当前位置:文档之家› 11第18讲 同位素分馏应用-3

11第18讲 同位素分馏应用-3

11第18讲 同位素分馏应用-3
11第18讲 同位素分馏应用-3

氢氧碳稳定同位素在植物水分利用策略研究中的应用

第22卷 第4期世 界 林 业 研 究Vol.22 No.4 2009年8月World Forestry Research Aug12009 氢氧碳稳定同位素在植物水分利用策略研究中的应用3 徐 庆1 冀春雷1 王海英1 李 旸2 (1中国林业科学研究院森林生态环境与保护研究所,北京100091; 2中国林业科学研究院木材工业研究所,北京100091) 摘要:综述了氢氧碳稳定同位素的概念、示踪原理及其应用于定量确定植物水分来源、水分利用格局和水分利用效率等方面研究进展。同时展望了全球气候变化条件下,氢氧碳多种稳定同位素联合示踪先进技术在定量研究植物水分利用策略以及植被对全球气候变化的响应机制研究中的应用前景。 关键词:氢氧碳稳定同位素,植物水分来源,水分利用效率,水分利用策略 中图分类号:S718.51 文献标识码:A 文章编号:1001-4241(2009)04-0041-06 Use of St able Isotopes of Hydrogen,O xygen and Carbon to I den ti fy W a ter Use Stra tegy by Pl an ts Xu Q ing1 J i Chunlei1 W ang Haiying1 L i yang2 (1Research I nstitute of Forest Ecol ogy,Envir on ment and Pr otecti on,Chinese Academy of Forestry,Beijing 100091,China;2Research I nstitute of Wood I ndustry,Chinese Academy of Forestry,Beijing100091,China) Abstract:Stable is ot op ic technol ogy is a ne w method t o deter m ine s ources and utilizati on patterns of p lant water.The main advantage of this technol ogy is that it can p r ovide results of relatively high ac2 curacy and sensitivity.The pur pose of this paper is t o p resent an overvie w of the concep ts and theory of stable is ot ope tracing,and the methods of using stable is ot opes of hydr ogen,oxygen and carbon t o quantify s ources of p lant water and pattern and efficiency of p lant water use.This paper uses s ome exa mp les t o demonstrate how the stable is ot op ic technol ogy may be used t o address different issues re2 lated t o p lant water use strategies,and p r ovides s ome pers pectives on app licati ons of the advanced technol ogy of si m ultaneously tracing multi p le stable is ot opes(hydr ogen,oxygen and carbon)in stud2 ying mechanis m s of potential vegetati on res ponses t o gl obal cli m ate change. Key words:stable is ot opes of hydr ogen,oxygen and carbon,water s ource of p lant,water use effi2 ciency,water use strategy 水是植物生命活动中最活跃的成分之一,对植物生长发育、数量和分布具有显著影响,尤其在干旱和半干旱地区,水成为植物生长的主要限制因子[1]。全球气候变化的一个重要方面是区域降雨格局的变化[2],植物吸收和利用水分的模式一定程度上决定了生态系统对环境水分状况发生改变时的响应结果[3],因此,对植物水分利用策略及水分来源的了解,将有助于我们了解和预测降雨格局变化导致未来植被时空变化的规律[4],有助于林业科技人员根据生境选择合适的造林树种进行植被建设和恢复工作。氢氧碳稳定同位素示踪技术有较高的灵敏度与准确性,为定量研究植物水分来源,水分利用格局和水分利用效率等提供了新的技术手段。 3收稿日期:2009-04-30 基金项目:国家自然基金项目(30771712);“十一五”林业科技支撑项目(2006BAD03A04);948项目(2006-4-04) 作者简介:徐庆,女,中国林业科学研究院森林生态环境与保护研究所副研究员,博士,研究方向:稳定同位素生态学,E-mail:xu2 qing@https://www.doczj.com/doc/517543000.html,

同位素科普常识

同位素科普常识 同位素比值R、δ值及同位素标准 同位素比值R为某一元素的重同位素丰度与轻同位素丰度之比,例如 D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且很冗长繁琐不便于比较,故在实际工作中采用了样品的δ值来表示样品的同位素成分。样品(sq)的同位素比值R sq与一标准物质(st)的同位素比值(R st)比较,比较结果称为样品的δ值,其定义为: δ(‰)=( R sq / R st - 1)×1000 即样品的同位素比值相对于标准物质同位素比值的千分差。 对同位素标准物质的要求是:(a)组成均一性质稳定;(b)数量较多,以便长期使用;(c)化学制备和同位素测量的手续简便;(d)大致为天然同位素比值变化范围的中值,以便用于绝大多数样品的测定;(e)可以做为世界范围的零点。 目前国际通用的同位素标准如下: (1)氢同位素:分析结果均以标准平均大洋水(Standard Mean Ocean Water,即SMOW)为标准报导,D/H SMOW =(155.76 ± 0.10)× 10-6(2)碳同位素:标准物质为美国南卡罗来纳州白垩纪皮狄组层位中的拟箭石化石(Peedee Belemnite,即PDB),其13C/12C =(11237.2 ± 9 0)× 10-6

