当前位置:文档之家› Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipola

Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipola

Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipola
Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipola

a r X i v :0707.2394v 1 [a s t r o -p h ] 16 J u l 2007

Accepted to ApJ:July 15,2007

Preprint typeset using L A T E X style emulateapj v.10/09/06

LASER GUIDE STAR ADAPTIVE OPTICS INTEGRAL FIELD SPECTROSCOPY

OF A TIGHTLY COLLIMATED BIPOLAR JET FROM THE HERBIG AE STAR LkH α2331

Marshall D.Perrin and James R.Graham

Astronomy Department,University of California,Berkeley,CA 94720-3411

Accepted to ApJ:July 15,2007

ABSTRACT

We have used the integral ?eld spectrograph OSIRIS and laser guide star adaptive optics at Keck Observatory to obtain high angular resolution (0.′′06),moderate spectral resolution (R ?3800)images of the bipolar jet from the Herbig Ae star LkH α233,seen in near-IR [Fe II ]emission at 1.600&1.644μm.This jet is narrow and tightly collimated,with an opening angle of only 9degrees,and has an average radial velocity of ~100km s ?1.The jet and counterjet are asymmetric,with the red-shifted jet much clumpier than its counterpart at the angular resolution of our observations.The observed properties are in general similar to jets seen around T Tauri stars,though it has a relatively large mass ?ux of 1.2±0.3×10?7M ⊙year ?1,near the high end of the observed mass ?ux range around T Tauri stars.We also spatially resolve an inclined circumstellar disk around LkH α233,which obscures the star from direct view.By comparison with numerical radiative transfer disk models,we estimate the disk midplane to be inclined i =65±5?relative to the plane of the sky.Since the star is seen only in scattered light at near-infrared wavelengths,we detect only a small fraction of its intrinsic ?ux.Because previous estimates of its stellar properties did not account for this,either LkHa 233must be located closer than the previously believed,or its true luminosity must be greater than previously supposed,consistent with its being a ~4M ⊙star near the stellar birthline.

Subject headings:ISM:jets and out?ows —ISM:Herbig-Haro objects —stars:individual (LkHa

233)—stars:pre-main-sequence

1.INTRODUCTION

Bipolar out?ows from young stars feature prominently in many of the most spectacular images of our universe (see,e.g.Bally et al.2007).But far from being merely aesthetically pleasing,these jets play crucial roles in star formation.Molecular cloud material must shed most of its angular momentum before it can accrete onto a new-born star,and jets have been identi?ed as a key mech-anism for this,removing angular momentum from disks and allowing accretion to continue (Ray et al.2007,and references therein).Recent observations have for the ?rst time provided indications of jet rotation (Bacciotti et al.2002;Co?ey et al.2004;Woitas et al.2005;Co?ey et al.2007),suggesting that out?ows may indeed carry angu-lar momentum away from their origin.Jets have also been implicated in regulating the overall e?ciency of star formation by injecting turbulence into molecular clouds (Matzner &McKee 2000).

The physical processes which drive these out?ows re-main poorly understood.Several competing theories have been proposed to explain how gas is accelerated and collimated.The leading contenders all invoke mag-netic forces to shape the out?ows,with the “X-wind”model (Shang et al.2007)positing acceleration occurs near the star at the radius of magnetospherical trunca-tion,while the “disk wind”model (Pudritz et al.2007)

Electronic address:mperrin@https://www.doczj.com/doc/5f7833153.html,

1Some of the data presented herein were obtained at the W.M.Keck Observatory,which is operated as a scienti?c partnership among the California Institute of Technology,the University of California and the National Aeronautics and Space Administra-tion.The Observatory was made possible by the generous ?nancial support of the W.M.Keck Foundation.

posits acceleration from a wide range of radii across the circumstellar disk.Alternatively,out?ows could origi-nate in spherical coronae,which are then collimated by surrounding magnetic ?elds (Sauty et al.1999).Out-?ows may even evolve through each of these processes in turn (Sauty et al.2003).Distinguishing between these theories will require detailed studies of out?ows as close to their origins as possible.At present,high angular res-olution observations of out?ows have mostly focused on older T Tauri stars approaching the main sequence (see Ray et al.2007,and references therein).Observations of more sources at younger ages are needed,especially con-sidering that out?ows are intimately related to accretion,which is greatest at the youngest ages (Hartmann et al.1998).

In addition to age,we also need to understand how out?ows vary with stellar mass.Because jets are thought to be driven by magnetic ?elds,we might suppose that their properties should di?er between fully convective T Tauri stars and more massive stars which lack a surface convection zone.Indeed,out?ows from high mass YSOs are much less collimated than jets from T Tauri stars,with opening angles of 30?60?(e.g.Hunter et al.1997;Shepherd et al.1998,2001).The Herbig Ae/Be stars (Herbig 1960;Waters &Waelkens 1998)are intermedi-ate between these two regimes,so studies of their out-?ows can potentially clarify this transition in jet prop-erties,which in turn may shed light on the underlying physics through which jets are produced.Yet relatively few out?ows from Herbig Ae/Be stars have been studied in detail,particularly at high resolution (Mundt &Ray 1994).In a very few cases,studies of parsec-scale out?ows from Herbig Ae stars have suggested that on

2Perrin and

Graham

Fig. 1.—Left:This J,H,K s composite from the OSIRIS imager shows the X-shaped envelope surrounding LkH α233.The dashed rectangle shows the ?eld zoomed in to on the right,while the solid line indicates the out?ow axis.Right:A portion of the OSIRIS IFU data cube,centered in wavelength on the [Fe II ]1.644μm line (in green)and rotated to show the jet axis vertical.This image reveals a tightly collimated bipolar out?ow from LkH α233perpendicular to an edge-on circumstellar disk.The jet is undetectable in the broadband image;only with the spectral resolution of OSIRIS can it be detected.In the right hand panel,the blue-shifted jet points down and the red-shifted jet is upward.In these data we also see scattered light from a roughly edge-on circumstellar disk and a larger bipolar nebula extending perpendicular to the disk plane.The jet has excavated a cavity in this envelope,the limb-brightened edges of which form the well-known ”X”centered on LkH α233(Aspin et al.1985;Perrin et al.2004).

large spatial scales their velocities and collimation are largely consistent with those observed in T Tauri jets (McGroarty et al.2004).

But a lack of high angular resolution studies of Her-big Ae star out?ows has thus far prevented detailed comparison with out?ows from T Tauri stars.For T Tauri stars,we now have a sophisticated understand-ing of out?ow properties on scales of a few tens of AU,derived from high angular resolution observations.Be-cause stellar out?ows are detectable primarily in emis-sion lines from shock-excited ions,line ratios can provide measurements of many physical parameters within the out?ow.When both spatially and spectrally resolved data are available,very detailed portraits of out?ows have been obtained (e.g.Bacciotti et al.1999;Beck et al.2004;Hartigan &Morse 2007).Since out?ows have char-acteristic spatial scales of a few AU (corresponding to 0.′′01?0.′′1at typical distances)and velocities of tens to hundreds of km s ?1,the necessary observations combine high angular resolution (<0.′′1)with moderate spectral resolution (R ~2000?4000).Having both spatially and spectrally resolved data is key to disentangling the out?ow structures as close to the disk as possible.In optical wavelengths,such as for the [S II ]6717,6731?A and [O I ]6300,6364?A emission lines,the neces-sary angular resolution is available only from space (e.g.,Hartigan et al.1999;Bacciotti et al.2000;Woitas et al.2002;Co?ey et al.2004;Hartigan &Morse 2007)How-ever,the arrival of integral ?eld spectroscopy with adap-tive optics on 8-10m telescopes has now opened the door to high angular resolution studies of jets from the ground.At the near-infrared wavelengths suitable for adaptive optics,several emission lines of [Fe II ]be-tween 1.2?1.6μm are ideal tracers of shocked out?ows (Graham et al.1987).Furthermore,these lines pro-

vide diagnostic potential enabling the determination of physical conditions within the jet (Pesenti et al.2003;Hartigan et al.2004),and ultimately the mass ?ux,a key parameter in any model of out?ow physics.

In this paper,we seek to investigate whether the sim-ilarity on large spatial scales between out?ows from T Tauri and Herbig Ae stars still holds true on ?ner spa-tial scales.Toward that end,we present the ?rst high angular resolution integral ?eld spectroscopy of an out-?ow from a Herbig Ae star,enabling us to investigate its collimation,kinematics,and certain physical parameters on angular scales of ~60milliarcseconds.By compari-son with the properties of jets seen from T Tauri stars,we hope to clarify the in?uence of stellar mass upon out-?ow physics.Also,from a technical perspective,we wish to demonstrate the utilty of laser guide star adaptive optics (LGS AO)for obtaining high angular resolution spectroscopy of an out?ow from a fairly faint and ob-scured source.Because many young stars which drive jets are still deeply embedded in their dusty birthplaces,only a limited number are accessible to traditional natu-ral guide star AO.The growing availability of LGS AO on large telescopes promises to enable high angular res-olution studies of a greatly increased target sample,par-ticularly at the youngest ages.

