当前位置:文档之家› 合金的相结构

合金的相结构

合金的相结构
合金的相结构

教学课题合金的相结构

教学课时 2

教学目的让学生了解合金相的概念

掌握合金相的分类

教学难点合金相的分类

教学重点合金相的分类

教学方法讲解法

教具准备教材

教学过程

§2.1 固溶体

固溶体:以合金某一组元为溶剂,在其晶格中溶入其他组元原子(溶质)后所形成的一种合金相,其特征是仍保持溶剂晶格类型,结点上或间隙中含有其他组元原子。

主要讨论溶剂为纯金属的固溶体。

一、固溶体的分类

根据溶质原子在溶剂晶格中所占据

的位置:置换固溶体和间隙固溶体;

根据溶质原子在溶剂中的固溶能力

:有限固溶体和无限固溶体。固溶度(溶解度):在一定温度和压力下,溶质在固溶体中的浓度有一定限度,该浓度极限称为固溶度。

根据溶质原子在固溶体中的分布是否有规律:无序固溶体和有序固溶体。

二、置换固溶体

影响置换固溶体固溶度的主要因素

1.晶体结构因素

晶体结构相同是组元间形成无限固

溶体的必要条件。

2.原子尺寸因素

指溶剂、溶质原子半径之差与溶剂

原子半径之比,即△r = ∣r A-r B∣/ r A , A-溶剂,B-溶质,△r越小,即组元间原子半径越接近,固溶度越大。△r<0.14-0.15时,固溶度较大,或形成无限固溶体。3.电负性因素

电负性:原子接受电子形成负离子

的能力,即元素得失电子的能力。易得电子,电负性大。在周期表中,同一周期元素的电负性从左到右递增;同一族元素的电负性从下到上递增。两元素电负性越相近,固溶度越大。两元素电负性相差大,化学亲和力越强,易形成化合物。4.电子浓度因素

电子浓度:各组元价电子总数e与原子总数a之比,

即C电子= e/a=[V A(100-X)+V B X]/100

V A-溶剂原子价; 100-X-溶剂原子百分数;

V A(100-X)-溶剂价电子数;

V B-溶质原子价; X-溶质原子百分数; V B X-溶质价电子数.

电子浓度对固溶度的影响: 溶剂为一价FCC金属,不同溶质元素的最大固溶度所对应的极限电子浓度均为1.36左右; 溶剂为一价BCC金属,其极限电子浓度约为1.48. 所以,溶质的原子价越高,其固溶度越低. 举例

总之,组元元素的晶格类型相同,原子半径相差不大,在周期表中的位置邻近时,固溶度较大,甚至形成无限固溶体。

三、间隙固溶体

1.溶质、溶剂元素

金属元素,如H、O、N、C、B等。

溶剂元素:多为过渡族金属元素,如W、Mo、Cr、Fe、Ti、Zr、V等。2.均为有限固溶体

四、固溶体的结构和性能特点

1.固溶体的微观不均匀性

在热力学平衡状态下,固溶体在宏观上溶质是均匀分布的,但微观上是不均匀的,存在无序分布、偏聚分布、短程有序分布和长程有序分布等。

2.固溶体的点阵畸变

置换固溶体:溶质半径大时,膨胀,点阵常数增大,为正畸变;溶质半径小,收缩,点阵常数减小,为负畸变。

间隙固溶体:溶质半径大于间隙半径,点阵常数随溶质原子的溶入而增大。

3.固溶体的性能特点

1)固溶强化

固溶强化:固溶体的强度总是高于纯组元的现象,即随着溶质原子的溶入及浓度的增加,固溶体的强度和硬度增加。

原因:溶质原子与位错间弹性交互作用,使位错的运动阻力增加,塑性变形更加困难。

固溶强化是一种重要的强化手段。

2)固溶体较之纯金属和化合物具有良好的综合机械性能

3)物理、化学性能

电阻升高,耐蚀性降低

4. 中间相

合金组元间相互作用,除形成固溶体外,当超过固溶体的固溶极限时,可形成晶格结构和特性完全不同于任一组元的新相,即金属化合物。由于金属化合物在二元相图中总是位于两组元或端际固溶体区的中间部位,又称中间相。

中间相的主要特点:

1)新的晶型:不同于各组元的晶型,各组元原子占一定位置,有序排列。

2)有一定或大致一定的原子比值,可用化学式表示其组成;成分可在一定范围变化。

3)以金属键为主,并有离子键、共价键和分子键,化学式通常不符合原子价规律,如Fe3C.