(3)氧同位素:大部分氧同位素分析结果均以SMOW标准报导,18O/16O (2005.2 ± 0.43)×10-6,17O/16O SMOW=(373 ± 15)×10-6;而在SMOW= 碳酸盐样品氧同位素分析中则经常采用PDB标准,其18O/16O = 2067.1×10-6,它与SMOW标准之间存在转换关系。 (4)硫同位素:标准物质选用Canyon Diablo铁陨石中的陨硫铁(Troi lite),简称CDT。 34S/32S ± 93 CDT = 0.0450045 (5)氮同位素:选空气中氮气为标准。 15N/14N = (3.676.5 ± 8.1)×10-6 (6)硅同位素:选用美国国家标准局的石英砂NBS-28做为标准。(7)硼同位素:采用SRM951硼酸做为标准,NBS推荐的 11B/10B比值为4.04362±0.00137。

地下水硝酸盐污染的氮氧环境同位素分析

地下水硝酸盐污染的氮、氧环境同位素示踪 齐孟文 中国农业大学 1.背景 地下水硝酸盐污染的广度和程度日益加剧,其不但引起水质生态的恶化,饮用水中硝酸盐污染还容易引起高铁血红蛋白症,并在人体内形成亚硝胺类物质,从而引发食管癌、胃癌等,因此硝酸盐污染是一个备受关注的环境问题。人为活动是造成地下水氮污染的主要原因,包括过度垦荒使土壤有机氮加速氧化、酸雨、工业和生活污水、农药和化肥,以及家畜粪便均构成潜在的污染源,其中尤以土地利用、化肥、污水和粪便是最主要的污染来源。含氮污染物中,硝酸盐因为渗滤移动性强,以及化学性质稳定,因此是地下水中氮的主要赋存形式,同时随着迁移过程会发生化学转化,如反硝化去除过程。研究地下水硝酸盐的污染途径、消除机制,对于水资源的评估和治理具有重要意义。 2.原理 2.1硝酸盐污染源的溯源分析 不同来源的硝酸盐具有不同的氮、氧同位素值,即污染源有特征的同位素取值范围不同,或者说同位素指纹,根据实测的氮、氧同位素值就可以判断其污染来源。尽管单个氮同位素在许多定情况下,就可以判定硝酸盐污染来源,但一般情况下,由于不同端源氮同的位素值域范围过大,存在重叠现象,因此常需要联合氧同位素才能将不同来源污染相互区分。 端源的特征值 -3NO N 15δ

Heaton总结出3种主要人为来源的特征值,其中:土壤有机氮矿 化所形成的为+4‰~+9‰,无机化肥中和的为一4‰~+4‰,动物排泄物和污水转化的则几乎都大于+10‰。Wilson等 后来介绍了第4种人为来源的特征值,即合成氨肥发生硝化作用所生成的为一16‰~ +6‰。 -3NO N 15δ-3NO -3NO +4NH -3NO -3NO N 15δ-3NO 端源的特征值 -3NO O 18δ来源于大气沉降硝酸盐的值范围较大,最大范围可达+18‰~+70‰。 化肥中硝酸盐的值一般在+22‰±3‰,微生物硝化作用所形成的值一般为10‰~+10‰。 O 18δO 18δ-3NO O 18δ由于环境及土地利用方式不同,相同成因的硝酸盐中的同位素也会存在区域性差异。因此利用各种端源物的同位素值时,应考虑当地的情况。另外地下水中的硝酸盐在迁移过程中,会发生各种物理、化学和生物学转化并伴有同位素分馏现象,因此用实测的同位素值进行溯源分析时,因该对其进行逆向修正,修正到混合初始时的值,才能得到正确的结果。 两同位素示踪,可用质量平衡方程,定量建立3个端源污染源的相对贡献。方程组为 1 F f f 6f f f f f f C B A C C B 18B A 18A M 8 1C 15C B 15B A 15A M 15=++++=++=δδδδδδδδ

03 第三章(氢氧同位素)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 03 第三章(氢氧同位素) Theory, Technique and Application of Environmental Isotopes第三章氢氧稳定同位素Theory, Technique and Application of Environmental Isotopes 1/ 49

轻元素稳定同位素的基本特点1.原子量低,一般小于36。 2.同位素相对质量差大。 3.形成共价键,键性与同位素分馏有很大关系。 4.化学价可变,在化合价变化过程中会发生大的同位素分馏 5.小丰度同位素的相对丰度为千分之几到百分之几,便于精确测定。 研究稳定同位素的组成特征、变化机理、分馏原理并应用它们作为地球化学示踪剂研究各种地质过程Theory, Technique and Application of Environmental Isotopes

---------------------------------------------------------------最新资料推荐------------------------------------------------------ Outline1.氢氧同位素概述 2.天然水的氢氧同位素组成及分布特征3.氢氧稳定同位素的应用Theory, Technique and Application of Environmental Isotopes 3/ 49