We present here observations made with Keck’s new in-tegral ?eld spectrograph OSIRIS,using laser guide star adaptive optics,which show in exquisite detail a tightly collimated jet from the Herbig Ae star LkH α233(also V375Lac,HBC 313).This star,part of the original Ae star sample identi?ed by (Herbig 1960),is one of the rel-atively few Herbig Ae/Be stars known to possess a jet.It is an A4star,with log T eff =3.93(Hern′a ndez et al.2004).Its distance has generally been considered to be 880pc (Calvet &Cohen 1978).We adopt this distance

Bipolar Jet from LkH α233

3

-0.50.00.5-1.5-1.0-0.50.00.51.01.5

Wavelength [μ

m]

F l u x i n a p e r t u r e [J y ]

Fig. 2.—One dimensional spectra extracted from the OSIRIS data cube.Left:Square apertures indicate the regions extracted to produce the spectra at right,shown in corresponding colors.The red aperture is centered on knot B.Center and Right:One dimensional spectra extracted from the data cube for those apertures,in OSIRIS’Hn 3and Kn 3?lters;the light grey shading shows the statistical uncertainty.For clarity,the emission line spectra have been scaled up ×10and ×20relative to the continuum.The out?ow is clearly detected in both the 1.600and 1.644μm lines of [Fe II ],and excess emission in Br γis seen at the location of the star.There is a hint of 2.122μm H 2emission,but it unfortunately falls at the very edge of our bandpass so its reality is uncertain.The four features marked “X”are spectral ghosts caused by a grating misalignment during OSIRIS commissioning,which has since been ?xed.The observed stellar continuum is ~1/4the 2MASS ?ux levels for LkH α233,re?ecting the fact that our aperture does not include the whole extended source,possibly stellar variability and/or uncertainties in ?ux calibration.

as well,but some authors have argued for a closer dis-tance;see §3.4below.Hernandez et al.also derived M ?=2.9M ⊙,L ?=80L ⊙,and age =2.61Myr,with A V =3.7,R V =5,but those values are likely not accu-rate,because they were derived without accounting for the fact that LkH α233is seen only in scattered light.Hence both the extinction to the star and its total lumi-nosity must be higher;see §3.2.

LkH α233sits at the center of an X-shaped bipolar nebula visible from optical to near-infrared wavelengths (Aspin et al.1985;Li et al.1994).Near infrared po-larimetry shows a dark lane passing in front of the star,indicating the presence of a roughly edge-on circumstel-lar disk (Perrin et al.2004).Corcoran &Ray (1998a)discovered that LkH α233possesses an extended bipo-lar jet and counterjet visible in the optical [S II ]6716,6731?A lines.The blueshifted jet extends toward posi-tion angle (PA)250?,perpendicular to the inferred cir-cumstellar disk and along the symmetry axis of the sur-rounding nebula.The redshifted counterjet,at 70?,was not detected within 0.′′6of the star,which Corcoran et al.interpreted as occultation by the circumstellar disk.A followup study by McGroarty et al.(2004)found that a chain of Herbig Haro objects extends almost 2pc to either side of LkH α233,located approximately along the jet axis but with considerable scatter.

In the following section,§2,we present our observa-tions and outline the data reduction process.We then describe in §3the observed properties of both the jet and the circumstellar disk,derive estimates for the mass ?ux in the jet,and re-examine the question of the distance to LkH α233.In §4we discuss the implications of these results,with special attention to comparison with the ob-served properties of jet around other Herbig Ae and T Tauri stars.Conclusions and prospects for future work are given in §5.

2.OBSERVATIONS

We observed LkH α233on 2005Oct 13UTC using the integral ?eld spectrograph OSIRIS and laser guide star adaptive optics system (Wizinowich et al.2006;van Dam et al.2006)on the W.M.Keck II telescope.The performance of the LkH α233itself served as the

tip-tilt reference for the adaptive optics system.The skies were clear and seeing was average,0.′′6at K ′,with winds from 15-20km hr ?1.

OSIRIS is a lenslet-based integral ?eld spectrograph which provides a spectral resolution of 3800from 1-2.5microns (Larkin et al.2003).We selected its 50mas pixel ?1spectrographic plate scale for our observations.While this scale does not Nyquist-sample the di?raction-limited PSF,it provides a larger ?eld of view and better signal to noise per integration time for extended emission than the ?ner plate scales.We observed LkH α233us-ing the narrow-band Hn3and Kn3?lters,covering the wavelength ranges 1.594-1.676and 2.121-2.229μm,re-spectively.Total integration time on-source was 1800s for Hn3and 900s for Kn3.Between exposures on LkH α233,we obtained equally deep sky observations at a po-sition 20”away.

We reduced the data using an early version of the OSIRIS data reduction pipeline (Krabbe et al.2004).The data were sky-subtracted,corrected for o?sets be-tween the 32detector readout channels,spatially recti-?ed to extract the individual spectra into a data cube,and corrected for cosmic rays and other blemishes.The A stars BD +95007and HD 7789served as telluric stan-dards and Point Response Function 2(PRF)references.For BD +95007,observed immediately before LkH α233,we measure a PRF FWHM of 61±5mas.We also used these stars to establish photometric zero points:we con-verted their 2MASS H and K s magnitudes into magni-tudes in the OSIRIS Hn3and Kn3?lters via synthetic

2

We follow the Spitzer convention of distinguishing be-tween the intrinsic optical Point Spread Function (PSF)and the Point Response Function (PRF),which is the PSF convolved with the detector’s pixel response.See https://www.doczj.com/doc/5f7833153.html,/postbcd/doc/PRF PSF.pdf .Because our OSIRIS data used the 50mas pixel scale,coarser than Nyquist for the Keck AO PSF at 1.6μm,the PRF is dominated by the pixel response.By taking the quadrature di?erence of the observed 61mas PRF FWHM and 50mas pixel scale,we estimate that the intrinsic optical PSF had ~35mas FWHM,approxi-mately the di?raction limit.Because of the di?culties inherent in trying to accurately measure Strehl ratios on undersampled data (Roberts et al.2004),we do not attempt to directly measure the Strehl ratio achieved in these observations.

4Perrin and

Graham

Fig.3.—Continuum-subtracted velocity channel maps for [Fe II ]1.644μm emission from the jet.Each panel shows the intensity image for a given velocity (relative to the solar system barycenter)noted at the bottom of each panel.These are contiguous spectral channels from OSIRIS,and the ?eld of view shown is 0.′′9×3.′′2.The blueshifted (bottom)jet is smooth and relatively featureless in both intensity and velocity,while the redshifted (top)jet breaks into three distinct clumps,with the central clump having a higher velocity than the other two.

photometry,and then derived from those magnitudes a zero point for ?ux-calibrating our LkH α233data.

These observations were made during the instrument’s commissioning period,and show a variety of instrumen-tal artifacts,most notably ghost images at certain wave-lengths caused by crosstalk between lenslets due to a grating misalignment.These ghost images do not oc-cur in the wavelength ranges of interest to us,and so we simply ignore them.The grating has been realigned subsequent to these observations and more recent data do not su?er from these ghosts.

OSIRIS also includes an imaging camera whose ?eld of view is o?set by 19.′′4from the spectrograph ?eld.Our sky observations were obtained such that LkH α233fell on the imager ?eld of view (FOV)while we were obtain-ing spectrograph skies,and vice versa.In this manner we obtained Z,J,H,and K band observations of LkH α233,with total exposure times of 300,360,360,and 315s,respectively.These observations were reduced via the usual steps of ?at ?elding,sky subtraction,image regis-tration,and summation.

During this observing run,we also observed the Her-big Ae/Be stars LkH α198,V376Cas,and Parsamian 21,with identical instrument con?guration and expo-sure times.No out?ows were visible around the ?rst two sources.Parsamian 21has a faint out?ow extending to the north,which we postpone discussing for a subsequent paper.

3.RESULTS 3.1.The Jet

A well-collimated bipolar emission-line jet extends sev-eral arcseconds on either side of LkH α233(Figure 1),with the blueshifted jet at a position angle of 249?,and the redshifted jet at 69?.We also see a roughly edge-on circumstellar disk and bipolar nebula extending perpen-dicular to the jet.The jet has excavated a cavity in this envelope,the limb-brightened edges of which form the well-known “X”centered on LkH α233.We detect the jet in the [Fe II ]1.600and 1.644μm lines,and possi-bly H 22.122μm (Figure 2).Faint hydrogen Br γ2.16μm emission is also detected along the course of the jet,but does not show velocity shifts and is spread over a wider spatial extent than the [FeII]emission;this ap-pears to just be Br γemission from the star,scattered by dust in the circumstellar envelope.Of the lines ob-served here,the 1.644μm line is the brightest,and we

choose to concentrate our analysis on it.In Figure 3we show continuum-subtracted images in a range of velocity channels centered on 1.644μm,and we show in Figure 4a position-velocity diagram,an summed continuum-subtracted jet image,and a plot of the FWHM.

The jet is narrow,tightly collimated,and knotty.Its FWHM increases slowly from 100AU near its base to ~200AU at the edge of our FOV,1300AU from the star,giving an opening angle of 9?(Figure 4).Three bright knots are apparent in the redshifted jet,at approx-imate distances of 0.3,0.8,and 1.3′′from the star,cor-responding to 260,700,and 1150AU in the plane of the sky.We will refer to these as knots C,B,and A,respec-tively.The blueshifted jet is noticeably less clumpy,but brightens considerably near its base,reaching its peak intensity at 0.′′1(88AU)from the star.There is an an-ticorrelation between jet width and intensity (Figure 4,right),with the bright knots having lower FWHM than the fainter inter-knot emission.This behavior has also been observed for the out?ows from RW Aur (Woitas et al.2002)and HH 23(Ray et al.1996).

We were unable to ?nd any reported measurements of LkH α233’s radial velocity in the literature 3,nor are there stellar lines suitable for measuring it in our data (since Brγis in emission).Hence we compute velocities relative to the solar system barycenter,without correct-ing for the radial motion of the star.In this reference frame,the red-and blueshifted jets have average veloc-ities of +108±3and ?89±3km s ?1,respectively.If the red and blue jets have the same speed relative to the star but opposite directions,then the stellar barycentric radial velocity appears to be ~?10km s ?1.