4)性能不同于各组元,一般硬而脆,耐磨性好。

补充设计

一正常价化合物

指符合一般化合物原子价规律的金属化合物。通常由周期表中相距较远,电负性相差较大的金属元素+非金属或类金属组成,如Mg2Sn、ZnS、SiC等。

三种类型:AB、A2B(或AB2)和A3B2。

固溶体

中间相

固溶体的微观不均匀性结构fcc、bcc及hcp为基的超结构数

二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

金属与合金的晶体结构

第二章金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1、晶体与非晶体 晶体——原子规则排列的集合体 非晶体——原子无规则堆积的集合体 晶体特征:固定的熔点,各向异性 2、晶格与晶胞 晶格:把晶体中原子看成几何点,用假象的直线连接后得到的三维格架晶胞:晶格中能全面反映原子排列规律的最小几何单元 3、晶面与晶向晶格常数:晶胞的棱边长度 晶面:晶格中各方位的原子面 晶向:任意两个原子连线所指的方向 第二节纯金属的实际晶体结构 α-Fe [100] E=135000N/mm2 [111] E=290000 N/mm2 实际测定 E=210000 N/mm2 一、多晶体结构 单晶体:各部分位向完全一致的晶体(各向异性)多晶体:许多位向不同的单晶体的聚合体(各向同性)晶粒:多晶体中外形不规则的小晶体晶界:晶粒之间的界面 二、晶体缺陷 1、点缺陷——空位和间隙原子 点缺陷→导致晶格畸变→强度↑,硬度↑ 空位和间隙原子都处于运动和变化之中,是原子扩散主 要方式之一。温度↑,空位↑ 2、线缺陷——位错 位错——整排原子有规律错排位错密度ρ=L / V (cm-2)

增加或减小,可以提高强度 3、面缺陷——晶界、亚晶界晶界处:晶格畸变→强度高 原子能量高→熔点低,易腐蚀,原子扩散快 晶粒细→晶界面积大→强度高 亚晶界:晶粒内小位向差(1-2°)的晶块(亚晶粒亚结构)边界 第三节合金的晶体结构合金的基本概念 合金:由两种或两种以上金属,或金属与非金属组成,具有金属性质的物质。 组元:组成合金的基本物质。 相:结构相同,成分相近,与其它部分有界面分开的部分 单相合金:固态下由一个固相组成的合金 多相合金:固态下由两个以上固相组成的合金 组织:相的聚合体。 ( 单相组织,多相组织,) 二、合金的相结构 合金相结构——固溶体和金属化合物。 1、固溶体 固溶体:一种元素的原子溶入另一种元素中形成的合金相。溶剂——保持原晶体结构的元素溶质——失去原晶体结构的元素 有限固溶体:溶解度有一定限度——有限互溶 无限固溶体:溶解度无一定限度——无限互溶(晶体结构相同原子直径相近)固溶体分类: 置换固溶体:溶质原子占据溶剂晶格的某些结点 间隙固溶体:溶质原子处于溶剂晶格的间隙中 固溶强化——溶质溶入固溶体,导致晶格畸变,引起强度和硬度升高 (仍保持良好的塑性和韧性) 2、金属化合物 特征: ?有金属性质 ?晶体结构不同于任何组元 ?成分可用分子式表示Fe3C 性能:硬,脆,熔点高 弥散强化(第二相强化): 当金属化合物以细小颗粒均布于固溶体上, 可使合金的强度↑↑,硬度↑↑,耐磨性↑↑ 调整合金性能的途径: ?改善固溶体溶解度 ?改变化合物形状、数量、大小、分布

最新第三章 二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

合金的相结构

教学课题合金的相结构 教学课时 2 教学目的让学生了解合金相的概念 掌握合金相的分类 教学难点合金相的分类 教学重点合金相的分类 教学方法讲解法 教具准备教材 教学过程