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

氢氧稳定同位素在水团混合计算中的应用初探

氢氧稳定同位素在水团混合计算中的应用初探 氢氧稳定同位素作为天然示踪剂,研究降水与地表水的混合作用、地表水与地下水的补给作用以及地表水之间的相互作用等过程中具有重要作用,通过二源线性混合模型可以计算二源和三源水团混合过程中端元的贡献率,而在计算多源混合过程中,则需要采用局部分析或者补充其他示踪剂等方式来综合计算。 标签:稳定同位素;水体贡献率;二源线性混合模型 近年來,河流和湖泊水体的富营养化问题日益严重,尤其对于大中型水库而言,库区干流水体营养状态良好,而支流大多保持中营养状态或者富营养化状态,部分支流呈现重度富营养化状态。研究表明,水体富营养化状态主要由营养物质的输入以及水动力条件的变化两方面导致,水作为营养物质的载体以及藻类植物的生长繁衍环境,其自身的运动转移过程直接影响到水体中营养盐的迁移和转化,以及对藻类植物生长繁殖过程的控制,因此计算水体内不同水团的混合比率对于研究水体富营养化状态有着重要意义。目前,氢氧同位素作为一种稳定示踪剂,在河川径流、降雨径流、水源划分以及植物体水分输出等研究方面应用较广[1],不同水体具有不同的氢氧同位素特征,因此可以利用氢氧稳定同位素来计算河流和湖泊不同水团混合过程中各水源的贡献率。 1 氢氧稳定同位素的天然示踪效果 氢氧同位素均称为稳定同位素,这是因为以水分子存在的D和18O在常温(低于40摄氏度)下非常稳定,很难与接触到的有机质或矿物发生反应,而影响其含量。氢氧稳定同位素在自然界中含量极低,一般的表达方式较为复杂,因此,国际上规定统一采用待测样品中某元素的同位素比值(R)与标准样品中的同位素的相应同位素比值(R标准)的相对千分差作为量度,记为δ(‰)值[2],即 δ=(R/R标准-1)×1000 式中:R是样品中元素的重轻同位素丰度之比,如(D/H)和(18O/16O);R标准是国际通用标准物的重轻同位素丰度之比,如(D/H)标准和(18O/16O)标准,一般水体中氢氧同位素测定标准采用国际原子能机构(IAEA)颁布的平均标准大洋水(Standard Mean Ocean Water,即SMOW),而后IAEA通过海水蒸馏后加入其他水配置的,非常接近SMOW的水样作为新的标准,称为VSMOW。由于水分蒸发和冷凝过程中同位素的分馏作用,使得自然界氢氧稳定同位素的分布具有如下效应:纬度效应、大陆效应、季节效应和高度效应,这也使得自然界中不同水体拥有不同的氢氧同位素特征。因此我们可以通过不同水团混合过程中端元水团氢氧同位素特征的变化来研究水团混合的详细过程,计算不同水团的混合比率等。 2 降雨与地表水的混合作用

同位素地球化学作业

同位素地球化学论文 近年来,随着同位素样片制备技术的改进和高精度质谱的问世,大大地提高了同位素测试结果的精度和准确性,使同位素地球化学的理论和方法进一步成熟和完善,研究领域不断拓宽。 同位素地球化学研究内容 同位素地球化学是根据自然界的核衰变、裂变及其他核反应过程所引起的同位素变异,以及物理、化学和生物过程引起的同位素分馏,研究天体、地球以及各种地质体的形成时间、物质来源与演化历史。 同位素地质年代学已建立了一整套同位素年龄测定方法,为地球与天体的演化提供了重要的时间座标。比如已经测得太阳系各行星形成的年龄为45~46亿年,太阳系元素的年龄为50~58亿年等等。 另外在矿产资源研究中,同位素地球化学可以提供成岩、成矿作用的多方面信息,为探索某些地质体和矿床的形成机制和物质来源提供依据。 ①自然界同位素的起源、演化和衰亡历史。 ②同位素在宇宙体、地球及其各圈层中的分布分配、不同地质体中的丰度及其在地质过程中活化与迁移、富集与亏损、衰变与增长的规律;同位素组成变异的原因;并据此探讨地质作用的演化历史和物质来源。 ③利用放射性同位素的衰变定律建立一套有效的同位素计时方法,测定不同天体事件的年龄,并作出合理的解释,为地球和太阳系的演化确定时间坐标。 根据同位素的性质,同位素地球化学研究领域主要分稳定同位素地球化学和同位素年代学两个方面。稳定同位素地球化学主要研究自然界中稳定同位素的丰度及其变化。同位素年代学随研究领域的深入,又分为同位素地质年代学和宇宙年代学。同位素地质年代学主要研究地球及其地质体的年龄和演化历史。宇宙年代学则主要研究天体的年龄和演化历史。 自然界同位素成分变化