A signi?cant di?erence between the two directions is that the blueshifted jet has a relatively constant velocity along its length,while the redshifted jet shows variation in its velocity.Knot B,at 0.′′8,has a higher velocity than the other two clumps by about 30km s ?1(Figure 4,left).This velocity variation so close to the jet’s origin indicates that the amount of acceleration imparted to the jet must ?uctuate with time,and must do so in a way that is not symmetric between the jet and counterjet.If we assume the jet is perpendicular to the disk,which has an estimated inclination of i =65?±5(see §3.2

3

We note that Corcoran and Ray (1997,1998)state they mea-sured the systemic velocity using optical Na D lines,but do not anywhere report the actual measured velocity

Bipolar Jet from LkH α233

5

-200-1000100200Velocity (km/s)-1.0-0.50.00.51.01.5P o s i t i o n (A r c s e c )

-1.0-0.50.00.5 1.0Position (Arcsec)

50100150200250

Jet FWHM (AU)

0.00010

0.0010

0.010

J a n s k y a r c s e c -2

Fig. 4.—Left:Continuum-subtracted position velocity diagram for [Fe II ]1.644μm,using a 0.′′1wide “virtual slit”centered on the jet.Center:Continuum-subtracted image of the jet,integrated in velocity.The upper and lower portions of this image are summed over slightly di?erent wavelength ranges centered on the red-and blueshifted jets,each with bandwidth 0.6nm.The vertical dotted lines show the boundary of the “virtual slit”used to produce the left-hand ?gure.Right:Measurements of jet FWHM versus distance from the star.This plot was constructed by ?tting each row in the

continuum-subtracted image with a Gaussian.The FWHM appears narrower at the position of the knots,and broader where the emission is fainter (see §3.1).

below),then the radial velocities we observe are only 40±9percent of the total jet velocity.The implied total jet velocity,200-300km s ?1,is consistent with out?ows seen around other Herbig Ae stars (Mundt &Ray 1994).Based on this,we estimate the proper motion of the jet should be 0.′′05±0.01per year.Hence the bright knots in the jet were launched from the star within the last 10to 20years,and their motion should be apparent over short timescales.

We do not see much evidence for the low velocity com-ponent (LVC)reported by Corcoran &Ray (1998a)at about -25km/s.This may be due to the fact that the [Fe II ]1.644μm line traces higher densities than the [S II ]6716,6731?A lines,so in the NIR we are only sensitive to dense gas in the core of the jet.

The emission lines of [Fe II ]can be used to measure several important physical quantities,such as temper-ature,electron density,and extinction (Hartigan et al.2004).Most such measurements require the compari-son of ?ux ratios between di?erent lines of [Fe II ],or between [Fe II ]and other species in the optical.The limited wavelength coverage of our data restricts their diagnostic capabilities,as only the 1.644and 1.600μm lines are present in our wavelength range.The ?ux ra-tio of those two lines does provide a measure of the electron density in the shocked gas (Nisini et al.2002).We ?nd that the electron density in LkH α233’s jet is n e ~104?104.5cm ?3and decreases at larger distances from the star;see Figure 5.This decrease at larger dis-tances has also been seen in many jets from T Tauri stars (Nisini et al.2002;Podio et al.2006;Beck et al.2007;Hartigan &Morse 2007)and is believed to show the slow recombination of hydrogen after the initial shock ion-ization (Bacciotti &Eisl¨o ?el 1999).However,as [Fe II ]emission traces denser regions of the gas,our measured electron densities are not necessarily indicative of LkH α233’s out?ow as a whole.Future observations which

log n e

R a t i o 1.644/1.600

Fig. 5.—The ratio of the 1.644μm and 1.600μm lines pro-vides a diagnostic for electron density n e .The solid and dashed lines show the expected ratio as a function of n e for two di?er-ent temperatures,from Nisini et al.(2002).The measured line ratios for the three clumps in the redshifted jet of LkH α233are indicated;the length of the crosses shows the uncertainties.The electron density decreases along the jet as one moves away from the star.The values of ~104?104.5cm ?3are comparable to electron densities in several T Tauri HH jets measured from the same [Fe II ]line ratio by Nisini et al.(2002,2005).

also include the optical [S II ]doublet are needed to pro-vide complementary measures for gas at lower densities and/or di?erent distances from the shock fronts.

3.2.The Disk

In addition to showing the jet,these observations also clearly reveal the circumstellar disk around LkH α233,in the form of a bright nebula crossed by a dark lane,the characteristic signature of a roughly edge-on circum-stellar disk (Figure 1,right).The presence of this disk was originally suspected based on optical polarimetry (Aspin et al.1985).Corcoran &Ray (1998a)were un-able to trace the redshifted optical [S II ]emission any closer than 0.′′6to the star,and inferred the presence of

6

Perrin and

Graham

Observed

-0.50.00.5Arcsec

-0.50.00.5A r c s e c

Model Image

-0.50.00.5Arcsec

-0.50.00.5

SED

0.1

1.0

10.0100.01000.0

λ (μm)

10-15

10-14

10

-13

10-1210-11

ν F ν (W m -2)

Model

Input Star

Fig. 6.—Left:Observed appearance of the disk around LkH α233.This 1.6μm image is the median of the continuum from the OSIRIS Hn3datacube.Center:A 1.6μm disk model computed with MCFOST,convolved with a measured OSIRIS Hn3PRF obtained from observations of a calibration star.The model reproduces the central brightening,sharp V-shaped southern disk face,and less distinct northern disk face.Right:The observed SED for LkH α233(diamonds),plus the computed SED from our model (solid line).The SED is fairly well ?t for wavelengths <50μm;the de?cit at longer wavelengths arises because the model presented here includes only the disk and not the surrounding extended nebula,which contains cooler dust at much larger distances from the star (but still within the large IRAS 60and 100μm beams).The dashed line is the input stellar spectrum,and the solid line shows the resulting spectrum after reprocessing by the disk.See §3.2in the text for a discussion of this model and its limitations.

a disk with this radius that occulted the jet.We con?rm here that interpretation:the circumstellar disk extends from 0.′′5below to 0.′′6above the locus of peak intensity.In contrast to the [S II ]line,in [Fe II ]1.644μm light the jet can be traced all the way in to the star on both sides (Figure 3).There is at most a two-pixel-wide (0.′′1)region at the base of the red jet where the emission is somewhat fainter,possibly due to obscuration.This in-dicates that the circumstellar dust is not optically thick at these wavelengths,in contrast to the optical.The ob-served disk morphology is consistent with that seen in visible light in HST WFPC2observations (Stapelfeldt et al.,in prep).

The continuum intensity peak is well-resolved in these data,with a FWHM of 0.′′135versus 0.′′06for a PRF reference star.Therefore we do not observe the star di-rectly,but instead see it in disk-scattered light.The peak intensity is located at the apex of the southwest face of the disk,which is the brighter of the two faces.This is consistent with the southwest side of the system being inclined toward us,as indicated by the blueshifted jet.By comparison with a series of circumstellar disk mod-els computed using the MCFOST Monte Carlo radiative transfer code of Pinte et al.(2006),we determined that LkH α233’s disk is inclined approximately 65±5degrees 4.A numerical model of a circumstellar disk at this incli-nation extending from 0.6to 500AU reproduces fairly well both the observed appearance and SED of LkH α233(Figure 6).We caution that some parameters,such as the inner disk radius,are not well constrained by these data.Hence this is only one possible disk model which ?ts the current data,not necessarily a unique best-?t solution.

Previous estimates of the stellar properties of LkH α233itself were obtained assuming only regular inter-stellar extinction,typically around A V =2?4,with reddening R V between 3and 5(Hern′a ndez et al.2004;Manoj et al.2006).However,our results here con?rm

4

We measure inclinations of the disk midplane relative to the plane of the sky,such that pole-on disks have i =0?and edge-on disks have i =90?

that LkH α233is seen entirely in scattered light at opti-cal and near-IR wavelengths.The true A V is much higher than previously estimated,so the observed SED contains only a small fraction of the total luminosity.LkH α233must therefore be substantially more luminous than pre-viously thought.With the stellar temperature ?xed at T ?=8600K (appropriate for an A5star),we were able to simultaneously match both the observed disk morphol-ogy and SED by using a stellar radius of R ?=9R ⊙.This implies a total stellar luminosity L ?~400L ⊙—about an order of magnitude higher than the 20-80L ⊙previously found by Hern′a ndez et al.(2004).These revised stel-lar properties place LkH α233near the stellar birthline for intermediate mass stars (Palla &Stahler 1990;Palla 2005),and therefore LkH α233may in fact be an very young star with mass ~4M ⊙.

The key parameters of our model are as follows:T ?=8600K,R ?=9R ⊙,r out =500AU,and grain sizes from 0.03?10μm with power law index -3.5.However,we em-phasize that the model presented here is not a rigorous best ?t to the data,merely one plausible ?t,and there remain large uncertainties in both disk and stellar prop-erties.In particular,the MCFOST Monte Carlo code used does not yet account for any pu?ed up inner rim to the disk (Dullemond &Dominik 2004)nor does it in-clude the extended bipolar envelope also present around LkH α233in addition to the disk (Perrin et al.2004).The lack of the bipolar envelope component results in the present model having an unrealistically large scale height (30AU at 100AU)in order to ?t the data well.More de-tailed modeling,quantitatively ?t to observations across a wide range of wavelengths,would help clarify the situ-ation,but is beyond the scope of this paper.

3.3.Mass Flux

The observed intensity in the [Fe II ]lines allows us to estimate the mass ?ux.Currently the physical pa-rameters of the jet,such as the temperature,ionization,and Fe depletion onto grains,are not well known so our estimate will require making several assumptions;fu-ture observations will enable a more re?ned calculation.Podio et al.(2006)presented two separate methods for

Bipolar Jet from LkH α233

7

estimating mass ?ux based on [Fe II ]emission,based on either (A)the jet’s apparent size and density,or (B)the observed emission line luminosity.