§2.1 固溶体 固溶体:以合金某一组元为溶剂,在其晶格中溶入其他组元原子(溶质)后所形成的一种合金相,其特征是仍保持溶剂晶格类型,结点上或间隙中含有其他组元原子。 主要讨论溶剂为纯金属的固溶体。 一、固溶体的分类 根据溶质原子在溶剂晶格中所占据 的位置:置换固溶体和间隙固溶体; 根据溶质原子在溶剂中的固溶能力 :有限固溶体和无限固溶体。固溶度(溶解度):在一定温度和压力下,溶质在固溶体中的浓度有一定限度,该浓度极限称为固溶度。 根据溶质原子在固溶体中的分布是否有规律:无序固溶体和有序固溶体。 二、置换固溶体 影响置换固溶体固溶度的主要因素 1.晶体结构因素 晶体结构相同是组元间形成无限固 溶体的必要条件。 2.原子尺寸因素 指溶剂、溶质原子半径之差与溶剂 原子半径之比,即△r = ∣r A-r B∣/ r A , A-溶剂,B-溶质,△r越小,即组元间原子半径越接近,固溶度越大。△r<0.14-0.15时,固溶度较大,或形成无限固溶体。3.电负性因素 电负性:原子接受电子形成负离子 的能力,即元素得失电子的能力。易得电子,电负性大。在周期表中,同一周期元素的电负性从左到右递增;同一族元素的电负性从下到上递增。两元素电负性越相近,固溶度越大。两元素电负性相差大,化学亲和力越强,易形成化合物。4.电子浓度因素 电子浓度:各组元价电子总数e与原子总数a之比, 即C电子= e/a=[V A(100-X)+V B X]/100 V A-溶剂原子价; 100-X-溶剂原子百分数; V A(100-X)-溶剂价电子数; V B-溶质原子价; X-溶质原子百分数; V B X-溶质价电子数. 电子浓度对固溶度的影响: 溶剂为一价FCC金属,不同溶质元素的最大固溶度所对应的极限电子浓度均为1.36左右; 溶剂为一价BCC金属,其极限电子浓度约为1.48. 所以,溶质的原子价越高,其固溶度越低. 举例 总之,组元元素的晶格类型相同,原子半径相差不大,在周期表中的位置邻近时,固溶度较大,甚至形成无限固溶体。 三、间隙固溶体 1.溶质、溶剂元素

合金的晶体结构与结晶过程

第八节合金的晶体结构与结晶过程 一、基本概念 ●组成合金最基本的、独立的物质称为组元。 ●由两种或两种以上的组元按不同比例配制而成的一系列不同化学成分的所有合金,称为合金系。 ●相是指在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开的部分。 ●组织是指用金相观察方法,在金属及其合金内部看到的涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。 二、合金的晶体结构 根据合金中各组元之间的相互作用,合金中的晶体结构可分为固溶体、金属化合物及机械混合物三种类型。 (一)固溶体 ●合金在固态下一种组元的晶格内溶解了另一种原子而形成的晶体相,称为固溶体。 根据溶质原子在溶剂晶格中所占位置的不同,可将固溶体分为置换固溶体和间隙固溶体。 1.置换固溶体 ●溶质原子代替一部分溶剂原子,占据溶剂晶格的部分结点位置时,所形成的晶体相,称为置换固溶体。 按溶质溶解度的不同,置换固溶体又可分为有限固溶体和无限固溶体。 a) 置换固溶体 b) 间隙固溶体 图1-32 固溶体的类型 2.间隙固溶体 ●溶质原子在溶剂晶格中不占据溶剂晶格的结点位置,而是嵌入溶剂晶格的各结点之间的间隙内时,所形成的晶体相,称为间隙固溶体。 无论是置换固溶体,还是间隙固溶体,异类原子的插入都将使固溶体晶格发生畸变,增加位错运动的阻力,使固溶体的强度、硬度提高。这种通过溶入溶质原子形成固溶体,使合