原子核的组成 同位素

课时一原子核的构成和同位素『导学案』【新授课】 【学习目标】 1.了解原子结构及微粒中质子、电子、中子的计算 2.了解元素、核素、同位素的概念 【课前检测】 1.以下是一些科学家为探索原子结构所作出的重大贡献,请你以连线表示其对应关系。 ①道尔顿a、提出原子由原子核和电子构成 ②汤姆生b、发现原子中存在电子 ③卢瑟福c、提出原子核外电子在一系列稳定的轨道上运动 ④玻尔d、提出原子学说 【新课引入】 原子是构成物质的一种微粒,原子是否可以再分,它是由哪些更小的微粒构成呢? 相对原子质量定义为“某原子的质量与C-12原子质量的1/12的比”,C-12原子指的是什么?【概念形成】 一、原子的构成 1.原子的构成 ⑴质量关系: ⑵电量关系:中性原子:核电荷数质子数核外电子数 2.质量数 用符号表示。 则得出以下关系:质量数(A) = + 这样,只要知道上述三个数值中的任意两个,就可推算出另一个数值来。 一种氯原子质量数为35,则其中子数为 一种氯原子质子数为17,中子数为20,质量数为 表示方法:【概念运用】 典型习题: 1.下列图①②③原子结构模型中依次符合卢瑟福、道尔顿、汤姆孙的观点的是 () ①②③ A.①②③B.③①②C.③②①D.②①③ 2.据报导,1994年12月科学家发现了一种新元素,它的原子核内有161个中子,质量数272。该元素的原子序数为() A.111 B.161 C.272 D.433 3.化学变化中,可能发生改变的是() A.质子数B.中子数C.核外电子数D.原子核 4、以下互为同位素的是() A、石墨与金刚石 B、D2和T2 C、CO和CO2 D、35 17 Cl和37 17 Cl 5、根据α粒子散射现象,提出带核的原子结构模型的科学家是() A.道尔顿B.汤姆生C.卢瑟福D.玻尔 6、有六种微粒,它们分别是X 40 19 ,Y 40 20 ,Z 40 18 ,+] [40 19 Q,+2 40 20 ] [K,M 40 20 ,它们隶属元素的种类(b) A. 2种 B.3种 C.4 种 D.5 种 7、第四层为最外层时,该电子层最多容纳的电子数目是() A、2个 B、8个 C、18个 D、32个 8、 13 C-NMR(核磁共振)、15N-NMR可用于测定蛋白质、核酸等生物大分子的空间结构,Kurt W üthrich等人为此获得2002年诺贝尔化学奖。下面有关 13 C、15N叙述正确的是() A、 13 C 与 15 N有相同的中子数 B、 13 C 与C60互为同素异形体 C、 15 N 与 14 N互为同位素 D、 15 N的核外电子数与中子数相同 9、下面所列的电子层中能量最低的是() A、K层 B、L 层 C、M层 D、N层13、X原子的核电荷数为a,它的阴离子X m- 与Y原子的阳离子Y n+ 的电子层结构相同,则Y原子的核电荷数为() A、a+m+n B、a-m-n C、m+n-a D、m-n-a 10.下列说法正确的是() A.原子的质量主要集中在原子核中B.稀有气体原子最外层均为8电子稳定结构

碳氢氧氮稳定同位素在生态学中的研究案例

碳氮氢氧稳定同位素示踪技术在生态系统研究案例稳定同位素作为示踪剂广泛应用于生态循环和大气循环中的相关研究。研究人员通过测量空气、植物和土壤中的稳定性同位素组成,进而研究传统生态学无法解释的复杂生态学过程,例如:碳同位素用于分析生态系统CO2循环,区分碳通量研究中各组分的贡献率,确定不同物种对全球生产力的分配和贡献;氢氧同位素用于分析植物对土壤水分的利用效率,进而区分土壤水分的蒸腾与蒸散;氮同位素用于分析植物及生态系统的氮素循环,通过反硝化细菌转化成N2O,根据15N在N2O分子的不同位置,可以示踪N素循环的不同化学反应过程。在这些生态研究中,要求使用的设备同时具备高环境耐受性、高精度、高测量速度及宽量程等特点。 美国Los Gatos公司采用专利的OA-ICOS技术(第4代CRDS技术)设计的一系列稳定同位素分析仪,具有操作温度范围宽、量程宽、高速、高精度的优点。能够满足实验室野外多点长期同步监测、不同高度长期同步监测等研究的需要。其与其他传统测量方法相比,改进了对外界温度、压力变化比较敏感的缺陷,具备无法比拟的优势,适用范围也大大得到扩展。 一、测量原理 LGR:采用OA-ICOAS技术,符合Beer-Lambert定律,通过测量光损失来确定未知物质的浓度;通过改变入射激光的波长,一次扫描测量需要的全部光谱,每秒300次测量,做平均,从而保证了多点连续监测的同步性以及高精度性。 特点:1、测量速度非常快,每秒300次全光谱扫描取平均,测量速度及精度远超传统质谱仪; 2、一次扫描测量全光谱,实时显示光谱曲线,即使温度压力的变化引起峰漂移 也不会影响到峰面积的变化; 3、离轴的光腔设计,避免反射光与入射光直接的相互干扰,信噪比低; 4、通过峰面积来计算位置物质的浓度,所以测量范围很宽; 二、 试验方案 1、碳氧稳定同位素示踪设计方案 1.1土壤-植物根系呼吸的区分 利用土壤、植物根系呼吸产生的CO2中13C同位素信息,可以区分它们各自在总呼吸中所占的比例,同时对18O同位素进行监测,使得多混合源的同位素区分成为可能。

碳同位素组成特征

塔中地区晚寒武—奥陶世碳酸盐岩δ13C同位素组成特征 朱金富于炳松黄文辉初广震吕国 (中国地质大学北京100083) 摘要通过研究、分析塔里木盆地塔中地区寒武系至奥陶系海相碳酸盐岩的碳、氧同位素组成特征,分析和探讨了影响塔中地区寒武系至奥陶系碳酸盐岩碳同位素变化的原因。结果表明,寒武-奥陶系海相碳酸盐岩的碳同位素的变化可能与海平面变化有密切联系,在晚寒武世至早奥陶世晚期为一海退期,有机质产率及有机碳埋藏速率的下降导致了碳酸盐岩δ13C 值的降低;而在早奥陶晚期-中奥陶世为一海侵期,有机质产率及有机碳埋藏速率的增加导致了碳酸盐岩δ13C值的增高;晚寒武世至早奥陶世海水中的硫酸盐含量高,硫酸盐细菌的还原作用使有机质氧化,从而导致碳酸盐岩δ13C值降低。 关键词寒武-奥陶系碳酸盐岩碳同位素海平面变化硫酸盐 第一作者简介:朱金富,男,1978年生,中国地质大学(北京)在读博士,研究方向:含油气盆地沉积学 碳氧稳定同位素是解释碳酸盐岩成因的一种重要的地球化学标志。同时,碳、氧同位素分析是古环境研究中常用的一种手段,它在恢复水体的古温度、古盐度和研究沉积物成岩作用等方面已得到了广泛的应用。近年来,有关碳氧同位素与海平面变换的关系的研究备受关 注(彭苏萍等,2002年;邵龙义,1999年;李儒峰,刘本培,1996年;刘传联,1998年等)。本文通过对塔里木盆地塔中地区寒武系至奥陶系碳酸盐岩中碳同位素的分析,探讨了 碳同位素与沉积环境、相对海平面变化及硫酸盐含量的关系。 塔中低凸起位于塔里木盆地中部,北与满加尔凹陷、南与塘古孜巴斯凹陷、西与巴楚低凸起、东与塔东低凸起相接。东西长约300km,南北宽约160km,面积约4.8ⅹ104km2(图1所示)。它分为塔中?号断裂构造带、塔中北坡及中央垄断垒带三个构造单元。塔中地区地层发育比较齐全,除了缺失侏罗系和大面积缺失震旦系外,寒武系至古-新近系均有分布。

