密排六方结构,此类金属的塑性变形取决于c/a(c为点阵的高,a为基面的边长),Mg的c/a=1.6235,略小于按原子为等径刚球模型计算出的轴比1.633。孪晶和疲劳变形与现存孪晶的结合是疲劳变形的主要形式,滑移带沿着孪晶带堆积的区域是一些常见的裂纹源。许多微裂纹是一些微空洞造成的。位错环集团是Mg典型的疲劳位错结构。 镁合金的疲劳断裂是由最大剪应力控制的,并且沿着最大剪应力方向扩展。它的解理断裂发生在高指数面上,并且裂纹的形态因孪晶和滑移而强烈变化着。镁合金疲劳断裂结构中也有一些韧窝特征,它们来源于加载过程中出现并长大直到在塑性应变和塑性断裂条件下联合起来的微空洞,在沉淀相-基体界面处结合力较小,沉淀相或者夹杂物的破碎、局部的应力集中 收稿日期:2003-02-17; 修订日期:2003-03-24 基金项目:国家863计划资助项目,编号:200233AA1100. 作者简介:高洪涛(1976- ),河南洛阳人,博士生.研究方向:镁合金的研究与开发.都可能形成一些微空洞。 2 影响镁合金疲劳性能的因素 2.1 冶金因素 微观组织对疲劳裂纹的萌生和扩展有很大的影响[3]。砂型铸造M g-Zn-Zr合金,不管是铸态还是热处理态,晶粒越粗大,疲劳强度越低。另外,第2相质点或颗粒也影响镁合金的疲劳行为,第2相的切变模量和第2相质点间的平均距离是影响疲劳裂纹扩展速率的重要参数。另外,在小的ΔK区域,镁合金位错密度越高,疲劳裂纹扩展速率就越低。 镁基复合材料的疲劳性能与断裂特征与其基体上增强颗粒和晶须的尺寸和形态关系密切[4],含20% SiC晶须的AZ91D镁基复合材料低周疲劳断裂后发现,由于晶须散乱的分布于基体之上,裂纹表面粗糙并且裂纹扩展路径看起来很弯曲。断裂组织观察表明疲劳断裂扩展区和最后断裂区没有明显区别,并且特征是解理断裂。 在冶炼过程中,不可避免的引进一些夹杂物。这些夹杂物引起应力集中从而降低镁合金的抗疲劳能力,如果夹杂物是尖角,危害更大。夹杂物分布不均匀时,也会降低疲劳强度。 2.2 形状因素 (1)缺口敏感性及表面状况 镁合金比铝合金和钛合金有更大的缺口敏感性,变形镁合金比铸造镁合金有更大的缺口敏感性。 · 266· 铸造技术 FO UN DRY TECHN OLOG Y V ol.24N o.4 Jul.2003

材料的疲劳性能汇总

一.本章的教学目的与要求 本章主要介绍材料的疲劳性能,要求学生掌握疲劳破坏的定义和特点,疲劳断口的宏观特征,金属以及非金属材料疲劳破坏的机理,各种疲劳抗力指标,例如疲劳强度,过载持久值,疲劳缺口敏感度,疲劳裂纹扩展速率以及裂纹扩展门槛值,影响材料疲劳强度的因素和热疲劳损伤的特征及其影响因素,目的是为疲劳强度设计和选用材料建立基本思路。 二.教学重点与难点 1. 疲劳破坏的一般规律(重点) 2.金属材料疲劳破坏机理(难点) 3. 疲劳抗力指标(重点) 4.影响材料及机件疲劳强度的因素(重点) 5热疲劳(难点) 三.主要外语词汇 疲劳强度:fatigue strength 断口:fracture 过载持久值:overload of lasting value 疲劳缺口敏感度:fatigue notch sensitivity 疲劳裂纹扩展速率:fatigue crack growth rate 裂纹扩展门槛值:threshold of crack propagation 热疲劳:thermal fatigue 四. 参考文献 1.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,2009 2.束德林.金属力学性能.北京:机械工业出版社,1995 3.石德珂,金志浩等.材料力学性能.西安:西安交通大学出版社,1996 4.郑修麟.材料的力学性能.西安:西北工业大学出版社,1994 5.姜伟之,赵时熙等.工程材料力学性能.北京:北京航空航天大学出版社,1991 6.朱有利等.某型车辆扭力轴疲劳断裂失效分析[J]. 装甲兵工程学院学报,2010,24(5):78-81 五.授课内容

力学性能是材料最重要的性能树脂基复合材料具有比强度.