The ?rst method relies on computing the mass out?ow rate across a given plane perpendicular to the jet,based on the observed jet cross section,velocity,and density:

˙M =μm H n H πr 2J v J where μis the mean molecular weight,taken to be 1.24,

m H is the mass of hydrogen,n H is the number den-sity of hydrogen,and v J is the jet velocity.In the case of LkH α233,we do not know n H ,but we do know that n e ~5×104cm ?3,from which we can estimate n H .Typical ionization fractions for HH objects are x e =0.03?0.3,as determined from both shock mod-els and observational diagnostics (Hartigan et al.1994;Bacciotti &Eisl¨o ?el 1999;Lavalley-Fouquet et al.2000),so if we assume x e =0.1,then n H =5×105cm ?https://www.doczj.com/doc/5f7833153.html,ing a rough estimate of r J =90AU,we compute ˙M

=1.0×10?6M ⊙year ?1.This method relies on the assumption that the jet can be treated as a uniformly ?lled cylinder with density measured by our diagnostic,and thus may be better considered an upper limit on the

true ˙M

.The second method relies on the observed luminosity L [F eII ]being proportional to the total number of emit-ting atoms.Unlike the ?rst method,this second ap-proach does take into account spatial variations in the jet density,but is subject to uncertainties in the absolute

?ux calibration.In this method we compute ˙M

using ˙M

=μm H (n H V )v t /l t (n H V )=L [F eII ]

hνA i f i

F e +

H

?1where V is the volume ?lled by the emitting gas,v t is the tangential velocity of the jet,l t is the tangential length of the jet volume element,F e +H are the ioniza-tion fraction and atomic abundance relative to hydro-gen,A i is the Einstein A radiative rate coe?cient,and h and νare as usual the Planck constant and frequency of the radiation.Based on our estimated disk inclina-tion i =65?±5and observed v radial =100km s ?1,we compute v t ~240±40km s ?1,and we take l t to be the tangential length of each OSIRIS pixel,44AU at 880pc.Several assumptions are needed in order to transform the observed line luminosity L [F eII ]into the density-volume product n H V :without accurate knowledge of the tem-perature we have to estimate the ionization fraction and upper state fraction for iron.We base our estimates on conditions observed in typical HH objects,for instance by Podio et al.(2006)and Hartigan &Morse (2007),who measured temperatures of 8000?25000K based on opti-cal line ratios.Taking those temperatures plus our mea-sured n e =104?104.5,we used a 16-level model of the Fe+ion (Pesenti et al.2003,similar to that described by)to estimate the fraction of ions in the upper energy level is f i =0.01±0.005.We further assumed that Fe is entirely ionized (F e

+

8Perrin and Graham

same distance as LkHα233?Aspin(1985)noted that HD213976’s optical colors imply its A V is only0.42, signi?cantly less than the typical A V=2.5per kpc. This implies both that we look toward it along a galac-tic sightline with lower than average extinction,and that HD213976must be located on the near side of the dark cloud.Hence LkHα233should be at least as far away as HD213976,if not farther.

Some authors(e.g.Bowey et al.2003)have instead de-scribed LkHα233as being a member of condensation A of the Lac OB1molecular cloud,which is only418±15 pc distant(Hern′a ndez et al.2005).While LkHα233’s position on the sky does place it on the apparent edge of Lac OB1,we consider it unlikely to actually be a mem-ber of that association,for several reasons.First,LkHα233’s proper motion is very di?erent from that of Lac OB1:(μl cos b,μb)=(?9,21)mas/yr(Ducourant et al. 2005)versus(μl cos b,μb)=(?2.3±0.1,?3.4±0.1)for Lac OB1;(de Zeeuw et al.1999).Even more problem-atic is the fact that Lac OB1is believed to be16Myr old(de Zeeuw et al.1999).Because protoplanetary disks dissipate on time scales of3-10Myr,the presence of a massive disk around LkHα233is inconsistent with its being that old.For these reasons we prefer to retain the traditional880pc distance for LkHα233.

Because the system’s inclination can be constrained based on the disk’s appearance,the proper motion of the clumps in the jet can potentially provide a direct measure of the distance.For a disk inclination i=65?±5and d=880pc,the jet proper motion should be0.′′06±0.01 year?1,while d=420pc would imply a proper motion of 0.′′12±0.03year?1.However,this will be a challenging measurement given uncertainty in the inclination,the possibility of jet precession,variations in the internal working surfaces traced by the clumps,etc.

4.DISCUSSION

The out?ow from LkHα233is in general quite sim-ilar to those seen around T Tauri stars.The velocity structure and collimation of the jet,the morphology of the knots,and the presence of asymmetries between the jet and counterjet all resemble the properties of out?ows seen around lower-mass stars.

For instance,we see that for both the red and blue directions,the higher velocity channels are more tightly collimated than the lower velocity channels.Such in-creased collimation at higher velocities has also been seen in the out?ow from DG Tau(Bacciotti et al.2002). This is in agreement with predictions of MHD models that inner streamlines should dominate the emission(e.g. Dougados et al.2004).

It is striking how similar LkHα233appears to the T Tauri star HH30,with its well-known edge-on disk and perpendicular out?ow(Burrows et al.1996).LkHα233’s disk is asymmetric in brightness between the left and right sides,as is HH30’s disk(Watson&Stapelfeldt 2004).The out?ows from both stars are knotty,and even the characteristic periods for knot production are similar, 2.5years for HH30and≈5years for LkHα233.These knots appear to be due to internal shocks within the jet, rather than the jet shocking into the ambient medium. The properties of the knots in LkHα233’s jet are indeed consistent with internal working surfaces caused by vari-ations in jet out?ow velocity.In particular,the bright-est knot is also that with the highest velocity,just what would be expected for more rapid material plowing into a slower portion of the jet.

It is curious that,at our angular resolution and S/N, only the redshifted jet appears knotty.Similar asym-metries have been seen in out?ows from about half of T Tauri stars(Hirth et al.1994).On the other hand, at least some jets are very symmetric,such as HH212 in Orion(Zinnecker et al.1998),which displays a very regular series of knots in nearly perfect pairs on opposite sides of the star.The symmetry of the HH212knots and the regularity of knot spacing in many systems(including LkHα233)suggest that the production of knots is an in-herent part of the jet launch process,possibly due to disk instabilities or recurrent stellar activity cycles.However, the commonness of asymmetric systems indicates that any inherent regularity in the process can easily be dis-rupted or masked,by collisions with surrounding ambient material,pressure gradients,or asymmetries in magnetic ?elds very near the star(Wassell et al.2006).But then what causes those asymmetries in magnetic?eld or pres-sure?The origin of these various symmetries and asym-metries remains mysterious,and poses a key challenge to theories of jet acceleration and collimation.

A particularly useful comparison object is HD163296, which has perhaps the best-studied out?ow from any Herbig Ae star(Devine et al.2000;Wassell et al.

2006).HD163296,an A2Ve star at122+17

?13

pc (van den Ancker et al.1998),launches a bipolar colli-mated jet,HH409,which also is broken into an asym-metric series of knots.The HH409jet displays knots on both the jet and counterjet,but on the two sides the knots di?er in both and distance from the star.Based on their high spatial resolution observations of HD163296, Wassell et al.concluded that the asymmetries must orig-inate near or within the jet launch region itself,rather than being the result of interactions with the ambient medium.Other authors have reached the same conclu-sion regarding the asymmetries observed in out?ows from T Tauri stars(Woitas et al.2002;Pyo et al.2006).Sim-ilarly for LkHα233,given that strong asymmetries are present in the out?ow within the innermost few hundred AU,it seems unlikely that those asymmetries could be due to the ambient medium.While there is indeed sub-stantial dust and gas near the star(in the observed disk and nebula),we know the out?ow from LkHα233has been ongoing for thousands of years based on the length of the observed out?ow(at least1.3pc;McGroarty et al.2004).Therefore any primordial material along the jet axis was long ago swept away,out of the inner few arcseconds where we observe the asymmetries and knots. Explaining the di?erence in appearance between the red-and blue-shifted jets thus requires the presence of an asymmetric geometry within the inner jet launch region. This asymmetry may take the form of pressure gradi-ents,di?erent magnetic?eld strengths or di?ering?eld geometries between the two directions.

The mass?ux in the jet of LkHα233is about two orders of magnitude greater than that of HD163296.The measured electron density n e for LkHα233is also about a factor of ten higher than that reported for HD163296, but the value for HD163296was measured using ratios of optical[S II]transitions which trace lower density parts

Bipolar Jet from LkHα2339 of the post-shock gas(Wassell et al.2006).Hence it is

hard to say how meaningful this di?erence in n e is,and

the true di?erence in accretion rate may be somewhat

less than this estimate.

Out?ow mass?uxes are believed to be proportional to

accretion rate,and accretion rates are generally larger

for younger stars(Hartmann et al.1998).Therefore,to-

gether with its higher extinction,greater infrared excess,

and larger amount of nebulosity,the high mass?ux of

LkHα233suggests that it is at a younger evolutionary

state than HD163296.This is consistent with our revised

stellar parameters which place LkHα233near the stel-

lar birthline for intermediate mass stars.The out?ow

velocity is expected to be of order the escape velocity,

v esc=

10Perrin and Graham

233:it is located partially behind the inclined circumstel-lar disk(occulting it in the visible but not in the near infrared),and thus it can be used to measure the extinc-tion through the disk.Future observations that include the complete optical and near-IR spectrum of[Fe II]and other shock tracers should enable a complete suite of di-agnostics for temperature,density,ionization,refractory element depletion,and more.Detailed modeling of LkHα233thus holds great promise for understanding out?ow mechanisms around intermediate-mass stars.

These observations were made possible by the tremen-dous e?orts of the OSIRIS instrument team and Keck Observatory sta?,whose members are too numerous to list here in full.Special thanks in particular go to James Larkin,Shelley Wright,Mike McElwain,Randy Campbell,and Al Conrad.Conor Laver assisted with the OSIRIS data reduction pipeline.Christophe Pinte and Gaspard Duchene provided excellent guidance in the use of their MCFOST Monte Carlo code.MDP thanks Deirdre Co?ey and Catherine Dougados for enlighten-ing discussions and warm hospitality during his visit to Grenoble.We thank the referee for thoughtful comments that greatly improved this paper.The authors wish to recognize that the summit of Mauna Kea has always held a very signi?cant cultural role for the indigenous Hawai-ian community.We are most fortunate to have the op-portunity to observe from this mountain.