金强度、硬度升高的现象称为固溶强化。固溶强化是强化金属材料的重要途径之一。 a)间隙固溶体 b)置换固溶体(大溶质原子) c)固溶体(小溶质原子) 图1-33 形成固溶体时产生的晶格畸变 (二)金属化合物 ●金属化合物是指合金中各组元之间发生相互作用而形成的具有金属特性的一种新相。 金属化合物具有与其构成组元晶格截然不同的特殊晶格,熔点高,硬而脆。 (三)机械混合物 ●由两相或两相以上组成的多相组织,称为机械混合物。 在机械混合物中各组成相仍保持着它原有晶格的类型和性能,而整个机械混合物的性能则介于各组成相的性能之间,并与各组成相的性能以及相的数量、形状、大小和分布状况等密切相关。 三、合金结晶过程 合金的结晶过程与纯金属一样,也是晶核形成和晶核长大两个过程。同时结晶时也需要一定的过冷度,结晶后形成由多晶体。合金的结晶过程中具有如下特点: (1)纯金属的结晶是在恒温下进行,只有一个结晶温度。而绝大多数合金是在一个温度范围内进行结晶的,一般结晶的开始温度与终止温度是不相同,一般有两个结晶温度。 (2)合金在结晶过程中,在局部范围内相的化学成分(即浓度)有差异,当结晶终止后,整个晶体的平均化学成分与原合金的化学成分相同。 (3)合金结晶后一般有三种情况:第一种情况是形成单相固溶体;第二种情况是形成单相金属化合物或同时结晶出两相机械混合物(如共晶体);第三种情况是结晶开始时形成单相固溶体,剩余液体又同时结晶出两相机械混合物(如共晶体)。 四、合金结晶冷却曲线 合金结晶过程比纯金属复杂得多,但其结晶过程仍可用结晶冷却曲线来描述。一般合金的结晶冷却曲线有以下三种形式:

第三章 二元合金的相结构与结晶 - 答案

第三章二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指组成合金最基本的、独立的物质。 3.固溶体的定义是在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成置换固溶体。C 、N 则形成间隙固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要差些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是由一定成分的恶液相同时结晶出成分一定的两个固相,其反应式为L →a+β 8.匀晶反应的特征是,其反应式为 9.共析反应的特征是,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为有限固溶体和无限固溶体 11.合金的相结构有固溶体和金属化合物两种,前者具有较高的塑性变形性能,适合于做基体相;后者有较高的高硬度性能,适合于做增强相 12.看图4—1,请写出反应式和相区: ABC 包晶反应B A C L γα?+;DEF 共晶反应F D C L βγ+?;GHI 共析反应I G H βαγ+?; ①L +α;②γα+;③βα+;④βγ+;⑤L +γ;⑥β+L ; 13.相的定义是,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型相同,而间隙相的晶体结构与溶剂组元晶体结构不同。 15.根据图4—2填出: 水平线反应式E C D βαγ+?;有限固溶体βα、、无限固溶体γ。 液相线,固相线,固溶线CF 、EG

16.接近共晶成分的合金,其铸造性能较好;但要进行压力加工的合金常选用匀晶成分的合金。 17.共晶组织的一般形态是片状。 (二)判断题 1.共晶反应和共析反应的反应相和产物都是相同的。( N) 2.铸造合金常选用共晶或接近共晶成分的合金,要进行塑性变形的合金常选用具有单相固溶体成分的合金。( Y) 3.合金的强度与硬度不仅取决于相图类型,还与组织的细密程度有较密切的关系。( Y) 4.置换固溶体可能形成无限固溶体,间隙固溶体只可能是有限固溶体。( Y) 5.合金中的固溶体一般说塑性较好,而金属化合物的硬度较高。( Y ) 6.共晶反应和共析反应都是在一定浓度和温度下进行的。( Y) 7.共晶点成分的合金冷却到室温下为单相组织。( N) 8.初生晶和次生晶的晶体结构是相同的。( Y ) 9.根据相图,我们不仅能够了解各种合金成分的合金在不同温度下所处的状态及相的相对量,而且还能知道相的大小及其相互配置的情况。( Y ) 10.亚共晶合金的共晶转变温度与共晶合金的共晶转变温度相同。( Y ) 11.过共晶合金发生共晶转变的液相成分与共晶合金成分是一致的。( Y) (三)选择题 1.固溶体的晶体结构是A A.溶剂的晶型B.溶质的晶型 C 复杂晶型D.其他晶型 2 金属化合物的特点是C A.高塑性B.高韧性 C 高硬度D.高强度 3.当匀晶合金在较快的冷却条件下结晶时将产生D A.匀晶偏析 B 比重偏析C.枝晶偏析D.区域偏析 4.当二元合金进行共晶反应时,其相组成是C A.由单相组成 B 两相共存 C 三相共存D.四相组成 5.当共晶成分的合金在刚完成共晶反应后的组织组成物为C A. α+βB.(α+L) C.(α+β) D.L+α+β 6.具有匀晶型相图的单相固溶体合金B A.铸造性能好B.锻压性能好 C 热处理性能好D.切削性能好 7.二元合金中,共晶成分的合金A A.铸造性能好 B 锻造性能好 C 焊接性能好D.热处理性能好 8.共析反应是指B A.液相→固相Ⅰ+固相Ⅱ B 固相→固相Ⅰ+固相Ⅱ C.从一个固相内析出另一个固相 D 从一个液相中析出另一个固相 9.共晶反应是指A