氮稳定同位素示踪水体氮污染研究

氮稳定同位素示踪水体氮污染研究 氮输入超标会引起发水体富营养化、水生生物死亡等一系列环境问题,通过研究水体氮浓度、氮同位素值的时空分布特点和成因,能定性的判别水体氮污染的来源及其转化机制。本文结合该学科领域的研究成果,对氮同位素示踪技术运用到水体氮异常的研究中作出综述,有以下成果:论述了两种常用的氮稳定同位素示踪技术的(15N自然丰度法、15N同位素稀释法)的机理及运用;氮的来源及转化过程中的分馏效应;对有机氮同位素的研究中,颗粒有机氮(PON)的δ15N 值再结合13C、C/N比值可以综合判断有机颗粒物的来源,并可作为生态系统中氮的生物地球化学反应及转化过程的识别标志。 标签:氮稳定同位素;水环境;颗粒态有机氮 随着工农业生产的发展,氮污染已成为水环境问题研究的热点,世界许多地方水环境中的氮含量都超过了相关机构规定的饮用水中N03一含量的上限值,这也给人们的身体健康带来极大隐患。迄今,许多学者已将氮稳定同位素应用到判别水中氮污染来源以及水循环过程中氮的转化机制之中.对水体中氮稳定同位素也进行了广泛的探索。通过对氮稳定同位素的研究,可以有效的判别水体中氮异常的来源,了解氮的转化机制和沿途的变化,从而有效地防范和控制水体氮污染 一、氮稳定同位素示踪技术 (一)15N自然丰度法 氮有14N和15N两种稳定同位素,其中14N豐度为99.64‰,15N丰度为0.36‰[1]。不同物质中有着不同的14N和15N的同位素比值(δ15N),并且,δ15N 在不同的地质背景和含水介质中也有所相异,所以研究水体中的自然氮同位素值对判断区域地质环境有着重要的现实意义的。通过研究地表水氮浓度、氮同位素值的时空分布特点和成因,能定性判别水体氮污染的来源及其转化机制。 (二)15N同位素稀释法 氮循环过程中在沿途的变化会引起氮同位素的分馏效应,通过加入15N标记体,经过相关的生物化学过程测定15N标记体原子百分比变化可以示踪物质转化迁移途径与程度。目前,己有大量研究应用该技术测定湿地土壤中各种生物化学反应(如矿化作用、硝化作用、反硝化过程、异化还原作用)的氮转化速率并计算不同生化反应机制的贡献率。 二、氮的来源及转化机制 氮的来源十分广泛,根据产源位置将来源可分为内源和外源[2],内源通常是湖泊等水体内部的水生生物碎屑等;外源则有大气干湿沉降、动物粪便、河流

碳同位素组成特征及其在地质中的应用

同位素地球化学

目录 一、碳的同位素组成及其特征 (1) 1.碳同位素组成 (1) Ⅰ、碳的同位素丰度 (1) Ⅱ、碳的同位素比值(R) (1) Ⅲ、δ值 (2) 2.碳同位素组成的特征 (2) Ⅰ.交换平衡分馏 (2) Ⅱ.动力分馏 (3) Ⅲ.地质体中碳同位素组成特征 (3) 二、碳同位素在地质科学研究中的应用 (8) 1. 碳同位素地温计 (8) 2.有机矿产的分类对比及其性质的确定 (9) Ⅰ.煤 (9) Ⅱ.石油 (9) Ⅲ. 天然气 (11)