力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,

材料的疲劳性能完整版

材料的疲劳性能 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料的疲劳性能 一、疲劳破坏的变动应力 材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。变动载荷指大小或方向随着时间变化的载荷。变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。 1、表征应力循环特征的参量有: ①最大循环应力:σmax ; ②最小循环应力:σmin ; ③平均应力:σm =(σmax +σmin )/2; ④应力幅σa 或应力范围Δσ:Δσ=σmax -σmin ,σa =Δσ/2=(σmax -σmin )/2; ⑤应力比(或称循环应力特征系数):r=σmin /σmax 。 2、按平均应力和应力幅的相对大小,循环应力分为: ①对称循环:σm =(σmax +σmin )/2=0,r=-1,大多数旋转轴类零件承受此类应力; ②不对称循环:σm ≠0,-1σm >0,-10,r=0,齿轮的齿根及某些压力容器承受此类应力。σm =σa <0,r=∞,轴承承受脉动循环压应力;

④波动循环:σ m >σ a ,0

玻璃钢复合材料的性能对比

复合材料聚合物的性能对比 聚合物复合材料的性能解释 1.1 拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标GB/T13096-1进行测试。使用最多的是 GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC 材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1.2 弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。

汽车耐久性试验,这次讲清楚了

汽车耐久性试验,这次讲清楚了 汽车耐久性非常重要,它关系着一辆车的使用寿命,甚至是关系到性命的大事。如果一辆车子发动机的耐久性不好,会给车主带来或多或少的麻烦的。 耐久 是指其“保持质量和功能的使用时间”,一般汽车企业对整车耐久性的要求都是XX年或XX 万公里,为了达到整车的耐久性,就需要整车、系统、子系统和零件分别满足各自的耐久性要求。 疲劳 是指试件或构件材料在交变应力与交变应变的作用下,裂纹萌生、扩展,直到小片脱落或断裂的过程称为疲劳。 汽车在行驶时不断受到由于路面不平而引起的路面冲击载荷,同时还受到转向侧向力、驱动力和制动力的作用。这些力一般都随着时间发生变化。另外,汽车发动机本身也是一个振动源。因此汽车在行驶过程中处于一个相当复杂的振动环境中,其各个零部件一般都会受到随着时间发生的应力、应变的作用;经过一定的工作时间,一些零部件就会发生疲劳损坏,出现裂纹或断裂。据统计,汽车90%以上的零部件损坏都属于疲劳损坏。 汽车耐久试验按总成分 一、零部件的耐久测试 零件先按照主机厂试验大纲完成功能性试验,台架可靠试验的全部或者80%(类似比例),环境老化试验的全部或一部分,这部分一般是零部件厂家自己做(实验室经过主机厂认可),也会有一些厂家指定第三方试验室完成。 二、整车耐久测试 综合耐久、驱动耐久、SPC耐久,各试验考核侧重点不一样。 测试的地点两种:一是测试场,上面会有各种路面,某些车型可能会要求通过数万公里的强化路面测试,在不幸跑出问题之后分析根因然后在上市之前改善;二就是公共道路,模拟一般用户的一般使用状况,记录过程中出现的问题,反馈质量/设计部门。 汽车发动机耐久性试验 汽车发动机的设计,要经过以它自身为主的耐久性测试的。这种测试主要是以发动机本身在试验台上测试,而不是整部车子。要测试出发动机的耐久性,就需要模拟一部车子日常的使用状况,有时候需要在高速上奔驰,有时候又得在闹市里面蠕动,要模拟这些发动机运转状态并不难,可是对于几乎任何一台机子而言,这样测试的话无论是在开发时间,还是在试验资金的角度上,都是难以完成的。 因此,发动机的耐久性测试主要是通过加大发动机的测试负荷,以减少测试时间的方法来测试。试验的的原理就是加大过负荷的比例,分析这个时候的寿命时间的问题,然后结合之前所加大的过负荷比例等参数,对日常使用寿命进行预测,得到一个大概的正常寿命。