第二章 金属与合金的晶体结构与结晶

第二章 金属与合金的晶体结构与结晶 第一节 金属的晶体结构 自然界的固态物质,根据原子在内部的排列特征可分为晶体与非晶体两大类。晶体与非晶体的区别表现在许多方面。晶体物质的基本质点(原子等)在空间排列是有一定规律的,故有规则的外形,有固定的熔点。此外,晶体物质在不同方向上具有不同的性质,表现出各向异性的特征。在一般情况下的固态金属就是晶体。 一、晶体结构的基础知识 (1)晶格与晶胞 为了形象描述晶体内部原子排列的规律,将原子抽象为几何点,并用一些假想连线将几何点连接起来,这样构成的空间格子称为晶格(图2-1) 晶体中原子排列具有周期性变化的特点,通常从晶格中选取一个能够完整反映晶格特征的最小几何单元称为晶胞(图2-1),它具有很高对称性。 (2)晶胞表示方法 不同元素结构不同,晶胞的大小和形状也有差异。结晶学中规定,晶胞大小以其各棱边尺寸a 、b 、c 表示, 称为晶格常数。晶胞各棱边之间的夹角分别以α、β、γ表示。当棱边a b c ==,棱边夹角90αβγ===?时,这种晶胞称为简单立方晶胞。 (3)致密度

金属晶胞中原子本身所占有的体积百分数,它用来表示原子在晶格中排列的紧密程度。 二、三种典型的金属晶格 1、体心立方晶格晶胞示意图见图2-2a。它的晶胞是一个立方体,立方体的8个顶角和晶胞各有一个原子,其单位晶胞原子数为2个,其致密度为0.68。属于该晶格类型的常见金属有Cr、W、Mo、V、α-Fe等。 2、面心立方晶格晶胞示 意图见图2-2b。它的晶胞也是 一个立方体,立方体的8个顶 角和立方体的6个面中心各有 一个原子,其单位晶胞原子数 为4个,其致密度为0.74(原 子排列较紧密)。属于该晶格类 型的常见金属有Al、Cu、Pb、 Au、γ-Fe等。 3、密排六方晶格它的晶 胞是一个正六方柱体,原子排 列在柱体的每个顶角和上、下 底面的中心,另外三个原子排 列在柱体内,晶胞示意图见图 2-2c。其单位晶胞原子数为6个,致密度也是0.74。属于该晶格类型常见金属有Mg、Zn、Be、Cd、α-Ti等。 三、金属实际的晶体结构 前面讨论的金属结构是理想的结构,即原子排列得非常整齐,晶格位向(原子列的方位和方向)完全一致,且无任何缺陷存在,称为单晶体。目前,只有采用特殊方法才能获得单晶体。 1、金属的多晶体结构实际使用的金属大都是多晶体结构,即它是由许多不同位向的小晶体组成,每个小晶体内部晶格位向基本上是一致的,而各小晶体