碳同位素组成特征及其在地质科研中的应用 一、碳的同位素组成及其特征 1.碳同位素组成 碳在地球上是作为一种微量元素出现的,但分布广泛,在地质历史中有着重要作用。碳的原子序数为6 ,原子量为12.011,属元素周期表第二周期ⅣA族。碳在地壳中的丰度为2000×10-6,是一个比较次要的微量元素。在地球表面的大气圈、生物圈和水圈中,碳是最常见的元素之一,是地球上各种生命物质的基本成分馏。碳既可以呈固态形式存在,又能以液态和气态形式出现。它既广泛分馏布于地球表面的各层圈中,也能在地壳甚至地幔中存在。总之,碳可呈多种形式存在于自然界中。在有机物质和煤、石油中,以还原碳的形式存在,在二氧化碳气体和水溶液中,以氧化碳形式出现。碳还可呈自然元素形式出现在某些岩石中(如金刚石和石墨)。一般用同位素丰度、同位素比值和δ值来表示同位素的组成。 Ⅰ、碳的同位素丰度 同位素丰度指同位素原子在元素总原子数中所占的百分比,自然界中的碳有2个稳定同位素:12C和13C。习惯采用的平均丰度值分别为98.90%和1.10%。由此可见,在自然界中碳原子主要主要是以12C的形式存在。另外碳还有一个放射性同位素14C,半衰期为5730a。放射性14C的研究,目前已发展成为一种独立的同位素地质年代学测定方法,主要应用于考古学和近代沉积物的年龄测定。适合用于作碳稳定同位素分馏析的样品包括:石墨、金刚石等自然碳矿物,方解石、文石、白云石、菱铁矿、菱锰矿等碳酸盐矿物;石灰岩、白云岩、大理岩等全岩样品;各种矿物包裹体中的C O2和CH4气体以及石油、天然气及有机物质中的含碳组分馏等。 Ⅱ、碳的同位素比值(R) 同位素比值R=一种同位素丰度/另一种同位素丰度 对于非放射性成因稳定同位素比值: R=重同位素丰度/轻同位素丰度 由此可见,碳的同位素比值R=1.1%/98.9%=0.011

氢氧稳定同位素的几大效应

降水稳定同位素的几种效应 了解大气降水中稳定同位素与温度、降水量、纬度、高程、距离海洋的距离之间的关系。 Harman Craig提出了全球大气降水线(GMWL),表示为δD =8δ18O+10斜率反映出蒸汽和凝聚是大气降水同位素的主要影响因素,截距表示全球大气降水的平均值,截距大于10表示该降水云气形成过程中气、液两相同位素分馏不平衡程度偏大,小于10则意味着在降水过程中存在蒸发作用的影响。 1雨量效应:一般来说雨量越大,降水的δD和δ18O值越低,这种效应称为雨量效应,其解释为,较低温度将形成较大的降雨,同时在较低温度下的凝结过程中的分馏作用也使降雨中重同位素贫化。 稳定同位素的降水量效应主要发生在中低纬度沿海地区,在我国内陆区通常表现不显著,并且它的产生与大气强烈对流现象相关。内陆地区降水量和降水同位素的关系,虽然年际拟合关系不好,但是可能在夏季拟合的比较好。 2温度效应:大气降水的δD和δ18O值与地面年平均气温往往呈线性相关关系。温度升高δ值增大,温度降低δ减小。温度效应主要是由于蒸发过程中分馏作用随温度的升高而减弱造成的。在水的蒸发过程中,水分子获得外部能量后,优先破坏相对轻的同位素水分子之间的氢键,温度较高时蒸发获得的能量多,重同位素分子之间的氢键被破坏的数量增多,所以分馏作用减弱,海水蒸发所形成的水蒸气中的2H和18O的含量就高。且温度每升高1℃,大气降水的δ18O增加量小于于δD。 在高纬度地区温度是影响大气降水中稳定同位素变化的主要因素,在南北两极表现得尤其明显,且越深入大陆内部,其正相关性越强,这种现象在我国主要表现在季节温度变化比较大的地区,如我国西北地区的西安、乌鲁木齐、兰州等。 3纬度效应:大气降水的δD和δ18O值随着纬度的升高而减小的现象。不同地区降水的δ18O值随纬度变化率不同,但是变化趋势是一致的,随着维度的升高,大气降水的δ18O不断降低。纬度效应形成的原因有:1.随着纬度的升高,当地的年平均气温降低;2.大气圈中的水蒸气大部分形成于低纬度地区,当云团向高纬度地区移动时,由于不断发生瑞利分馏凝结作用,使云团与之平衡的雨水δD和δ18O值不断降低。