This work has been supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics,managed by the University of Cali-fornia at Santa Cruz under cooperative agreement No. AST-9876783.MDP was partially supported by a NASA Michelson Graduate Fellowship,under contract to the Jet Propulsion Laboratory(JPL).JPL is managed for NASA by the California Institute of Technology. Facilities:Keck:II

REFERENCES

Aspin, C.,McCaughrean,M.J.,&McLean,I.S.Astron. Astrophys.,144,1985,220

Bacciotti,F.&Eisl¨o?el,J.A&A,342,1999,717

Bacciotti,F.,Eisl¨o?el,J.,&Ray,T.P.A&A,350,1999,917 Bacciotti,F.,Mundt,R.,Ray,T.P.,et al.ApJ,537,2000,L49 Bacciotti,F.,Ray,T.P.,Mundt,R.,et al.ApJ,576,2002,222 Bally,J.,Reipurth,B.,&Davis,C.J.In B.Reipurth,D.Jewitt, &K.Keil,eds.,“Protostars and Planets V,”2007,215–230 Beck,T.L.,Riera,A.,Raga,A.C.,&Aspin,C.AJ,127,2004, 408

Beck,T.L.,Riera,A.,Raga,A.C.,&Reipurth,B.AJ,133,2007, 1221

Bowey,J.E.,Adamson,A.J.,&Yates,J.A.MNRAS,340,2003, 1173

Burrows,C.J.,Stapelfeldt,K.R.,Watson,A.M.,et al.ApJ,473, 1996,437

Cabrit,S.,Edwards,S.,Strom,S.E.,&Strom,K.M.ApJ,354, 1990,687

Calvet,N.&Cohen,M.MNRAS,182,1978,687

Co?ey,D.,Bacciotti,F.,Ray,T.P.,et al.ArXiv Astrophysics e-print astro-ph/0703271,2007

Co?ey,D.,Bacciotti,F.,Woitas,J.,et al.ApJ,604,2004,758 Corcoran,M.&Ray,T.P.Astron.Astrophys.,336,1998a,535 Corcoran,M.&Ray,T.P.A&A,331,1998b,147

de Zeeuw,P.T.,Hoogerwerf,R.,de Bruijne,J.H.J.,et al.AJ, 117,1999,354

Devine,D.,Grady,C.A.,Kimble,R.A.,et al.ApJ,542,2000, L115

Dougados,C.,Cabrit,S.,Ferreira,J.,et al.Ap&SS,292,2004, 643

Ducourant,C.,Teixeira,R.,P′e ri′e,J.P.,et al.A&A,438,2005, 769

Dullemond,C.P.&Dominik,C.A&A,417,2004,159 Edwards,S.,Fischer,W.,Hillenbrand,L.,&Kwan,J.ApJ,646, 2006,319

Grady,C.A.,Woodgate,B.E.,Bowers,C.W.,et al.ApJ,630, 2005,958

Graham,J.R.,Wright,G.S.,&Longmore,A.J.ApJ,313,1987, 847

Hartigan,P.,Edwards,S.,&Ghandour,L.ApJ,452,1995,736 Hartigan,P.&Morse,J.ApJ,660,2007,426

Hartigan,P.,Morse,J.A.,&Raymond,J.ApJ,436,1994,125 Hartigan,P.,Morse,J.A.,Tumlinson,J.,et al.ApJ,512,1999, 901

Hartigan,P.,Raymond,J.,&Pierson,R.ApJ,614,2004,L69 Hartmann,L.,Calvet,N.,Gullbring,E.,&D’Alessio,P.ApJ,495, 1998,385

Herbig,G.H.Astrophys.J.Suppl.Ser.,4,1960,337

Hern′a ndez,J.,Calvet,N.,Brice?n o,C.,et al.AJ,127,2004,1682 Hern′a ndez,J.,Calvet,N.,Hartmann,L.,et al.AJ,129,2005,856Hirth,G.A.,Mundt,R.,Solf,J.,&Ray,T.P.ApJ,427,1994, L99

Hunter,T.R.,Phillips,T.G.,&Menten,K.M.ApJ,478,1997, 283

Krabbe,A.,Gasaway,T.,Song,I.,et al.In A.F.M.Moorwood &M.Iye,eds.,“Ground-based Instrumentation for Astronomy. Edited by Alan F.M.Moorwood and Iye Masanori.Proceedings of the SPIE,Volume5492,pp.1403-1410(2004).”,2004,1403–1410

Larkin,J.E.,Quirrenbach,A.,Krabbe,A.,et al.In M.Iye& A.F.M.Moorwood,eds.,“Instrument Design and Performance for Optical/Infrared Ground-based Telescopes.Edited by Iye, Masanori;Moorwood,Alan F.M.Proceedings of the SPIE, Volume4841,pp.1600-1610(2003).”,2003,1600–1610 Lavalley-Fouquet,C.,Cabrit,S.,&Dougados,C.A&A,356,2000, L41

Li,W.,Evans,N.J.,Harvey,P.M.,&Colome,C.Astrophys.J., 433,1994,199

Manoj,P.,Bhatt,H.C.,Maheswar,G.,&Muneer,S.ArXiv Astrophysics e-prints,2006

Matzner,C.D.&McKee,C.F.ApJ,545,2000,364 McGroarty,F.,Ray,T.P.,&Bally,J.A&A,415,2004,189

Mer′?n,B.,Montesinos,B.,Eiroa,C.,et al.A&A,419,2004,301 Millan-Gabet,R.,Malbet,F.,Akeson,R.,et al.In B.Reipurth, D.Jewitt,&K.Keil,eds.,“Protostars and Planets V,”2007, 539–554

Mohanty,S.,Jayawardhana,R.,&Basri,G.ApJ,626,2005,498 Mottram,J. C.,Vink,J.S.,Oudmaijer,R. D.,&Patel,M. MNRAS,377,2007,1363

Mundt,R.&Ray,T.P.In P.S.The,M.R.Perez,&E.P.J. van den Heuvel,eds.,“ASP Conf.Ser.62:The Nature and Evolutionary Status of Herbig Ae/Be Stars,”1994,237–+ Nisini,B.,Bacciotti,F.,Giannini,T.,et al.A&A,441,2005,159 Nisini,B.,Caratti o Garatti,A.,Giannini,T.,&Lorenzetti,D. A&A,393,2002,1035

Palla,F.In R.Cesaroni,M.Felli,E.Churchwell,&M.Walmsley, eds.,“IAU Symposium,”2005,196–205

Palla,F.&Stahler,S.W.ApJ,360,1990,L47

Perrin,M.D.,Duchene,G.,Kalas.,P.,&Graham,J.R.ApJ,645, 2006,1272

Perrin,M.D.,Graham,J.R.,Kalas,P.,et al.Science,303,2004, 1345

Pesenti,N.,Dougados,C.,Cabrit,S.,et al.A&A,410,2003,155 Pinte,C.,M′e nard,F.,Duch?e ne,G.,&Bastien,P.A&A,459,2006, 797

Podio,L.,Bacciotti,F.,Nisini,B.,et al.A&A,456,2006,189 Pudritz,R. E.,Ouyed,R.,Fendt, C.,&Brandenburg, A.In B.Reipurth,D.Jewitt,&K.Keil,eds.,“Protostars and Planets V,”2007,277–294

Pyo,T.-S.,Hayashi,M.,Kobayashi,N.,et al.ArXiv Astrophysics e-prints,2006

Bipolar Jet from LkHα23311

Ray,T.,Dougados, C.,Bacciotti, F.,et al.In B.Reipurth, D.Jewitt,&K.Keil,eds.,“Protostars and Planets V,”2007, 231–244

Roberts,L. C.,Jr.,Perrin,M. D.,Marchis, F.,et al.In D.Bonaccini Calia, B.L.Ellerbroek,&R.Ragazzoni,eds.,“Advancements in Adaptive Optics.Edited by Domenico B. Calia,Brent L.Ellerbroek,and Roberto Ragazzoni.Proceedings of the SPIE,Volume5490,pp.504-515(2004).”,2004,504–515 Sauty,C.,Tsinganos,K.,&Trussoni,E.A&A,348,1999,327 Sauty,C.,Tsinganos,K.,Trussoni,E.,&Meliani,Z.Ap&SS,287, 2003,25

Shang,H.,Li,Z.-Y.,&Hirano,N.In B.Reipurth,D.Jewitt,& K.Keil,eds.,“Protostars and Planets V,”2007,261–276 Shepherd,D.S.,Claussen,M.J.,&Kurtz,S.E.Science,292, 2001,1513

Shepherd,D.S.,Watson,A.M.,Sargent,A.I.,&Churchwell,E. ApJ,507,1998,861

Stine,P.C.&O’Neal,D.AJ,116,1998,890van Dam,M.A.,Bouchez,A.H.,Le Mignant,D.,et al.PASP, 118,2006,310

van den Ancker,M.E.,de Winter,D.,&Tjin A Djie,H.R.E. A&A,330,1998,145

Vink,J.S.,Drew,J. E.,Harries,T.J.,&Oudmaijer,R. D. MNRAS,337,2002,356

Wassell,E.J.,Grady,C.A.,Woodgate,B.,et al.ApJ,650,2006, 985

Waters,L.B.F.M.&Waelkens,C.ARA&A,36,1998,233 Watson,A.M.&Stapelfeldt,K.R.ApJ,602,2004,860 Wizinowich,P.L.,Le Mignant,D.,Bouchez,A.H.,et al.PASP, 118,2006,297

Woitas,J.,Bacciotti,F.,Ray,T.P.,et al.A&A,432,2005,149 Woitas,J.,Ray,T.P.,Bacciotti,F.,et al.ApJ,580,2002,336 Zinnecker,H.,McCaughrean,M.J.,&Rayner,J.T.Nature,394, 1998,862