汽车整车耐久性的试验分析

汽车整车耐久性的试验分析 摘要:伴随汽车市场竞争不断激励,为降低汽车开发成本,积极响应汽车市场需求,应该强化汽车整车耐久性,可以在保证汽车质量的同时,做好整车耐久性试验,具有实际应用价值。以下本文就基于具体实例,进行汽车整车耐久性试验分析。 关键词:汽车耐久性;汽车;耐久性试验 引言 汽车耐久性试验,在汽车生产企业中对其产品质量至关重要,是提高汽车开发质量的重点。以下本文对此做具体介绍。 1.汽车耐久性试验的意义 汽车耐久性试验是指在汽车规定的使用以及维修条件下,为确保汽车整车可以达到某种技术以及经济指标极限时,对其完成的规定功能能力进行试验。汽车整车耐久性试验,可以为汽车产品的研究、设计等多个部分提供有效可靠的数据资料,也可以有效分析失效样品,并找出失效原因与汽车整车开发中的薄弱环节,并对此能够采取相应的对策,有效避免汽车行驶中因道路强化问题而引起的故障失真。汽车产品开发中,科学的耐久性试验,可以保证汽车耐久性质量,提高汽车产品可靠性。 2.浅析汽车整车耐久性试验方法 汽车整车耐久性试验,可以根据其试验方式的不同分为道路耐久性、虚拟耐久性、台架道路模拟三种方法,主要内容如下: 2.1道路耐久性试验 在汽车整车耐久性试验中,对车轮上力以及扭矩、车辆关键零部件的应力与在道路上的应变。其中,试车场道路耐久性中,根据样车在试车场内的耐久损伤,对于其在不同道路模拟试验台架上,可以根据特定试验规范驾驶汽车,对车轮疲劳损伤进行分析【1】;在试车场的耐久性试验中,其应用的主要道路保留高速路、石路、摇摆路、破损路、搓板路等,根据这些道路模拟车辆在使用中的最恶劣工况环境,采集实际使用数据,调整路面车速和循环数量,考核汽车整车的耐久性能。对于公共道路的耐久性试验中,可以让车辆在公共道路上根据人们的开车习惯,针对以山路、乡村公里、国道、高速路、城市道路、以及省道等典型道路的耐久性测验,根据驾驶员驾驶习惯,让其在周围道路中选择合适的里程分配比例,进行耐久性试验。汽车整车耐久性试验中,根据被测车辆的实际情况,在汽车底盘测功机中设置加速与滑行区间,再将车辆的驱动轮放与底盘测功机上,并调整活动当时期可以靠近车轮,记录车辆在规定速度区间内的滑行距离以及加速时