稳定同位素技术的发展及其应用

核技术与核安全课程作业 稳 定 同 位 素 技 术 的 发 展 及 其 应 用

原子核内质子数相同而中子数不同的一类原子称为同位素,它们处在周期表上的同一位置,可分为稳定性同位素和放射性同位素。放射性同位素的原子核是不稳定的,它通过自发的放出粒子而衰变成另一种同位素。而不具有放射性的同位素称为稳定同位素,其中一部分是由放射性同位素通过衰变后形成的稳定产物,称为放射成因同位素;另一部分是天然的稳定同位素,是核合成以来就保持稳定,迄今为止还未发现它们能够自发衰变形成其他同位素。自然界中共有1700余种同位素,其中稳定同位素有270余种。有的元素由很多的稳定同位素组成,如第50号元素锡含有10个稳定同位素;而有的稳定同位素却仅仅只有一个稳定同位素,如元素氟、钠等。 稳定同位素较放射性同位素具有安全、无污染、易控制的优点,在地质、生态、医药、农业等领域研究中得到广泛应用。 1.稳定同位素技术的发展过程 稳定同位素的发现比放射性同位素要晚一些,1912年汤姆孙用电磁分析器(近代质谱计的雏形)才第一次确定了氖-20和氖-22的存在;1927年发现了氧的稳定同位素O 17和O 18 ;1932年发现了重氢(D )。1936年尤里等用精馏法从水中富集了O 18,随后又用化学交换法富集了Li 8,C 13,N 15和S 34,不但证实了早年发表过的有关分离的计算理论,同时也发现了化学交换法对大量分离轻同位素很合适的。与此同时也采取了几种物理方法分离了若干种同位素。 在1930-1941年期间稳定同位素分离还处于探索阶段,此时尚无工业规模的生产,少量分离物只是提供研究同位素本身的核性质以及作为示踪原子用。到20世纪50年代后期,由于科学技术的进步及稳定同位素特殊性质的逐步显示,才使之得以迅速发展。我国稳定同位素的研制工作起步于50年代中,60年代首先在农业上获得应用。之后,在医药学中的应用也取得初步成果。目前,我国已有一支稳定同位素的研究、生产机应用的技术队伍,个别产品进入了国际市场。 2.稳定同位素分析技术 稳定同位素分析是分离研究、生产和应用的前提,它是稳定同位素科学技术中不可缺少的组成部分。其中最重要的方法是质谱分析,它用于同位素分析已有70年历史,是经典、常用,准确的方法,适用于各种元素同位素质量和浓度测定以及物质成分和结构分析。近来在样品引入、离子源、分析器以及检出系统等四个主要方面都有重大的改进。在样品引入部分加上气相色谱,构成色质联用仪器,可以分析复杂混合物样品而不必转化为简单气体。此外,现在又出现高压液相色谱与质谱联用的更新技术。在离子化方面出现了许多新型离子化型式,如化学离子化,在离子源中产生的离子基本上是分子离子,谱线要比普通的电子轰击离子化单纯得多,大大提高了检测灵敏度。又如场致离子化和场解吸离子化,它们都是不直接轰击样品分子,是一种软离子化技术,不出现离子碎片,基本上没有同位素效应的干扰问题,可以直接分析多成分的混合物样品,而且不必像GC-MS 那样需要引入适合于气相色谱的诱导体,所以操作更为简单。这对多重标记物的分析十分有利,能测定稀释了一百万倍的样品,最小检测量可低到fs(1510 g)。此外,还有激光离子化、大气压离子化和多点场离子化等。在分析器方面,除了磁场偏转形式外,还有一种简便的四重极质量过滤器,它是用四根圆棒电极(最好是双曲线断面型式)代替了笨重的磁铁。对角线上两根电极互成一对,分别加上高

氮同位素方法在地下水氮污染源识别中的应用

氮同位素方法在地下水氮污染源识别中的应用 金赞芳1 叶红玉2 (1.浙江工业大学生物与环境工程学院,浙江杭州310014;2.浙江省环境保护科学设计研究院,浙江杭州310007) 摘要地下水硝酸盐来源复杂多样。介绍了用15N/14N的方法(N同位素方法)分析辨明污染物来源。氮污染源不同,氮同位素值(δ15N值)也就不同。例如:雨水的δ15N值偏低,为-1.08%~0.21%;生活排水的δ15N值偏高,为1.0%~1.7%。污染源不同,受污染的地下水的δ15N值也不同,据此能有效地判断地下水硝酸盐的来源。 关键词地下水硝酸盐氮同位素值 Identif ication of the nitrate sources in the groundw ater by N isotope method J in Zanf ang1,Ye Hong y u2.(1.Col2 lege of B iology&Envi ronmental Engineering,Zhej iang Universit y of Technology,H angz hou Zhej iang310014; 2.Envi ronmental Science Research&Desi gn I nstitute of Zhej iang Province,H angz hou Zhej i ang310007) Abstract: This paper reviews the state2of2the2fact of natural abundances of N isotope(14N/15N)in investigating the sources and mechanisms of the pollutants.Different nitrate sources have the differentδ15N values.The nitrate from the rainwater has the lowδ15N values(- 1.08%~0.21%)and that f rom the domestic wastewaters has the highδ15N values(1.0%~1.7%).Differentδ15N values of the groundwater is caused by different nitrate sources. Henceδ15N values can be used to identify the nitrate source in the groundwater effectively. K eyw ords: Groundwater Nitrate Nisotope value 水体和食物中过量的硝酸盐被视为一种污染物,早在20世纪40年代就曾报道饮用水中的硝酸盐可引起婴儿高铁血红蛋白症,俗称氰紫症[1],[2]3。硝酸盐在胃肠中可以还原为亚硝酸盐,而亚硝酸盐可以形成致癌物质亚硝胺危害人畜的生命健康。世界卫生组织(W HO)限制饮用水的硝酸盐氮含量低于10mg/L。在20世纪60年代,美国与欧洲就有因化学氮肥的施用而导致地下水硝酸盐污染的报告。随后的几十年中美国、欧洲、日本等国家和地区相继出现地下水硝酸盐污染的报道[324]。如:丹麦在过去30年中地下水硝酸盐含量增加了3倍,而且还有继续增加的趋势;1998年美国洛杉矶40%左右的井水硝酸盐含量超标。国内外有关部门和专家相继研究并报道了地下水硝酸盐污染的主要因素[2]5,[526]:施用化肥和有机肥、生活污水、垃圾与粪便的下渗水、畜舍排水、污水灌溉、工业污染源和大气氮化合物的沉降等等。一般来讲,地下水硝酸盐来源复杂多样,很多地区的污染是多种污染源联合作用的结果。判明污染物来源是污染控制的基础,在污染物来源复杂的地区,这一工作尤为重要。 1 同位素的特性 自然界中氮的原子形式有14N和15N(N同位素)两种。不同的物质氮同位素组成不同,比如,大气中14N和15N的存在比例为99.635%和0.365%[7]。地球上所有的含氮化合物15N/14N的比值都接近0.368%,与空气中氮气的15N/14N比值接近,区别很小。根据这一原理,科学家们以大气的氮同位素比值(15N/14N)为标准值,按下式计算氮同位素值δ15N: δ15N(%)={[(15N/14N)样品/(15N/14N)标准]-1}×100。 各种含氮物质中的15N和14N的比例都不一样,因此每一种污染源都有一定的δ15N,而且根据上式计算得到的结果有正有负。科学家们据此方法识别地下水中的氮污染源。 污染物排放进入环境,再进入物质循环系统,期间发生了一系列的生物化学反应或物理化学反应。在这些反应中,当15N和14N的反应速率不同,产物和反应物(没有完全消耗的)的δ15N就不同,这就是所谓的同位素效应,经常用反应速率常数的比值(k14/k15)表示,也称为同位素效应动力学常数,14N 的反应速率常数(k14)比15N的反应速率常数(k15)大,故该常数为>1的一个数值。在生化反应中,每一个完整的反应都有各自固定的同位素效应动力学常数[8]。 第一作者:金赞芳,女,1976年生,博士研究生,讲师,主要从事废水处理研究与教学。