ArcGIS格式的转换方法资料

几种注册ODBC数据源的方法 来源:未知编辑:未知2005年12月19日浏览454次 几种注册ODBC数据源的方法 国防科大丁浩 ODBC(Open Database Connectivity,开放式数据库互连)是一种应用程序接口(API) 规范。它定义了一个标准例程集,使用它们应用程序可访问数据源中的数据。应用程序通过引用API 的函数可以直接使用ODBC,或利用数据访问对象(DAO) 或远程数据对象(RDO) 来使用ODBC。但是,在实现ODBC 时,我们必须首先配置ODBC环境,进行数据源的注册,这样才能在对数据库进行编程时,对数据源进行连接、访问和操作。本文介绍几种常用的注册ODBC 数据源的方法。 手工配置 1.ODBC数据源管理器 在进行数据库开发时,为了达到配置ODBC,进行DSN定义注册的目的,微软给出了一个手工操作的解决方法。在Windows 9X操作系统的控制面板中,有一个名为“ODBC数据源(32位)”的图标,可以通过它激活专门为用户设置ODBC环境的程序(ODBC Data Source Administrator,ODBC数据源管理器)。在Windows 2000操作系统中,上述图标被放置在控制面板的“管理工具”里面。 这个用于设置ODBC环境的程序叫做桌面驱动程序,它支持数种DBMS (Database Management System,数据库管理系统)。当用户想增加一个数据源和一个所需要的驱动程序时,可以通过ODBC数据源管理器的配置对话框配置特定类型的数据库。大多数情况下,在编写对数据库操作的程序时,我们至少需要知道诸如数据库文件名、系统(本地或远程)、文件夹等信息,同时要给数据源命名。 2.定义数据源的类型

文档格式转换方法

文档格式转换方法 一、PPT转换WORD 二、PDF转换W ord 三、W ord转换PPT 四、PDF转换TXT 五、PDF转换BMP 六、PDF转换HTM 一、把PPT转WORD形式的方法 1.利用"大纲"视图打开PPT演示文稿,单击"大纲",在左侧"幻灯片/大纲”任务窗格的“大纲”选项卡里单击一下鼠标,按"Ctrl+A"组合健全选内容,然后使用"Ctrl+C"组合键或右键单击在快捷菜单中选择"复制"命令,然后粘贴到Word 里。 提示:这种方法会把原来幻灯片中的行标、各种符号原封不动的复制下来。 2.利用"发送"功能巧转换打开要转换的PPT幻灯片,单击"文件"→"发送"→"MicrosoftWord"菜单命令。然后选择"只使用大纲"单选按钮并单击"确定"按钮,等一会就发现整篇PPT文档在一个Word文档里被打开。 提示:在转换后会发现Word有很多空行。在Word里用替换功能全部删除空行可按"Ctrl+H"打开"替换"对话框,在"查找内容"里输入"^p^p",在"替换为"里输入"^p",多单击几次"全部替换"按钮即可。("^"可在英文状态下用"Shift+6"键来输入。) 3.利用"另存为"直接转换打开需要转换的幻灯片,点击"文件"→"另存为",然后在"保存类型"列表框里选择存为"rtf"格式。现在用Word打开刚刚保存的rtf文件,再进行适当的编辑即可实现转换。 4.PPTConverttoDOC软件转换PPTConverttoDOC是绿色软,解压后直接运行,

在运行之前请将Word和PPT程序都关闭。选中要转换的PPT文件,直接拖曳到"PPTConverttoDOC"程序里。单击工具软件里的"开始"按钮即可转换,转换结束后程序自动退出。 提示:如果选中"转换时加分隔标志",则会在转换好的word文档中显示当前内容在原幻灯片的哪一页。转换完成后即可自动新建一个Word文档,显示该PPT文件中的所有文字。 ps: 第四种慎用,百度上很多所谓的那个软件都是有病毒的,毒性不小,一般的杀毒软件查不出~~ PDF文档的规范性使得浏览者在阅读上方便了许多,但倘若要从里面提取些资料,实在是麻烦的可以。 二把PDF转换成W ord的方法 Adobe Acrobat 7.0 Professional 是编辑PDF的软件。 用Adobe Acrobat 7.0 Professional 打开他另存为WORD试试看。 或者用ScanSoft PDF Converte,安装完成后不须任何设置,它会自动整合到Word 中。当我们在Word中点击“打开”菜单时,在“打开”对话框的“文件类型”下拉菜单中可以看到“PDF”选项,这就意味着我们可以用Word直接打开PDF 文档了! ScanSoft PDF Converter的工作原理其实很简单,它先捕获PDF文档中的信息,分离文字、图片、表格和卷,再将它们统一成Word格式。由于Word在打开PDF 文档时,会将PDF格式转换成DOC格式,因此打开速度会较一般的文件慢。打开时会显示PDF Converter转换进度。转换完毕后可以看到,文档中的文字格式、版面设计保持了原汁原味,没有发生任何变化,表格和图片也完整地保存下来了,可以轻松进行编辑。 除了能够在Word中直接打开PDF文档外,右击PDF文档,在弹出菜单中选择

ArcGIS格式的转换方法

A r c G I S格式的转换方 法 Revised as of 23 November 2020

几种注册 ODBC数据源的方法 ?来源:未知编辑:未知 2005年12月19日浏览454次 几种注册 ODBC数据源的方法 国防科大丁浩 ODBC(Open Database Connectivity,开放式数据库互连)是一种应用程序接口 (API) 规范。它定义了一个标准例程集,使用它们应用程序可访问数据源中的数据。应用程序通过引用 API 的函数可以直接使用 ODBC,或利用数据访问对象 (DAO) 或远程数据对象 (RDO) 来使用ODBC。但是,在实现ODBC时,我们必须首先配置ODBC环境,进行数据源的注册,这样才能在对数据库进行编程时,对数据源进行连接、访问和操作。本文介绍几种常用的注册ODBC数据源的方法。 手工配置 1.ODBC数据源管理器 在进行数据库开发时,为了达到配置ODBC,进行DSN定义注册的目的,微软给出了一个手工操作的解决方法。在Windows 9X操作系统的控制面板中,有一个名为“ODBC数据源(32位)”的图标,可以通过它激活专门为用

户设置ODBC环境的程序(ODBC Data Source Administrator,ODBC数据源管理器)。在Windows 2000操作系统中,上述图标被放置在控制面板的“管理工具”里面。 这个用于设置ODBC环境的程序叫做桌面驱动程序,它支持数种DBMS (Database Management System,数据库管理系统)。当用户想增加一个数据源和一个所需要的驱动程序时,可以通过ODBC数据源管理器的配置对话框配置特定类型的数据库。大多数情况下,在编写对数据库操作的程序时,我们至少需要知道诸如数据库文件名、系统(本地或远程)、文件夹等信息,同时要给数据源命名。 2.定义数据源的类型 用户可以定义以下三种类型的数据源: 用户数据源:作为位于计算机本地的用户数据源而创建的,并且只能被创建这个数据源的用户所使用; 系统数据源:作为属于计算机或系统而不是特定用户的系统数据源而创建的,用户必须有访问权才能使用; 文件数据源:指定到文件中作为文件数据源而定义的,任何已经正确地安装了驱动程序的用户皆可以使用这种数据源。 3.数据源注册的步骤

常用绘图软件格式转换方法

怎样能把PRO/E中的2D图或者工程图用AUTOCAD打开,或是相反在pro/e2001(2001280)中可以直接将AutoCAD的*.dwg文件输入到草绘器中(新改变) AutoCAD(这里说的是2000中文版)使用的文件格式是:*.dwg、*.dxf pro/e使用的工程图文件格式是:*.drw pro/e使用的草绘器文件是:*.sec 在pro/e2001(2001280)版本中 * 将autoCAD的*.dwg(仅*.dwg文件可以)文件输入到pro/e草绘器中————能(最新改变)方法是在pro/e的草绘器中 Sketch > Data from File... >选择AutoCAD的*.dwg格式文件 * 在pro/e的草绘器中输出autoCAD文件————不能 *将pro/e的工程图文件输出成AutoCAD的*.dwg、*.dxf格式————能方法是在pro/e的工程图中 File > Save a Copy >选择相应的DXF或DWG格式将AutoCAD格式的文件输入到pro/e工程图文件中————能方法是在pro/e的工程图中 Insert > Data from File...>选择相应的*.dxf或*.dwg文件在pro/e2000i2(2001040)版本中 *将pro/e的工程图文件输出成AutoCAD的*.dwg、*.dxf格式————能方法是在pro/e的工程图中 File > Export > Model >选择相应的DXF或DWG 将AutoCAD格式的文件输入到pro/e工程图文件中————能方法是在pro/e的工程图中File > Import > Append to Model... >选择相当的*.dxf或*.dwg文件 * 将autoCAD文件输入到pro/e草绘器中————不能 * 在pro/e草绘器中输出autoCAD文件————不能

流媒体常识工具格式转换播放软件使用介绍

流媒体常识工具格式转换播放软件使用介绍流媒体常识工具格式转换播放软件使用介绍目录: 1. 流媒体常识工具格式转换播放软件使用介绍 2.常见视频格式之间如何转换 3.将MTV转成mp3 4. 将MP3转刻成CDA光盘 5.将MIDI转为WAVE 6.制作RM音乐 7.如何分割asf文件 8.视频编码/解码器问答 9.修复下载后的电影 10.分割合并MP3歌曲 11.从视频文件中提取声音 12.光盘刻录 13.巧用摄像头制作VCD 14.视频同步字幕制作 15.视频编辑常见问题 16.流媒体编辑魔术师AsF Tools 17.最简单的VCD制作 流媒体常识工具格式转换播放软件使用介绍 Q.为什么有的电影没有图像,只有声音?