橡胶材料疲劳断裂特性研究进展_李晓芳

第19卷第3期2010年9月 计算机辅助工程Computer Aided Engineering Vol.19No.3Sept.2010 文章编号:1006-0871(2010)03-0064-06 橡胶材料疲劳断裂特性研究进展 李晓芳1,2,张春亮 3 (1.大庆油田公司采油工程研究院,黑龙江大庆163453; 2.哈尔滨工业大学力学博士后流动站,哈尔滨150001; 3.大庆油田公司采油二厂,黑龙江大庆163414) 摘 要:由于橡胶材料的动态疲劳特性对保证橡胶制品使用时的安全性和可靠性具有重要意义,综述机械载荷、环境和橡胶配方等因素对橡胶材料疲劳寿命的影响,总结用疲劳裂纹萌生寿命法和基于断裂力学的疲劳裂纹扩展法预测橡胶材料动态疲劳寿命方法的优缺点,并展望这2种方法的发展趋势. 关键词:橡胶;疲劳;裂纹萌生;断裂力学;裂纹扩展中图分类号:O346.2;TQ330文献标志码:A Research advance on rubber material fatigue and fracture characteristics LI Xiaofang 1,2 ,ZHANG Chunliang 3 (1.Research Institute of Production Eng.,Daqing Oilfield Co.,Daqing Heilongjiang 163453,China ; 2.Mechanics Postdoctoral Station ,Harbin Institute of Tech.,Harbin 150001,China ; 3.No.2Oil Production Plant ,Daqing Oilfield Co.,Daqing Heilongjiang 163414,China ) Abstract :Due to the importance of the dynamic fatigue characteristics of rubber materials that ensure the safety and reliability of rubber products in service ,the factors that influence the fatigue life of rubber materials are reviewed ,such as mechanical load ,environment and rubber formulation and so on ;The advantages and disadvantages of fatigue crack nucleation approach and crack growth approach based on fracture mechanics are summarized ,which are usually used to predict fatigue life for rubber.The current development trends of two analysis approaches are described. Key words :rubber ;fatigue ;crack nucleation ;fracture mechanics ;crack growth 收稿日期:2009-10-14 修回日期:2010-01-19 作者简介:李晓芳(1977—),女,湖北天门人,博士,研究方向为采油机械设计, (E-mail )lixiaofang226@https://www.doczj.com/doc/5a8470128.html, 0引言 橡胶材料能承受的应变很大且不会导致永久变 形与断裂, 经过适当配方设计可满足的材料性能要求范围十分广,是振动隔离器、轴承、轮胎、密封件、 软管和垫圈等的理想选择材料.橡胶通常适合3种特殊的使用情况:密封、减振和承受负荷,它们几乎都涉及到动态响应.在交变载荷的反复作用下,即使 应力远低于断裂强度极限, 材料也极易发生疲劳破坏,而疲劳断裂性能往往决定这些制品的疲劳寿命.因此,为保证橡胶制品使用时的安全性和可靠性,研究橡胶材料动态疲劳特性的意义十分重要. 1 影响橡胶疲劳断裂的因素 1.1 机械载荷 多数情况下,作用在结构或机械上的载荷随时

吉利集团组织架构

吉利集团组织架构 吉利和沃尔沃“联姻”迎来一周年,沃尔沃的持续盈利和吉利集团的高负债率可谓喜忧参半,“吉”“沃”的婚姻幸福吗? 如何构建一个科学的组织结构,实现两者的融合将是李书福长期面对的难题。是整合性并购还是保持沃尔沃的独立性?李书福给出了答案,“吉利是吉利,沃尔沃是沃尔沃,两者是兄弟关系,不是父子关系。” 一“国”两“制” 在中国汽车史上,鲜有海外品牌并购成功的先例,“一切都要摸着石头过河”。在李书福的汽车王国中,形成了吉利和沃尔沃两个完全独立的公司,就像“双子塔”一样,既相互独立,又是有机整体,整合后的“新吉利”也就形成了“双塔型”组织管理架构。 这种看似“无为而治”的统治,是李书福的无奈之举还是管理创新? 李书福用一“国”两“制”避免了整合性并购带来的文化冲突,这显然是对邓小平理论在企业管理中的灵活运用。李书福喜欢看邓小平的书,在他眼里,邓小平理论体系是活的,不同历史时期有不同的指导思想,“要从全局的角度来看问题”是邓小平理论的精髓。 在“双塔型”组织结构下,吉利和沃尔沃分别独立运作,是两个不同定位的品牌,管理团队是分开的,只有李书福身兼两家公司的董事长。李书福在其中起到协调作用,让两个品牌避免冲突和重复,一方面保持沃尔沃全球品牌的高端路线,另一方面吉利则继续立足于本土大众化品牌形象。有个半开玩笑的说法,李书福白天在吉利办公,晚上在沃尔沃办公。 很多双子塔建筑上都有一座天桥,让整个建筑形成有机整体,也更加稳固。为了更好地让两者融合,李书福在吉利和沃尔沃之间也架起了一座“天桥”—“沃尔沃-吉利对话与合作委员会”,目的是为了方便双方就制造和供应汽车产品、开发新产品和相关技术以及产品市场推广等各个层面的合作进行探讨,同时,还可以加强中外管理层之间的了解。这样,在“双塔型”组织结构中,研发、生产、销售等每一层级都将建立连接线,“新吉利”的架构也越来越清晰。 委员会的成员包括吉利和沃尔沃的各四位高管,李书福以独立身份任这一机构的主席,每年分别在中国和瑞典举行一次会议。会上一旦达成某个协议,将会以合同的形式加以界定,按照市场规则进行运作。 放虎归山 李书福早在2002年就“暗恋”上了沃尔沃,自此一直在思考如何“迎娶”沃尔沃。他发现,沃尔沃之所以和福特的“婚姻”不幸福,一个极其重要的原因就是福特对沃尔沃的管理越俎代庖,派人直接管理,束缚了沃尔沃轿车自身潜力的发挥。收购沃尔沃后,李书福曾