氮氧同位素在河流硝酸盐研究中的应用

第22卷 第12期2007年12月 地球科学进展 A DVAN CE S I N E AR T H S C I E N C E V o l.22 N o.12 D e c.,2007 文章编号:1001-8166(2007)12-1251-07 氮氧同位素在河流硝酸盐研究中的应用* 陈法锦1,2,李学辉3,贾国东1 (1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东 广州 510640; 2.中国科学院研究生院,北京 100039; 3.神华乌海煤焦化有限责任公司项目研发中心,内蒙古 乌海 016000) 摘 要:多年来,世界各地河流普遍存在硝酸盐污染问题。为控制河流的硝酸盐污染,确定河水中硝酸盐的来源以及研究氮的循环过程就显得尤为重要。由于在不同成因下,硝酸盐的δ15N和δ18O 存在着较大差异,因此利用氮、氧同位素方法研究河流硝酸盐问题正日益受到国内外研究人员的重视。综述了用硝酸盐中氮、氧同位素来研究河流硝酸盐的不同来源(大气沉降、化肥、牲畜粪、土壤硝酸盐等)和示踪其地球化学循环过程,特别是反硝化过程,这两方面的研究进展,并对我国河流硝酸盐研究现状进行了讨论及提出今后的研究方向。 关 键 词:河流;硝酸盐;氮同位素;氧同位素 中图分类号:P332.7 文献标识码:A 随着工农业生产的迅速发展,大江大河的营养元素氮、磷的含量有升高的趋势。氮、磷的流失,不仅影响河水的水质,而且对河口及近海环境造成很大的影响。我国长江口及其邻近海域生态环境参数的背景值(20世纪50~60年代)和现状值(1997—2003年)的比较显示,长江向长江口海域输送总氮和总磷通量持续增大[1];2002年的研究结果显示,珠江口海域的溶解无机氮(D I N)含量普遍超过0.30 m g /L的国家二类海水水质标准,大部分水域D I N>0.50m g /L的四类海水水质标准[2]。这些无疑是20世纪80年代以来导致长江口、珠江口海域赤潮频发的重要原因。美国密西西比河的硝酸盐含量和输入墨西哥湾的通量自1965年以来已经升高3倍,如今每年的输出量达1600万吨氮,从而导致了墨西哥湾的严重富营养化和湾内面积>10000k m2的季节性水下缺氧层[3,4]。这些已引起各国政府和学术界的高度重视,积极研究和采取措施控制污染。 为控制河流的硝酸盐污染,确定河水中硝酸盐的来源以及研究氮的循环过程显得尤为重要。判断硝酸盐污染源的方法中,最简单和传统的方法是通过调查污染区的土地利用类型并结合水化学特征分析辨明污染源。但硝酸盐来源的多样性,点源和非点源的混合出现以及氮循环中复杂的物理、化学作用、生物转化过程,使得这一传统的方法得到的结果较为粗糙。为此,国内外研究者相继应用硝酸盐氮氧同位素方法来研究河流中硝酸盐的来源和循环过程。本文在此就这方面的研究现状和发展方向作一简单介绍。 1 硝酸盐同位素测试预处理方法的发展目前,硝酸盐的氮氧同位素分析,主要以N2和C O 2为测定对象进行质谱分析,方法通常包括转化、纯化和质谱测定3个步骤,转化和纯化属于预处理。 由于硝酸盐是有氧环境中最稳定的含氮化合物,传统的预处理方法是通过K j e l d a hl反应将硝酸盐转化为铵盐[5,6],然后转化为N2进行质谱分析。曾经使用下列方法将铵转化为N2:①直接燃烧干涸的铵盐[7];②铵蒸汽与次溴酸盐溶液进行氧化反应[5,6]或沸石与铵盐燃烧[8],产生的N2通过密封的铜/氧化铜炉进行纯化;③将铵盐慢慢蒸馏到酸 * 收稿日期:2007-07-04;修回日期:2007-11-13. *基金项目:广东省自然科学基金项目“珠江水体中硝酸盐的氮氧同位素研究”(编号:04002136)资助.  作者简介:陈法锦(1981-),男,广东湛江人,博士研究生,主要从事生物地球化学研究. E-m a i l:c h e nf j04@y a h o o. c o m

相关主题
文本预览
相关文档 最新文档