在观看电影的时候,可能会遇到只有声音,没有图像的现象,这时你需要看看自己是否安装了DIVX插件(看 MPEG4的工具),没有安装一定会出现上述现象,而如果你安装了或者观看的不是MPEG4的电影,那从锌赡?是网速的问题,可能是你的网速慢或者是在线观看的人太多了,服务器过载的缘故,都会引起上述现象本站上网工具包提供DIVX插件的下载 Q.rm文件如何解决国语和粤语的双声道问题? 一些文件如rm asf有的时候国语和奥语是混合在一些的,而realplaywindows mediaplay一般都是不能分开声道的其实你可以采用如下简单的方法解决:双击任务栏上的喇叭图标,然后将Wave Output向右播到头即可解决但这并不是100%全能解决的,一些电影文件是无法解决这个问题的,只能认命了目前realfox软件也可以解决双声道问题,但它采用的方法也是和前面所说的一样,因此也不是100%能解决问题了 Q.ram文件是什么,如果才能找到真实的下载地址? ram一般都很小(几十个字节),它是一个导航文件下载后用记事本打开,然后你就会看到真实的下载地址了 Q:encoder不能设置用户权限访问 A:因为real没有在encoder设置用户访问权限!! Q:跑RealServer的服务器组播时的CPU,内存需求情况? A:RealServer中的组播是将一个现场直播流同时传递给多个客户端,而 无需为每一客户的连结发送一个单独的数据流,客户端只需连结到这个 数据流,而不是连结到RealServer服务器,从而降低带宽的使用为了 利用组播技术所带来的优越,在RealServer与Realplayer客户端之间的 所有设备必须是支持组播技术的,包括之间的路由器交换机和其他 的网络设备! 使用组播能够减少带宽的使用,用一般满足100个600k 连接的机器配置就行了! A:音轨的问题可以这样解决,下载smart ripper ,这个工具可以把DVD的光盘的vob文件和它的音轨合成一个新的 VOB文件,这样子视频和音轨就能在同一个文件里,随便你用FlaskMPEG 或者其他工具转化了 A:flash在smil语言中插入的时候用realplay播放是没有声音用realplay plus播放没有问题为什么?给real公司发过信也没有明确的回答!!! Q:*.dat转化为*.rm格式的软件?

几种格式间相互转换的方法

一、把PPT转WORD形式的方法 1.利用"大纲"视图打开PPT演示文稿,单击"大纲",在左侧"幻灯片/大纲”任务窗格的“大纲”选项卡里单击一下鼠标,按"Ctrl+A"组合健全选内容,然后使用"Ctrl+C"组合键或右键单击在快捷菜单中选择"复制"命令,然后粘贴到Word里。 提示:这种方法会把原来幻灯片中的行标、各种符号原封不动的复制下来。 2.利用"发送"功能巧转换打开要转换的PPT幻灯片,单击"文件"→"发送"→"MicrosoftWord"菜单命令。然后选择"只使用大纲"单选按钮并单击"确定"按钮,等一会就发现整篇PPT文档在一个Word文档里被打开。 提示:在转换后会发现Word有很多空行。在Word里用替换功能全部删除空行可按"Ctrl+H"打开"替换"对话框,在"查找内容"里输入"^p^p",在"替换为"里输入"^p",多单击几次"全部替换"按钮即可。("^"可在英文状态下用"Shift+6"键来输入。)3.利用"另存为"直接转换打开需要转换的幻灯片,点击"文件"→"另存为",然后在"保存类型"列表框里选择存为"rtf"格式。现在用Word打开刚刚保存的rtf文件,再进行适当的编辑即可实现转换。4.PPTConverttoDOC软件转换PPTConverttoDOC是绿色软,解压后直接运行,在运行之前请将Word和PPT程序都关闭。选中要转换的PPT文件,直接拖曳到"PPTConverttoDOC"程序里。单击工具软件里的"开始"按钮即可转换,转换结束后程序自动退出。 提示:如果选中"转换时加分隔标志",则会在转换好的word文档中显示当前内容在原幻灯片的哪一页。转换完成后即可自动新建一个Word文档,显示该PPT文件中的所有文字。ps: 第四种慎用,百度上很多所谓的那个软件都是有病毒的,毒性不小,一般的杀毒软件查不出~~ PDF文档的规范性使得浏览者在阅读上方便了许多,但倘若要从里面提取些资料,实在是麻烦的可以。 二、把PDF转换成Word的方法 Adobe Acrobat 7.0 Professional 是编辑PDF的软件。 用Adobe Acrobat 7.0 Professional 打开他另存为WORD试试看。 或者用ScanSoft PDF Converte,安装完成后不须任何设置,它会自动整合到Word中。当我们在Word中点击“打开”菜单时,在“打开”对话框的“文件类型”下拉菜单中可以看到“PDF”选项,这就意味着我们可以用Word直接打开PDF文档了! ScanSoft PDF Converter的工作原理其实很简单,它先捕获PDF文档中的信息,分离文字、图片、表格和卷,再将它们统一成Word格式。由于Word在打开PDF文档时,会将PDF 格式转换成DOC格式,因此打开速度会较一般的文件慢。打开时会显示PDF Converter转换进度。转换完毕后可以看到,文档中的文字格式、版面设计保持了原汁原味,没有发生任何变化,表格和图片也完整地保存下来了,可以轻松进行编辑。 除了能够在Word中直接打开PDF文档外,右击PDF文档,在弹出菜单中选择“Open PDF in Word”命令也可打开该文件。另外,它还会在Outlook中加入一个工具按钮,如果收到的电子邮件附件中有PDF文档,就可以直接点击该按钮将它转换成Word文件。 有时我们在网上搜索到PDF格式的文件,同样可以通过右键菜单的相关命令直接在Word 中打开它。 三、Word转换成PPT的方法 我们通常用Word来录入、编辑、打印材料,而有时需要将已经编辑、打印好的材料,做成PowerPoint演示文稿,以供演示、讲座使用。如果在PowerPoint中重新录入,既麻烦又浪

PDF格式与Word文档格式转换方法

在当今的计算机世界里,使用率最高的两种文档方式分别是Microsoft Word 的Doc格式和Adobe Acrobat的pdf格式文件。由于微软的渗透,我们现在所使用的绝大部分文稿或报告的格式都是Doc的,而Pdf格式的文件由于其在网络上传输的便利和安全性,也被广泛的使用。但两者由于所处的公司不同,出于商业目的,互相不能直接打开使用。因此,也就给我们广大的文件用户增添了很大的麻烦。 最近笔者就曾遇到了这么一个情况,我的老板搞到一份50多页的Pdf格式的文件,由于删除、编写的不方便,让我将这篇文档转换为Doc格式的文件,他以为很简单的事情,让我熬了一个通宵,才复制、粘贴完成,而且得到的文件格式与原来的Pdf格式相去甚远。所以,寻找合适的两种格式的转换方式,是一件“功在当代”的大事。 Doc文件向Pdf格式转换还是比较容易的,主要通过Adobe 公司提供的Adobe Distiller虚拟服务器实现的,在安装了Adobe Acrobat完全版后,在Windows系统的打印机任务中就会添加一个Acrobat Distiller打印机。 现在比较流行的DoctoPdf类软件如Pdfprint等的机理都是调用Adobe Distiller打印机实现的,如果想把一个Doc文件转换为Pdf文件,只要用Office Word打开该Doc文件,然后在“文件”?>“打印”中选择Acrobat Distiller打印机即可。 这样,就可以很轻松的将Doc格式的文件转换为Pdf文件。 Pdf格式文件向Doc文件转换相对比较难,因为Pdf格式与Doc格式解码格式不同,在Pdf下的回车符、换行符以及相关的图片格式无法直接转换为Doc文件,笔者之前一直使用复制文本,然后粘贴到Word中实现Pdf向Doc格式的转换。 今天突然发现了一款非常好的Pdf向Doc格式转换的工具,ScanSoft PDF Converter for Microsoft Word v1.0。它是由ScanSoft公司同微软共同组队开发了一个全新的Office 2003 插件。该插件可以帮助你通过Word直接将Pdf文档转换为Word文档,并且完全保留原来的格式和版面设计。 这个名为ScanSoft PDF Converter for Microsoft Word 的插件是首先捕获Pdf 文档中的信息,分离文字同图片,表格和卷,再将其统一到Word格式。现在你

常见视频的格式转换方法

常见视频的格式转换方法 一、常见的视频格式 1、ASF ASF 是Advanced Streaming format 的缩写,由字面(高级流格式)意思就应该看出这个格式的用处了吧。说穿了ASF 就是MICROSOFT 为了和现在的Real player 竞争而发展出来的一种可以直接在网上观看视频节目的文件压缩格式。由于它使用了MPEG4 的压缩算法,所以压缩率和图像的质量都很不错。因为ASF 是以一个可以在网上即时观赏的视频“流”格式存在的,所以它的图象质量比VCD 差一点点并不出奇,但比同是视频“流”格式的RAM 格式要好。不过如果你不考虑在网上传播,选最好的质量来压缩文件的话,其生成的视频文件比VCD (MPEG1)好是一点也不奇怪的,但这样的话,就失去了ASF 本来的发展初衷,还不如干脆用n A VI 或者DIVX 。但微软的“子弟”就是有它特有的优势,最明显的是各类软件对它的支持方面就无人能敌。 2、n A VI n A VI 是newA VI 的缩写,是一个名为ShadowRealm 的地下组织发展起来的一种新视频格式。它是由Microsoft ASF 压缩算法的修改而来的(并不是想象中的A VI),视频格式追求的无非是压缩率和图象质量,所以nA VI 为了追求这个目标,改善了原始的ASF 格式的一些不足,让nA VI 可以拥有更高的帧率(rate)。当然,这是以牺牲ASF 的视频流特性作为代价的。概括来说,nA VI 就是一种去掉视频流特性的改良型ASF 格式,再简单点说,就是非网络版本的ASF。 3、A VI A VI 是Audio Video Interleave 的缩写,这个看来也不用多解释了,这个微软由WIN3.1 时代就发表的旧视频格式已经为我们服务了好几个年头了。如果这个都不认识,你就别往下看了。这个东西的好处嘛,无非是兼容好、调用方便、图象质量好,但缺点也是人所共知的:尺寸大,就是因为这点,我们现在才可以看到由MPEG1 的诞生到现在MPEG4 的出台。 4、MPEG MPEG 是Motion Picture Experts Group 的缩写,它包括了MPEG-1, MPEG-2 和MPEG-4 (注意:没有MPEG-3,大家熟悉的MP3 只是MPEG Layeur 3)。 MPEG-1相信是大家接触得最多的了,因为它被广泛的应用在VCD 的制作和一些视频片段下载的网络应用上面,可以说99% 的VCD 都是用MPEG1 格式压缩的,(注意:VCD2.0 并不是说明VCD 是用MPEG-2 压缩的)使用MPEG-1 的压缩算法,可以把一部120 分钟长的电影(未视频文件)压缩到1.2 GB 左右大小。 MPEG-2 则是应用在DVD 的制作(压缩)方面,同时在一些HDTV(高清晰电视广播)和一些高要求视频编辑、处理上面也有相当的应用面。使用MPEG-2 的压缩算法压缩一部120 分钟长的电影(未视频文件)可以到压缩到4—8 GB 的大小(当然,其图象质量等性能方面的指标MPEG-1 是没法比的)。 MPEG-4 是一种新的压缩算法,使用这种算法的ASF 格式可以把一部120 分钟长的电影(未视频文件)压缩到300M 左右的视频流,可供在网上观看。其它的DIVX 格式也可以压缩到600M 左右,但其图象质量比ASF 要好很