什么是合金及合金的结构

什么是合金及合金的结构? 合金是一种金属元素和一种或几种其它元素(金属或者非金属均可)熔合后而组成的具有进速特性的物质。组成合金最基本的、能独立存在的物质称为组元,简称元。绝大多数情况下,组元即是构成合金的元素。但也有将化合物作为组元的,其条件是化合物在所研究的范围内,既不分解也不发生任何化学反应。根据组元的数量,可分为二元合金、三元合金或多元合金、如简单黄铜是由铜和锌两种元素组成的二元合金;硬铝是由铝、铜、镁三种元素组成的三元合金。 ◆铜合金分类 铜合金分为黄铜、青铜和白铜。白铜是铜镍合金,主要用来制造精密机械、精密仪表中的耐蚀零件及电阻器、热电偶等。 机械制作中,主要使用的是黄铜和青铜。 ●铸造黄铜 铜和锌著称的合金统称为黄铜。其中铜锌二元合金称普通黄铜。除锌外再加入其它元素所组成的多元黄铜称为特殊黄铜。 铸造黄铜具有较高的力学性能,铸造性能较好,且价格比青铜低。常用于一般用途的轴承、衬套、齿轮等耐磨件和阀门等耐蚀件。 ●铸造青铜 可分为普通青铜(锡青铜)和特殊青铜(铝青铜、铅青铜、硅青铜、铍青铜等)两大类。 ◆铜合金铸造工艺 各种成分的铜合金的结晶特征不同,铸造性能不同,铸造工艺特点也不同。 1、锡青铜:结晶特征是结晶温度范围大,凝固区域宽。铸造性能方面流动性差,易产生缩松,不易氧化。工艺特点是壁厚件采取定向凝固(顺序凝固),复杂薄壁件、一般壁厚件采取同时凝固。 2、铝青铜和铝黄铜:结晶特征是结晶温度范围小,为逐层凝固特征。铸造性能方面流动性较好,易形成集中缩孔,极易氧化。工艺特点是铝青铜浇注系统为底注式,铝黄铜浇注系统为敞开式。 3、硅黄铜:结晶特征是介于锡青铜和铝青铜之间。铸造性能最好(在特殊黄铜中)。工艺特点是顺序凝固工艺,中注式浇注系统,暗冒口尺寸较小。 ◆铝合金铸件分类 铸造铝合金按化学成分可分为铝硅合金、铝铜合金、铝镁合金和铝锌合金等。 ●铝合金的铸造工艺 铝合金的铸造性能和化学成分密切相关,其中Al-Si合金处于共晶成分附近,铸造性能最好,和灰铸铁相似。Al-Cu合金远离共晶成分,凝固温度范围大,铸造性能最差。在实际生产中,铝铸件都有冒口补缩,Al-Si类合金的凝固温度范围小,冒口补缩效率高,易获得组织致密的铸件。其它类铸铝合金的凝固温度范围大,冒口补缩效率低,铸件致密性差。 铝合金极易吸气和氧化,因此浇注系统必须保证铝液较快而平稳地流入,避免搅动。 各种铸造方法都适用于铝合金铸件。当生产量较少时,可用砂型铸造,应选用细砂来造型;大量生产的重要铸件,则采用特种铸造。金属型铸造效率高,铸件质量好。低压铸造适用于要求致密性高的耐水压铸件。压力铸造可用于薄壁复杂小件。 ●铸造铝合金的熔炼特点 铝合金在液态下极易氧化,其产物为Al2O3,熔点高达2050℃,密度稍大于铝,呈固态夹杂物悬浮在铝液中,很难去除,既恶化铸造性能,又降低力学性能,使铸件致密性降低。铝液还极易吸收氢气,凝固时析出,形成气孔或针孔等缺陷。 1、精炼方法为了减缓铝液的氧化和吸气,铝合金应在熔剂层覆盖下熔炼。可向坩锅内加入KCl、NaCl等作为熔剂,以便将铝液与炉气隔离。为驱除铝液中已吸入地氢气,防止针孔的产生,在铝液出炉之前应进行驱氢精炼。方法有多种,较为简便的是用钟罩向铝液中压入氯化锌(ZnCl2)或六氯乙烷(C2Cl6)等氯盐或氯化物,于是发生如下反应:

合金相结构

.3.4合金相结构 纯金属的强度较低,所以工业广泛应用的是合金。合金是两种或两种以上金属元素,或金属元素与非金属元素,经熔炼、烧结或其他方法组合而成,并具有金属特性的物质,如黄铜是铜锌合金,钢、铸铁是铁碳合金。 组成合金最基本的独立物质叫组元,组元间由于物理的和化学的相互作用,可形成各种“相”。“相”是合金中具有同一聚集状态,成分和性能均一,并以界面互相分开的组成部分。由一种相组成的合金叫单相台金,如含锌30%Wc的Cu—Zn台金是单相合金。而含锌40%Wc时则是两相合金,除生成了固溶体外,还形成了金属间化合物。 1.固溶体 凡溶质原子完全溶于固态溶剂中,并能保持溶剂元素的晶格类型所形成的合金相称为固溶体。固溶体的成分可在一定范围内连续变化,随异类原子的溶入,将引起溶剂晶格常数的改变及晶格畸变,致使合金性能发生变化。通常把形成固溶体使强度,硬度升高的现象叫固溶强化。 根据溶质原子在溶剂中是占结点位置,还是占间隙位置,可将其分为置换固溶体与间隙固溶体;若溶质与溶剂以任何比例都能互溶,固溶度达100%,则称为无限固溶体,否则为有限固溶体;若溶质原子有规则地占据溶剂结构中的固定位置,溶质与溶剂原子数之比为一定值时,所形成的固溶体称为有序固溶体。 (1)置换固溶体 (a)组元的晶体结构类型 溶质与溶剂晶格结构相同则固溶度较大,反之较小。 (b)原子尺寸因素 溶剂原子半径rA与溶质原子半径rB的相对差(rA—rB)/rA不超过14%。15%有利于大量固溶,反之固溶度非常有限。 (c)电负性因素 两元素的电负性相差越大,化学亲和力越强,所生成的化合物也越稳定。 (d)电子浓度因素 电子浓度定义为合金中价电子数目与原子数目的比值。 (2)间隙固溶体 一些原子半径小于0.1nm的非金属元素如H,O,N,C,B等受原子尺寸因素的影响,不能与过渡族金属元素形成置换固溶体,却可处于

7 第七章合金与相图

第七章二元合金的相结构与结晶 (一)填空题 1 合金的定义是 2.合金中的组元是指。 3.固溶体的定义是 4.Cr、V在γ-Fe中将形成固溶体。C、N则形成固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的组元。7.共晶反应的特征是,其反应式为 8.匀晶反应的特征是,其反应式为 9.共析反应的特征是,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为,按原子溶入量可以分为和 11.合金的相结构有和两种,前者具有较高的性能,适合于 做相;后者有较高的性能,适合于做相 12.看图4—1,请写出反应式和相区: ABC ;DEF ;GHI ; ①;②;③;④;⑤;⑥; 13.相的定义是,组织的定义是 14.间隙固溶体的晶体结构与相同,而间隙相的晶体结构与不同。15.根据图4—2填出: 水平线反应式;有限固溶体、无限固溶体。 液相线,固相线,固溶线、 16.接近共晶成分的合金,其性能较好;但要进行压力加工的合金常选 用的合金。 17.共晶组织的一般形态是。 18.固溶体合金,在铸造条件下,容易产生_______ 偏析,用__________ 方法处理可以消除。 19.AL-CuAL 2 共晶属于_ _ 型共晶,AL-Si共晶属于 __型共晶, Pb-Sn共晶属于_ _型共晶。 20.固溶体合金凝固时有效分配系数k e 的定义 是_ _。当凝固速率无限缓慢时,k e 趋于_ _;当凝固速率很大时,则 k e 趋于 __ 。 21.K 0<1的固溶体合金非平衡凝固的过程中,K 越小,成分偏析越____ , 提纯效 果越_____;而K 0>1的固溶体合金非平衡凝固的过程中,K 越大,成分偏析越____ , 提纯效果越_____。 22.固溶体合金_____ 凝固时成分最均匀,液相完全混合时固溶体成分偏析(宏观偏析)最___ ,液相完全无混合时固溶体成分偏析最____ ,液相部分混合时固溶体成分偏析_________。

相关主题
文本预览
相关文档 最新文档