玻璃钢复合材料的性能对比

复 聚合物复合材料的性能解释 1.1拉伸性能合材料聚合物的性能对比拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标 GB/T13096-1进行测试。使用最多的是GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于 1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1.2弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。 弯曲性能,一般采用国标GB/T1449进行测试;对于拉挤材料,用国标 GB/T13096.2进行测试;对于单向纤维增强的,用国标GB/T3356进行测试。测

白车身疲劳耐久仿真分析

10.16638/https://www.doczj.com/doc/5a8470128.html,ki.1671-7988.2019.06.046 白车身疲劳耐久仿真分析 杨劲飞1,陆雪华2,梁琴桂1 (1.广西艾盛创制科技有限公司,广西柳州545000;2.上海双杰科技有限公司,上海201804) 摘要:某汽车企业研发某款车型在进行可靠性道路试验过程中,车身后部的后尾梁钣金处发现开裂现象,此问题出现,影响车身耐久性能评估。通过道路信号采集、有限元疲劳耐久仿真软件,对此问题进行开裂原因分析,并根据开裂因素制定更改方案,保证该款车型满足疲劳耐久仿真及可靠性道路试验性能评价目标。 关键词:疲劳耐久;开裂;损伤理论 中图分类号:U467 文献标识码:A 文章编号:1671-7988(2019)06-133-03 White body fatigue simulation analysis Yang Jingfei1, Lu Xuehua2, Liang Qinggui1 (1.ASIN Innovative Design and Manufacturing Co., Ltd., Guangxi Liuzhou 545000; 2.Shanghai Shuangjie Technology Co., LTD., Shanghai 201804) Abstract: During the reliability road test of a certain automobile model developed by an automobile enterprise, cracks were found in the sheet metal of the rear tail beam of the automobile body, which affected the durability evaluation of the automobile body. Through road signal acquisition and finite element fatigue endurance simulation software, cracking causes are analyzed, and modification schemes are formulated according to cracking factors to ensure that the vehicle meets the performance evaluation objectives of fatigue endurance simulation and reliability road test. Keywords: fatigue; cracking; Damage theory CLC NO.: U467 Document Code: A Article ID: 1671-7988(2019)06-133-03 引言 在汽车设计中,白车身强度、疲劳寿命都是评价结构可靠性及耐久性的重要标准,白车身静态强度仿真计算在开发前期能较快将结构高应力风险区域进行暴露,但在汽车开发过程中往往存在准静态强度无法直接预测的开裂现象,此时使用疲劳耐久仿真手段进行前期预测及评估更为必要,车身结构80%以上的失效是疲劳引起的,为此对白车身结构提出疲劳强度设计与分析十分重要[1]。 传统的汽车疲劳耐久性评价一般是通过可靠性试验进行,随着技术的发展,基于疲劳耐久仿真软件寿命预测及道路试验验证的方法受到广大汽车企业的认可[2]。本次案例将结合相关的疲劳理论,并根据车型出现的实际问题对整车进行建模、疲劳仿真计算、计算结果合理性评估,最后根据问题原因制定相关的补救措施,实现结构优化。 1 疲劳累计损伤理论 Miner法则是较早提出的对机械结构进行疲劳耐久性能评价的方法。在汽车开发过程中,疲劳耐久寿命计算是较为重要的性能仿真验证阶段。为了得到更为准确的疲劳寿命计算值,在疲劳寿命仿真计算前需要对载荷进行特定的处理,目前较多情况下,对于疲劳载荷的处理方法都是在较早提出的Miner法则线性损伤积累上进行,根据该损伤法则的本质思路,我们可以得到以下的情形:零件在外界作用力循环作 作者简介:杨劲飞(1988.7-),男,就职于广西艾盛创制科技有限公 司工程分析部,从事车身结构强度及疲劳耐久仿真分析工作。 133

相关主题
文本预览
相关文档 最新文档