文档格式转换方法

文档格式转换方法

一、把PPT转WORD形式的方法 1.利用"大纲"视图打开PPT演示文稿,单击"大纲",在左侧"幻灯片/大纲”任务窗格的“大纲”选项卡里单击一下鼠标,按"Ctrl+A"组合健全选内容,然后使用"Ctrl+C"组合键或右键单击在快捷菜单中选择"复制"命令,然后粘贴到Word里。 提示:这种方法会把原来幻灯片中的行标、各种符号原封不动的复制下来。2.利用"发送"功能巧转换打开要转换的PPT幻灯片,单击"文件"→"发送"→"MicrosoftWord"菜单命令。然后选择"只使用大纲"单选按钮并单击"确定"按钮,等一会就发现整篇PPT文档在一个Word文档里被打开。 提示:在转换后会发现Word有很多空行。在Word里用替换功能全部删除空行可按"Ctrl+H"打开"替换"对话框,在"查找内容"里输入"^p^p",在"替换为"里输入"^p",多单击几次"全部替换"按钮即可。("^"可在英文状态下用 "Shift+6"键来输入。)3.利用"另存为"直接转换打开需要转换的幻灯片,点击"文件"→"另存为",然后在"保存类型"列表框里选择存为"rtf"格式。现在用Word打开刚刚保存的rtf文件,再进行适当的编辑即可实现转换。4.PPTConverttoDOC软件转换PPTConverttoDOC是绿色软,解压后直接运行,在运行之前请将Word和PPT程序都关闭。选中要转换的PPT文件,直接拖曳到"PPTConverttoDOC"程序里。单击工具软件里的"开始"按钮即可转换,转换结束后程序自动退出。 提示:如果选中"转换时加分隔标志",则会在转换好的word文档中显示当前内容在原幻灯片的哪一页。转换完成后即可自动新建一个Word文档,显示该PPT文件中的所有文字。 ps: 第四种慎用,百度上很多所谓的那个软件都是有病毒的,毒性不小,一般的杀毒 软件查不出~~ PDF文档的规范性使得浏览者在阅读上方便了许多,但倘若要从里面提取些资料,实在是麻烦的可以。 二、把PDF转换成Word的方法 Adobe Acrobat 7.0 Professional 是编辑PDF的软件。 用Adobe Acrobat 7.0 Professional 打开他另存为WORD试试看。 或者用ScanSoft PDF Converte,安装完成后不须任何设置,它会自动整合到Word中。当我们在Word中点击“打开”菜单时,在“打开”对话框的“文件类型”下拉菜单中可以看到“PDF”选项,这就意味着我们可以用Word直接打开PDF文档了! ScanSoft PDF Converter的工作原理其实很简单,它先捕获PDF文档中的信息,分离文字、图片、表格和卷,再将它们统一成Word格式。由于Word在打开 PDF 文档时,会将PDF格式转换成DOC格式,因此打开速度会较一般的文件慢。打开时会显示PDF Converter转换进度。转换完毕后可以看到,文档中的文字格式、版面设计保持了原汁原味,没有发生任何变化,表格和图片也完整地保存下来了,可以轻松进行编辑。 除了能够在Word中直接打开PDF文档外,右击PDF文档,在弹出菜单中选择“Open

Excel表格数据格式转换方法

在使用Excel表格对数据求和时,只能对单元格内常规格式的数据进行计算,而不能对单元格中的文本格式的数据进行计算,特点就是在单元格的左上角有一个绿色的小三角,(如图:)(上边1234是常规格式数据、6789就是文本格式数据、下边的1234是数据求和时得到的结果。) 怎样才能讲这些文本格式的数据批量转换成常规的数字格式以便进行计算呢? 问题的解决: 把文本格式的转换成常规格式不就可以了吗,当然可以了,但是在把所有填写文本格式的数据单元格选中,然后右击选项中“设置单元格格式”设成常规(如下图)后,左上角并仍有绿色小三角,怎么办,不要急,按下面的步骤去做就行。

经过试验发现经过刚才的设置后还必须在每个单元格里双击一下,再回车就可以,但是这样做比较麻烦,只适合修改少量孤立单元格格式。如果文本格式的单元格较多批量的修改一个个双击就不合适了。那怎么办呢?接着往下看。 先选中所有要修改的文本数字单元格→选择Excel 菜单中“数据”菜单→“分列”(如下图)

接着出现下面的对话框:

一直选下一步→下一步→列数据格式选“常规”即可。(如下图) 以上方法,同样如果需要把数字格式转化成文本格式数字,操作中最后一步列数据格式选“文本”就可以了。 另外,我们在使用Excel时是否发现单击文本格式的单元格的时候,单元格的左上方都有一个感叹号,(如下图)

它也可以帮助我们将文本格式的数字转换为常规格式的数字啊?怎么应用它呢?接着看吧! 1.鼠标指向那个小框时,后出现一个向下的小三角,它是一个下拉菜单。 2.单击小三角,在下拉菜单里选择“转换了数字”就可以啦。

csfB格式转换方法(图文并茂)

找到ScenicEditor是因为自己平时看课件的加速问题,有的课件老师讲课速度很慢,但是一加速,视频就没有声音,通常的解决办法是,提取csf课件的声音文件保存成mp3格式,用两个播放器,一个播放加速画面一个播放加速声音,十分不方便。而且很多播放器软件都不支持对csf课件进行加速,所以考虑把csf 课件转换成常用格式,这样既可以加速又可以放到p4里随身看。在网上找到了ScenicEditor,顺便把一些简单用法写出来。 软件简单介绍: ScenicEditor产品可以对科建全系列产品录制形成的科建流式媒体文件(CSF)进行编辑,用于制作出更实用、更完美的课件。该产品提供了分解课件、合成课件、过滤流、合成流、修改文件信息以及索引等功能,并能对文件中的每一个流进行剪辑和合成。 ScenicEditor产品不仅支持编辑由录制系统录制的静态流媒体文件,而且能够支持编辑由科建教学与会议系统录制下来动态流媒体文件,对录制下来的文件进行灵活方便地编辑,以已适应不同应用的需求。 1. 支持对任意流进行动态增加、剪辑、合成和删除。 2. 支持多文件并行合成。 3. 支持CSF 4.0动态流媒体格式的编辑。 4. 方便易用的时间线、游标定位、映射模式控制,轻松定位课件的任意位置。 5. 完全支持多显功能,灵活多样的多显示器布局能力能让您有更多的空间控制编辑内容。 6. 支持对文件自定义信息内容的编辑。 7. 支持XML格式索引文件的编辑。 系统需求: 操作系统: Microsoft Windows 2000 (SP3或更高) Microsoft Windows XP Microsoft Windows 2003

各种3D文件格式转换的技巧

3D文件格式转换的技巧 在结构设计的过程中经常会遇到要把PROE和UG的3D数据进行转换,但如果我们不掌握一定的技巧则会出现很多的破面,给我们分模和加工带来很多的不便。我相信大家都很讨厌去修补破面,最多让PROE系统自动修补一下。下面我给大家介绍我们的一些技巧,我们用这些方法基本不需要修补破面。 首先,大家要明白3D数据转换过程中出现破面的原因主要是软件之间的算法和精度不同所导致的。 (1)PROE野火版转2001版 我发现有不少朋友在野火版转2001版时都用IGS或STP,这样效果很不好,其它 PROE软件提供了一个专门针对PROE各版本之间转换的格式,那就是中性(*.NEU),用这种方法是最好不过的了. (2) UG转PROE 一般情况下我们把UG档转到PROE中时采用的格式是STP或CATIA,最好不要采用IGS,因为前面两种格式是针对实体,而IGS则是针对曲面。在转换过程中,我们首先要知道模型的尺寸大小,如果模型很小,而且又有很多小圆角、倒角特征则我们最好做个操作:把模型放大数倍,放大后的模型中就没有小特征了。之后我们在UG中以STP 的格式将模型导出。在PROE中导入STP格式时,我们首先新建一个空的零件文档,再插入要导入的文件就OK了,一般系统已经直接生

成了实体,如果还有破面可以再把精度调到系统的最大值0.01(这一点有时特别重要),再有破面的话就让系统自动修补一下。当然如果UG中的模型本来就很大,那就没有必要将模型放大了,但是当我们导入PROE中发现有破面时你不妨试试放大模型的方法。如果STP 格式还有破面的话,可以试试CATIA格式! 另外,野火版PROE提供了直接打开UG的功能: 在config中增加:INTF3D_UG_INSTALL_DIR值为UG的安装目录文件-打开-在类型栏选“Unigraphics 文件”-打开UG文件 (3) PROE转UG PROE转到UG中就简单多了,我们可以用TRANSMAGIC这个软件先把PROE档打开,然后另存为UG格式,再在UG中导入时选择parasolid 格式即可。一般得到的就是实体了。 (4) IGS转PROE或UG 首先我们要知道手头的IGS格式文档是PROE还是UG中转来的,如果是PROE中转来的我们就用PROE将其导入,如果是UG中转来的当然要选择在UG中导入,因为软件接收自己导出的文件格式肯定错误是最小的。当然,用PROE导入时如果有破面别忘了更改精度,用UG导入时,如果缝合生成不了实体别忘了改大缝合的公差。如果在PROE 或UG中得到实体后需要相互转换,可以参照上面所讲到的(1)和(2)。还有若在PROE和UG中都不能直接将IGS转为实体,我建议用TRANSMAGIC将其数据修补一下(都是软件自动修补,不需要我们辛

相关主题
文本预览
相关文档 最新文档